The course is intended for all PhD students, and will encompass many areas in mathematics at a reasonable level.

The core idea is to see how Analysis can be applied in different branches of mathematics.

Topics to be covered include:

  1. 1)Functional Analysis: Notes

2) Geometric Measure Theory: Notes

  1. 3)Ergodic Theory: Notes

4) Probabilistic Techniques: Notes

5) Harmonic Analysis on Groups: Notes

  1. 6)Sobolev Spaces:  Notes


2 presentation at each occasion,      80 minutes each, with 10 min break

* = Confirmed

Nov. 13 

* Julian Mauersberger         

C* algebras, Gelfand theory,Spectral measures

* Sergi   Arias                        

Distributions and elliptic operators

Nov.  20

Johan Ericsson                  

Ergodic theory with applications to additive   combinatorics  

* Samuel Fromm                

Schrödinger Equation/ Selfadjoint Operators/ Semigroups/ Functional Calculus.

Nov. 27

* Boris Petkovic                    

Nilpotent group representations

* Jeroen Hekking               

Haar measure

Dec. 4

* Phillipe Moreillon   

Not decided

* Tomas Berggren              

stochastic diff. eq.

Dec. 11

* Scott Mason

Representation theory for the Lie algebra sl(2,C),  sl(3,C)

* Oliver Gäfvert                     

SL(2, R) representations