Information Theory, 2017

The course provides a general introduction to the topic of Information Theory with a focus on the application of Information Theory to communications in general and on channel coding and capacity in particular.

Outline: entropy and mutual information, the asymptotic equipartition principle, entropy for stochastic processes (entropy rate), introduction to data compression and source coding, channel capacity and coding for noisy channels, capacity for different channel models (with emphasis on discrete memoryless channels and Gaussian channels), finite field theory, design and analysis of error correcting codes (with a focus on linear block codes), introduction to network information theory

Format: Teaching the course will be based on one meeting, or seminar, per week (with about 12 meetings total, for the complete doctoral student version). The examination of the course will be based on: active participation, homework problems and, for the doctoral student version (see below), presentation/review of an article in the field. The overall emphasis is on individual off-class problem solving, based on relatively demanding homework problems. More information about these can be found here.

Two versions: The course is eligible for both undergraduate (EQ2840, 7.5cu) and doctoral (FEO3210, 12cu) students. The difference between the two versions of the course is in the extent and level of difficulty of the material included. With reference to the course schedule the senior undergraduate version, EQ2840, will amount to the material treated in meetings 1-8 while FEO3210 includes in addition the theoretically more demanding material corresponding to meetings 9-11 as well as a separate presentation/review of a research paper in the field.

Course responsible: Mikael Skoglund


The main focus is on homework problems. Homework assignments will be handed out at meetings and will also be made available on the homepage. The deadline for handing in solutions for the assignment handed out on meeting N is at meeting N+1.

Each assignment (set of homework problems) will be graded according to (thresholds given are approximate):
-1:less than 5% of assignment solved correctly
0:between 5% and 40% of assignment solved correctly
1:between 40% and 80% of assignment solved correctly
2:more than 80% of assignment solved correctly
Note that solving less that 5%, or failing to hand in by the deadline, gives minus one point.

Based on the above, the total grade for the course will be set according to:

Senior undergraduate version, 8 assignments total:
grade A: 15-16 points
grade B: 13-14 points
grade C: 10-12 points
grade D: 8-9 points
grade E: 6-7 points
grade F: less than 6 points

Doctoral student version, 11 assignments total:
pass: > 14 points + paper presentation

Course Material


Main textbook: "Elements of Information Theory," Second. Ed., by T. Cover and J. Thomas (Wiley 2006: ISBN 0-471-24195-4).

Second textbook: "Introduction to Coding Theory," R. M. Roth (Cambridge 2006: ISBN 0-521-84504-1)

Other material used: Journal papers in the field, handouts will be provided.

Homework Problems

Teaching the course and its examination will be based on mandatory homework problems. Solutions to homework problems are to be handed in.

Cooperation between students will be allowed according to the following principle: Students are allowed to discuss homework problems orally. That is, students are not allowed to use paper and pen, a computer, a white/black board, etc., when discussing the homework problems with other students.

Preliminary Schedule

1March 2413:15-15:00SIPentropy and mutual information2MS
2March 3113:15-15:00SIPthe AEP, entropy rate, intro to data compression3,4,5MS
3April 713:15-15:00SIPlossless source coding5MS
4April 2113:15-15:00SIPintro to channel capacity and coding7GB
5April 2813:15-15:00SIPGaussian channels8-9GB
6May 513:15-15:00SIPblock codes and finite fieldsRoth 2-3QW
7May 1213:15-15:00SIPfinite fields and cyclic codesRoth 3,7-8QW
8May 1913:15-15:00SIP BCH and Reed-Solomon codesRoth 5-6QW
9June 213:15-15:00SIPGallager (error exponents, handout)handoutMS
10June 913:15-15:00SIPnetwork info theory14GB
11June 1613:15-15:00SIPVerdu and Han (a general formula)handoutMS
12September presentationsMS

Teachers: MS = Mikael Skoglund; GB = German Bassi; QW = Qiwen Wang

Note: Room 'SIP' = conference room at the SIP lab, Osquldas Väg 10, floor 3.

Paper Presentations

For the presentation, you can select any paper that has appeared in the IEEE Transactions on Information Theory. You need to present the paper and its contribution, and you also need to critically assess it and comment on its potential weaknesses. You have 15 minutes.