The BCH Bound

- **Theorem**: Let C be cyclic of length n with generator polynomial $g(x)$ over $\text{GF}(q)$. Let m be the smallest integer such that $n | q^m - 1$ and let $\alpha \in \text{GF}(q^m)$ be a primitive nth root of unity. Then, if for some integers $b \geq 0$ and $\delta \geq 2$ all the elements

$$\alpha^b, \alpha^{b+1}, \ldots, \alpha^{b+\delta-2}$$

in $\text{GF}(q^m)$ are zeros of the code, it holds that $d_{\min} \geq \delta$.

$$\delta - 1 \text{ consecutive zeros } \Rightarrow d_{\min} \geq \delta$$
BCH Codes

- **Definition:** Consider a cyclic code C of length n over $\text{GF}(q)$, let m be the smallest integer such that $n|q^m - 1$ and let $\alpha \in \text{GF}(q^m)$ be a primitive nth root of unity. Then C is a *BCH code of designed distance* δ if for some $b \geq 0$ it has generator polynomial

$$g(x) = \text{lcm}\{p^{(b)}(x)p^{(b+1)}(x)p^{(b+\delta-2)}(x)\}$$

- A BCH code is said to be
 - *narrow sense* if $b = 1$
 - *primitive* if $n = q^m - 1$ ($\implies \alpha$ primitive in $\text{GF}(q^m)$)

- **Theorem:** A BCH code over $\text{GF}(q)$ of length n and designed distance δ has $d_{\text{min}} \geq \delta$ and dimension $k \geq n - m(\delta - 1)$.

- In the special case $q = 2$, $b = 1$ and $\delta = 2\tau + 1$, it holds that $r = n - k \leq m\tau$

(since the $p^{(i)}(x)$'s have degree $\leq m$, and $p^{(2i)}(x) = p^{(i)}(x)$)

- **True minimum distance** d_{min}:
 - For $q = 2$, $b = 1$, $n = 2^m - 1$ and $\delta = 2\tau + 1$ the code has $d_{\text{min}} = 2\tau + 1$ if

$$\sum_{i=0}^{t+1} \binom{n}{i} > 2^{mt}$$

 - If $b = 1$ and $n = \delta p$ for some p, then $d_{\text{min}} = \delta$
 - If $b = 1$, $n = q^m - 1$ and $\delta = q^p - 1$ for some p then, $d_{\text{min}} = \delta$
 - If $n = q^m - 1$ then $d_{\text{min}} \leq q\delta - 1$
Parity Check Matrix

- Assume narrow sense and primitive over GF(2) and \(\delta = 2 \tau + 1 \)
- Since \(g(\alpha^i) = 0 \) for \(i = 1, \ldots, \delta - 1 \), a valid parity check matrix is

\[
H_{BCH} = \begin{bmatrix}
1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\
1 & \alpha^3 & (\alpha^3)^2 & \cdots & (\alpha^3)^{n-1} \\
1 & \alpha^5 & (\alpha^5)^2 & \cdots & (\alpha^5)^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{\delta-2} & (\alpha^{\delta-2})^2 & \cdots & (\alpha^{\delta-2})^{n-1}
\end{bmatrix}
\]

- That is, the second column = lowest-degree \(\alpha^i \)'s that correspond to different minimal polynomials
- To get the binary version: replace the \(\alpha^i \)'s with the column vectors from GF\(^m\)(2) that represent the coefficients of the polynomial \(\alpha^i \in GF(2^m) \)

- Gives \(m\tau \) binary rows, if \(m\tau > r \) reduce to get linearly independent rows

Examples

- **Binary Hamming code**: Narrow sense and primitive binary BCH code with \(n = 2^m - 1 \), for some \(m \geq 1 \), and \(g(x) = \) a primitive polynomial in GF(\(2^m \)). Designed distance \(\delta = 3 = \text{true} \ d_{\text{min}} \)
- **Hamming code over GF(\(q \))**: A narrow sense and primitive BCH code, with \(m \) smallest integer such that \(n | q^m - 1 \), \(m \) and \(q - 1 \) relatively prime, and \(g(x) = \) primitive polynomial in GF(\(q^m \)). Designed distance \(\delta = 3 = \text{true} \ d_{\text{min}} \)
- **Narrow sense and primitive binary BCH code with \(\delta = 5 \)**: Let \(n = 2^m - 1 \) and \(\alpha \) primitive in GF(\(2^m \)). With \(g(x) = p^{(1)}(x)p^{(3)}(x) \) we get \(\delta = 5 \). E.g., \(n = 15 \implies \)

\[
g(x) = (1 + x + x^4)(1 + x + x^2 + x^3 + x^4)
\]

For this code, \(n = 3 \cdot 5 \implies \text{d}_{\text{min}} = \delta = 5 \).
BCH Codes Cannot Achieve Capacity

- **Theorem**: There does not exist a sequence of \([n, k, d]\) primitive BCH codes over \(\text{GF}(q)\) with both \(d/n\) and \(k/n\) bounded away from zero as \(n \to \infty\).

Decoding Binary BCH Codes

- Let \(C\) be a narrow-sense and primitive \([n, k, d]\) BCH code over \(\text{GF}(2)\) of designed distance \(\delta = 2\tau + 1\).
- Let \(\alpha \in \text{GF}(2^m)\) be a primitive \(n\)th root of unity, with \(m\) the smallest integer such that \(n|2^m - 1\).
- Assume a codeword \(c = (c_0, \ldots, c_{n-1}) \in C\) is transmitted over a binary (memoryless) channel, resulting in
 \[y = (y_0, \ldots, y_{n-1}) = c + e\]
 with \(e = (e_0, \ldots, e_{n-1}) \in \text{GF}^n(2)\) of weight \(w\).
- Polynomials:
 \[c(x) = \sum_{m=0}^{n-1} c_m x^m, \quad y(x) = \sum_{m=0}^{n-1} y_m x^m, \quad e(x) = \sum_{m=0}^{n-1} e_m x^m\]
• The error locator polynomial $\Lambda(x)$: Assume that the non-zero components of e are e_{i_1}, \ldots, e_{i_w}, and let

$$\Lambda(z) = \prod_{r=1}^{w} (1 - X_r z) = 1 + \sum_{r=1}^{w} \Lambda_r z^r$$

where $X_r = \alpha^{i_r}$ are the error locators

• Roots of $\Lambda(z)$ in $GF(2^m)$ known $\implies e$ known

• Decoding:
 1. Compute $A_i = y(\alpha^i)$, $i = 1, \ldots, \delta - 1$
 2. Find $\Lambda(z)$ from $A_1, \ldots, A_{\delta-1}$
 3. Compute the roots of $\Lambda(z) \rightarrow e(x)$

 • Will correct all errors of weight $w \leq \tau$
 • Polynomial (not exponential) complexity!

• Compute $A_i = y(\alpha^i)$, $i = 1, \ldots, \delta - 1$:
 • Divide $y(x)$ by the minimal polynomial $p(i)(x)$ of α^i,

 $$y(x) = q(x)p(i)(x) + r(x),$$

 and set $x = \alpha^i$ in the remainder $r(x)$, $A_i = y(\alpha^i) = r(\alpha^i)$

• Equivalent to computing the syndrome: with H on the form H_{BCH} we get

$$s = Hy^T = He^T = \begin{bmatrix} y(\alpha) \\ y(\alpha^3) \\ \vdots \\ y(\alpha^{\delta-2}) \end{bmatrix} = \begin{bmatrix} e(\alpha) \\ e(\alpha^3) \\ \vdots \\ e(\alpha^{\delta-2}) \end{bmatrix} = \begin{bmatrix} A_1 \\ A_3 \\ \vdots \\ A_{\delta-2} \end{bmatrix}$$

and then we can get $A_2 = A_1^2$, $A_4 = A_2^2$, $A_{\delta-1} = A_{(\delta-1)/2}$.
• Compute \(\Lambda(z) \) from \(A_i, \ i = 1, \ldots, \delta - 1 \):
 - Newton’s identities (tailored to this problem):
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
 A_2 & A_1 & 1 & 0 & 0 & \cdots & 0 \\
 A_4 & A_3 & A_2 & A_1 & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 A_{2w-4} & A_{2w-5} & \cdots & \cdots & A_{w-3} & \cdots & A_{w-1} \\
 A_{2w-2} & A_{2w-3} & \cdots & \cdots & A_{w-1}
 \end{bmatrix}
 \begin{bmatrix}
 \Lambda_1 \\
 \Lambda_2 \\
 \Lambda_3 \\
 \vdots \\
 \Lambda_{w-1} \\
 \Lambda_w
 \end{bmatrix}
 =
 \begin{bmatrix}
 A_1 \\
 A_3 \\
 A_5 \\
 \vdots \\
 A_{2w-3} \\
 A_{2w-1}
 \end{bmatrix}
 \]

 as long as \(w \leq \tau = (\delta - 1)/2 \)

 \(\{A_i\} \rightarrow \Lambda(z) \) not unique \(\implies \) choose \(\Lambda(z) \) of lowest degree

• Not feasible for large \(\tau \)'s \(\implies \) use instead the Berlekamp–Massey algorithm to find \(\Lambda(z) \)...

• Find the roots of \(\Lambda(z) \):
 - An error in coordinate \(i \) \(\iff \) \(\Lambda(\alpha^{-i}) = 0 \);
 - simply test \(\Lambda(\alpha^{-i}) = 0 \) for \(i = 1, \ldots, n \) (Chien search)

• Nonbinary BCH codes: Same principles apply, R6 describes the general approach...

• More than \(\tau \) errors: The method described only works for \(\leq \tau = (\delta - 1)/2 \) errors, i.e., full nearest neighbor decoding is not implemented;
 - Complete NN decoding algorithms (of polynomial complexity) known in many cases, but need often be tailored to specific codes...
 - The list decoding approach: see R9
 - Full search NN decoding always possible, but has exponential complexity...
Reed–Solomon Codes

- **Definition:** A Reed–Solomon (RS) code over $\text{GF}(q)$ is a BCH code of length $N = q - 1$, that is,
 \[g(x) = (x - \alpha^b)(x - \alpha^{b+1}) \cdots (x - \alpha^{b+\delta-2}) \]
 for some $b \geq 0$ and $\delta \geq 2$, and with α primitive $\in \text{GF}(q)$
 - Zeros and symbols in the same field, $\text{GF}(q)$
 - Dimension $K = N - \delta + 1$
 - The Singleton bound $d_{\text{min}} \leq N - K + 1
 \implies$
 - $d_{\text{min}} = \delta$
 - maximum distance separable code

Encoding RS Codes

- **RS codes are cyclic:** Encode as (non-binary) cyclic codes...
 - **Alternative:** Assume an $[N, K]$ RS code, and let
 \[u(x) = u_0 + u_1 x + \cdots + u_{K-1} x^{K-1} \]
 correspond to the message symbols $u_0, \ldots, u_{K-1} \in \text{GF}(q)$, then
 \[c(x) = u(1) + u(\alpha)x + u(\alpha^2)x^2 + \cdots + u(\alpha^{N-1})x^{N-1} \]
 is a codeword.
Decoding RS Codes

- *RS codes are BCH codes*: Decode as non-binary BCH codes.
- Alternative *list* decoding: See R9.