Information Theory

Lecture 4

® Discrete channels, codes and capacity: CT7

® Channels: CT7.1-2
® (Capacity and the coding theorem: CT7.3—-7 and CT7.9

® Combining source and channel coding: CT7.13
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Discrete Channels

channel

X — pylr) —Y

® et X and ) be finite sets.

® A discrete channel is a random mapping p(y|z): X — V.

® The nth extension of the discrete channel is a random
mapping p(y7|zt): X™ —— V", defined for all n > 1,
! € X™ and yi € Y".
® A pmf p(z7) induces a pmf p(y]') via the channel,

p(y?) =Y p(yilat)p(=})
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® The channel is stationary if for any n

k k
p(yTlal) = p(y o lalt ), k=1,2,...

® A stationary channel is memoryless if

m—1

PWYm|2' Y ) = p(Yml|Tm), m=2,3,...
That is, the channel output at time m does not depend on

past inputs or outputs.

® Furthermore, if the channel is used without feedback

n

pWil=t) = | pWmlzm), n=2,3,...

m=1

That is, each time the channel is used its effect on the output
is independent of previous and future uses.
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® A discrete memoryless channel (DMC) is completely described
by the triple (X, p(y|z), ).

® The binary symmetric channel (BSC) with crossover

probability ¢,
® a DMC with X =Y ={0,1} and p(1]0) = p(0|1) = ¢
1—¢
0 —— 0
X >< Y
1 —= 3 1
1—¢

® The binary erasure channel (BEC) with erasure probability ¢,
® a DMCwith & ={0,1}, Y ={0,1,¢e} and p(e|0) = p(e|l) = ¢
1—-¢
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A Block Channel Code

encoder . channel decoder
7 (w) " .
p(ylx) B() &

Y
Y

w— a()

® An (M,n) block channel code for a DMC (X, p(y|x),)) is
defined by:

@ An index set Ty = {1,...,M}.
® An encoder mapping o : Zpy — X™. The set

cné{ nLgt = i), VieIM}
of codewords is called the codebook.
© A decoder mapping 5 : V" —— L.
® The rate of the code is

A log M

[bits per channel use]
n

Mikael Skoglund, Information Theory 5/19

Why?

e M different codewords {x7(1),...,27 (M)} can convey log M
bits of information per codeword, or R bits per channel use.

e Consider M = 2F, |X| = 2, and assume that £ < n. Then k
“information bits” are mapped into n > k£ “coded bits.”
Introduces redundancy; can be employed by the decoder to
correct channel errors.

e o
) o ©
° /\o
® e o o ®
°
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Error Probabilities

® Information symbol w € Zy;, with p(i) = Pr(w = 4). Then,
for a given DMC and a given code

w — X! =alw) — Y — @w=p(Y]")

® Define:
@ The conditional error probability: \; = Pr(w # ilw = 1)
@® The maximal error probability: A" = max {\1,..., A}
© The average error probability:

M
P = Pr(@ #w) = 3 Ain(i)
1=1
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Jointly Typical Sequences

The set AS;”) of jointly typical sequences with respect to a pmf
p(zx,y) is the set {(«7,y7)} of sequences for which

1
‘_E logp(z}) — H(X)| <e

1 n
|_ﬁ logp(yy) —H(Y)| <e¢

1
|—5 logp(zt,y?) —H(X,Y)| <e

where
n

p(x?’y?> — H p(xmaym)

m=1

p(?) =Y pEl.yf),  pOf) =) p(tyf)
vy zy

and where the entropies are computed based on p(z,y).
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The joint AEP
Let (X7, Y7") drawn according to p(z7,y}) = [ [ —1 P(Tm, Ym)

o Pr((XP, Y1) € Aé”)) > 1—¢ for sufficiently large n.
o | Aé”)\ < 9uH(XY)+e),
o A > (1 —e)2nHXY)=) for sufficiently large n.
e If X7 and Y}* are drawn independently according to
p(@t) = > e (a7, y7) and p(yt') = >, p(2f, y7'), then
Pr((X7,Y7") € Al) < 27nU(XY)=39)
and for sufficiently large n
Pr((X7,Y7") € Al) > (1 —g)2 nU&:¥)+3)
with I(X;Y) computed for the pmf p(z,y).
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Channel Capacity

® For a fixed n, a code can convey more information for large
M =— we would like to maximize the rate R = %logM
without sacrificing performance

® Which is the largest R that allows for a (very) low pM7?

® For a given channel we say that the rate R is achievable if
there exists a sequence of (M, n) codes, with M = [27],
such that the maximal probability of error A(™ — 0 as
n — oo.

The capacity C of a channel is the supremum of
all rates that are achievable over the channel.
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Random Code Design

® Choose a joint pmf p(z}) on X™.

® Random code design: Draw M codewords z}(7), i =1,...,
M, i.i.d. according to p(«7) and let these define a codebook

Co = {aP(1), ..., a7 (M)}

® Note: The interpretation here is that the codebook is
“designed” in a random fashion. When the resulting code then
is used, the codebook must, of course, be fixed and known. ..
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A Lower Bound for C' of a DMC

A DMC (X, p(y|x), ).

® Fix a pmf p(z) for x € X.
Generate C,, = {z7(1),..., 27 (M)} using p(z}) = [[ p(xm)-

® A data symbol w is generated according to a uniform
distribution on Zys, and z7(w) is transmitted.

® The channel produces a corresponding output sequence Y.

o Let A" be the typical set w.r.t. p(z,y) = p(y|z)p(x).
At the receiver, the decoder then uses the following decision
rule. Index w was sent if:

° (2}(w),Y]") € A™ for some small ¢
® no other w corresponds to a jointly typical (z}(w), Y{").
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Now study
T = Pr(w # w)
where “Pr" is over the random codebook selection, the data
variable w and the channel.
® Symmetry — m, = Pr(®w # ljw = 1)
® |et
E; = {(27(i),Y{") € A}

then for a sufficiently large n,
M
m = P(EfUE,U---UEy) < P(E)+ ) P(E)
=2
< e+ (M . 1)2—n(I(X;Y)—35) < e+ 2—n([(X;Y)—R—3e)

because of the union bound and the joint AEP.
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® Note that

o ol 1o p(ylx)
I(XyY)—mZy:p(yI )p(x) log o)

with p(y) = > p(y|x)p(x), where p(x) generated the
random codebook and p(y|z) is given by the channel.

® Let Ciot be the set of all possible codebooks that can be
generated by p(z]) = [[ p(@m ), then at least one C,, € Ciot

must give

Pe(n) <m, <et 2—n(I(X;Y)—R—3€)

— as long as R < I(X;Y) — 3¢ there exists at least one
Cn € Ciot, say C, that can give Pe(n) — 0 as n — 0.
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® Order the codewords in C according to the corresponding
Ai's and throw away the worst half —

® newrate ¥ = R—n~!
® for the remaining codewords

A < e 4 9 nU(XY)—R=3¢)

—> for any p(x), all rates R < I(X;Y) — 3¢ achievable
= all rates R < max, ;) [(X;Y) — 3¢ achievable =

C>maxI(X;Y)
p(z)
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An Upper Bound for C' of a DMC

® Let C,, = {z}(1),...,2} (M)} be any sequence of codes that

can achieve \(") — 0 at a fixed rate R = L log M.

T n

e Note that A — 0 = P™ — 0 for any p(w).
We can assume C,, encodes equally probable w € 7).

® Fano's inequality —

1 1 1
R< —4+PMR+=I(z}(w); Y] < =+P"™R4max I(X;Y)
n n n p(x)

That is, for any fixed achievable R

AW 50 = Rﬁm(agc[(X;Y) > Cgm(a§<1(X;Y)
bz plx
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The Channel Coding Theorem for DMC's

Theorem (the channel coding theorem)
For a given DMC (X, p(y|z),)), let p(x) be a pmf on X and let
C =maxI(X;Y)

p(z)

= maX ZC (@) p(y‘x)
2 2 pllelp(e) og =0 s

rEX yey

Then C' is the capacity of the channel. That is, all rates R < C
and no rates R > C are achievable.
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The Joint Source—Channel Coding Theorem

e A (stationary and ergodic) discrete source S with entropy rate
H(S) [bits/source symbol].

® A length-L block of source symbols can be coded into £ bits,
and then reconstructed without errors as long as k/L > H(S)
and as L — oo.

e ADMC (X,p(y|x),)) with capacity C' [bits/channel use].

® If k/n < C a channel code exists that can convey k bits of
information per n channel uses without errors as n — .

® [ source symbols — k information bits — n channel symbols;
will convey the source symbols without errors as long as
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® Hence, as long as H(S) < C' [bits/source symbol] the source
can be transmitted without errors, as both L — oo and
n — oo (assuming n/L = 1).

e |If H(S) > C there is no way of constructing a system with an
error probability that is not bounded away from zero.
(Fano's inequality, etc.)

® No system exists that can communicate a source without
errors for H(S) > C. One way of achieving error-free
performance, for H(S) < C, is to use separate source and
channel coding.
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