Graded $p$-polar rings and their abelian-group valued functors


As an extension of previous ungraded work, we define a graded $p$-polar ring to be an analog of a graded commutative ring where multiplication is only allowed on $p$-tuples (instead of pairs) of elements of equal degree. We show that the free affine $p$-adic group scheme functor, as well as the free formal group functor, defined on $k$-algebras for a perfect field $k$ of characteristic $p$, factors through $p$-polar $k$-algebras. It follows that the same is true for any affine $p$-adic or formal group functor, in particular for the functor of $p$-typical Witt vectors. As an application, we show that the latter is free on the $p$-polar affine line.