poisson2.mws 030224
Determine the critical points of the first two moment closure equations, and their stabilities, under Poisson assumption!
> | restart; |
> | with(VectorCalculus,Jacobian); with(LinearAlgebra,Eigenvalues); |
The rhss of the differential equations for the first two cumulants are eq1 and eq2prel. I reserve the name eq2 for the rhs of the second moment closure equation.
> | eq1:=(a1*N-kappa1)*kappa1-kappa2; |
> | eq2prel:=(f1*a1*N-f2*kappa1)*kappa1+(2*a1*N-f2)*kappa2-4*kappa1*kappa2-2*kappa3; |
The Poisson assumption means that kappa3=kappa1:
> | eq2:=subs(kappa3=kappa1,eq2prel); |
Solve the first equation for kappa2:
> | kap2:=solve(eq1,kappa2); |
Substitute this value of kappa2 into the second equation.
> | eq2a:=subs(kappa2=kap2,eq2); |
Denote the critical points by (x[1],y[1]), (x[2],y[2]), (x[3],y[3]).
> | x:=solve(eq2a,kappa1); |
These are the kappa1-coordinates of the three critical points. The corresponding kappa2-coordinates are:
> | y[1]:=subs(kappa1=x[1],kap2); |
> | y[2]:=expand(subs(kappa1=x[2],kap2)); |
> | y[3]:=expand(subs(kappa1=x[3],kap2)); |
Asymptotic approximations of the critical points:
> | assume(a1>0); |
> | x2asymp:=map(simplify,convert(asympt(x[2],N,2),polynom)); |
> | x3asymp:=map(simplify,convert(asympt(x[3],N,2),polynom)); |
> | y2asymp:=map(simplify,convert(asympt(y[2],N,2),polynom)); |
> | y3asymp:=map(simplify,convert(asympt(y[3],N,2),polynom)); |
> | a1:='a1': |
Study the stability of the three critical points:
> | F:=[eq1,eq2]; |
> | J:=Jacobian(F,[kappa1,kappa2]); |
Determine the Jacobian in each of the three critical points:
> | J1:=subs(kappa1=x[1],kappa2=y[1],J); |
> | J2:=subs(kappa1=x[2],kappa2=y[2],J); |
> | J3:=subs(kappa1=x[3],kappa2=y[3],J); |
The eigenvalues of these 3 matrices are:
> | eg1:=Eigenvalues(J1); |
> | eg2:=Eigenvalues(J2); |
> | eg3:=Eigenvalues(J3); |
Asymptotic approximations of the eigenvalues:
> | assume(a1>0); |
> | simplify(convert(asympt(eg1[1],N,1),polynom)); |
> | simplify(convert(asympt(eg1[2],N,1),polynom)); |
So both of the eigenvalues of the critical point (0,0) are positive. Hence (0,0) is an unstable node.
> | simplify(convert(asympt(eg2[1],N,1),polynom)); |
> | simplify(convert(asympt(eg2[2],N,1),polynom)); |
Both eigenvalues are negative. So this critical point is a stable node.
> | simplify(convert(asympt(eg3[1],N,1),polynom)); |
> | simplify(convert(asympt(eg3[2],N,1),polynom)); |
> |
The third critical point has one positive and one negative eigenvalue. So it is a saddle point.