binomial2.mws 030128
Determine the critical points of the first two moment closure equations, and their stabilities, under assumption of binomial distribution!
> | restart; |
> | with(VectorCalculus,Jacobian); with(LinearAlgebra,Eigenvalues); |
The rhss of the differential equations for the first two cumulants are eq1 and eq2prel. I reserve the name eq2 for the rhs of the second moment closure equation.
> | eq1:=(a1*N-kappa1)*kappa1-kappa2; |
> | eq2prel:=(f1*a1*N-f2*kappa1)*kappa1+(2*a1*N-f2)*kappa2-4*kappa1*kappa2-2*kappa3; |
The binomial distribution has kappa3=2*kappa2^2/kappa1-kappa2. Inserting this expression for kappa3 into eq2prel gives:
> | eq2:=subs(kappa3=2*kappa2^2/kappa1-kappa2,eq2prel); |
Solve the first equation for kappa2:
> | kap2:=solve(eq1,kappa2); |
Substitute this value of kappa2 into the second equation.
> | eq2a:=subs(kappa2=kap2,eq2); |
Denote the critical point by (x[2],y[2]).
> | x:=solve(eq2a,kappa1); |
The first of these x-values is not a critical point. The reason is that the second rhs (eq2) is not defined for kappa1=0.
The kappa2-value at the one critical point is:
> | y[2]:=normal(subs(kappa1=x[2],kap2)); |
Asymptotic approximations of the coordinates of the critical point:
> | xasymp:=map(simplify,convert(asympt(x[2],N,2),polynom)); |
> | yasymp:=map(simplify,convert(asympt(y[2],N,4),polynom)); |
Study the stability of the critical point:
> | F:=[eq1,eq2]; |
> | J:=Jacobian(F,[kappa1,kappa2]); |
Determine the Jacobian at the critical point:
> | J2:=subs(kappa1=x[2],kappa2=y[2],J); |
The eigenvalues are:
> | eg2:=Eigenvalues(J2); |
Asymptotic approximations of the eigenvalues:
> | assume(a1>0); |
> | simplify(convert(asympt(eg2[1],N,3),polynom)); |
> | simplify(convert(asympt(eg2[2],N,3),polynom)); |
> |
Both eigenvalues are negative. So the critical point is a stable node.