Breath : A self-adapting protocol for wireless sensor networks in control and automation

Abstract

The novel cross-layer protocol Breath for wireless sensor networks is designed, implemented, and experimentally evaluated. The Breath protocol is based on randomized routing, MAC and duty-cycling, which allow it to minimize the energy consumption of the network while ensuring a desired packet delivery end-to-end reliability and delay. The system model includes a set of source nodes that transmit packets via multi-hop communication to the destination. A constrained optimization problem, for which the objective function is the network energy consumption and the constraints are the packet latency and reliability, is posed and solved. It is shown that the communication layers can be jointly optimized for energy efficiency. The optimal working point of the network is achieved with a simple algorithm, which adapts to traffic variations with negligible overhead. The protocol was implemented on a test-bed with off-the-shelf wireless sensor nodes. It is compared with a standard IEEE 802.15.4 solution. Experimental results show that Breath meets the latency and reliability requirements, and that it exhibits a good distribution of the working load, thus ensuring a long lifetime of the network.

Publication
In 2008 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks

Related