Event-Triggered Output Feedback Control for Linear Systems under Tactile Communication

Abstract

This paper investigates an event-triggered output feedback control strategy of linear systems under tactile communication, for which two different frameworks are considered. Motivated by the emerging tactile communications technology where latencies are very small but at the price of limited message sizes, a perception-based deadband principle is proposed for the data reduction of communication. In each framework, under an assumption that the deadband factor is upper bounded with respect to the system model, it is proven that global asymptotic stability of the closed loop system is achieved. Then, an event-triggered output feedback controller under tactile communication is further introduced. It is shown that the designed controller is capable of reducing the frequency of controller updates as well as excluding Zeno behavior. Numerical examples are given to illustrate the effectiveness of the proposed control algorithm.

Publication
In 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017

Related