
Slot Allocation Using Logical Networks
for TDM Virtual-Circuit Configuration for Network-on-Chip

Zhonghai Lu and Axel Jantsch
Department of Electronic, Computer and Software Systems, Royal Institute of Technology, Sweden

Email:{zhonghai,axel}@kth.se

Abstract— Configuring Time-Division-Multiplexing (TDM) Virtual
Circuits (VCs) for network-on-chip must guarantee conflict freedom for
overlapping VCs besides allocating sufficient time slots to them. These
requirements are fulfilled in the slot allocation phase. In the paper, we
define the concept of a logical network (LN). Based on this concept,
we develop and prove theorems that constitute sufficient and necessary
conditions to establish conflict-free VCs. Using these theorems, slot
allocation for VCs becomes a procedure of computing LNs and then
assigning VCs to different LNs. TDM VC configuration can thus be
predictable and correct-by-construction. We have integrated this slot
allocation method into our multi-node VC configuration program and
applied the program to an industrial application.

I. INTRODUCTION

In Network-on-Chip (NoC), routing packets may bring about
unpredictable performance due to contention for shared links and
buffers. To overcome the nondeterminism, researchers proposed var-
ious resource reservation and priority-based scheduling mechanisms
to achieve Quality of Service (QoS), i.e., to provide guarantees in
latency and bandwidth. The Æthereal [1] and Nostrum [2] NoCs
establish Time-Division-Multiplexing (TDM) virtual circuits (VCs) to
offer guaranteed services. The Æthereal VC, which is developed for
a network using buffered flow control, is open-ended. The Nostrum
VC, which is designed for a network employing bufferless flow
control, is closed-loop. Both networks operate synchronously. The
Mango [3] NoC realizes guarantees in an asynchronous (clockless)
network by reserving virtual channels for end-to-end connections and
using priority-based scheduling in favor of connections in switches.
Alternatively, QoS may be achieved through traffic classification in
combination with a differentiated service. For example, the QNoC
[4] characterizes traffic into four priority classes, and switches make
priority-based switching decisions.

VC is a connection-oriented technique in which a deterministic
path must be established and associated resources are pre-allocated
before packet delivery can start. A TDM VC means that each node
along the path configures a time-sliced routing table to reserve
time slots for input packets to use output links. This reservation
is accomplished in the connection setup phase. In this way, VCs
multiplex link bandwidth in a time division fashion. As long as a
VC is established, packets sent over it, called VC packets, encounter
no contention and thus have guarantees in latency and bandwidth. In
a network delivering both Best-Effort (BE) and guaranteed-service
traffic, BE packets utilize resources that are not reserved by VCs.
Configuring VCs involves (1) path selection: This has to explore the
network path diversity. As a VC has a number of alternative paths,
configuring a set of VCs involves an extremely large design space.
The space increases exponentially with the number of VCs; (2) slot
allocation: Since VC packets must not contend with each other, VCs
must be configured so that an output link of a switch is allocated to
one VC per time slot, i.e., VCs are contention free. In addition, they
must be equipped with sufficient slots, thus sufficient bandwidth.

In the paper, we address the TDM VC configuration with focus
on the slot allocation problem. Current approaches to this problem
([5], [6], [7], [8]) are somewhat ad hoc. The slot allocation problem
has been treated as a purely scheduling problem for which a compli-
cated scheduling method is designed. Such methods locally schedule
available slots to a set of sorted VCs one by one. The scheduling
method guarantees the exclusive use of slots and sufficient slots.
While such approaches are intuitive, they lack formal underpinning
on the contention analysis and avoidance. As a result, the scheduling
is non-trivial and can be an error-prone process. In contrast, we have
furthered the investigations by looking into the fundamental reason of
contention. We resort to a formal approach by defining the concept
of a Logical Network (LN) and developing theorems to guide the
construction of conflict-free and bandwidth-satisfied VCs. Based on
these theorems, LNs can be formally partitioned and constructed, and
slot allocation is a well-controlled process of VC-to-LN assignment,
i.e., assigning VCs to different LNs.

The rest of the paper is organized as follows. We outline the
related work in Section II. In Section III, we describe the two types
of on-chip TDM VCs, namely, open-ended and close-looped VCs.
Using LNs to construct contention-free and bandwidth-satisfied VCs
is exemplified in Section IV. Then we present formal underpinning
for the LN-based slot allocation in Section V. In Section VI, we
detail how to perform slot allocation via VC-to-LN assignment. An
industrial case study is reported in Section VII. Finally we conclude
the paper in Section VIII.

II. RELATED WORK

As mentioned previously, proposals dealing with the slot allocation
problem can be found in [5], [6], [7] and [8]. In [5], the traffic model
assumes periodic messages and all message flows have the same
period. The scheduling algorithm for slot allocation must guarantee
that latency and bandwidth requirements are fulfilled. In case a
solution is not found, non-minimal VC paths are explored. This
method is integrated into a framework unifying IP-to-node mapping,
path selection and slot allocation in [6]. In [8], the scheduling
method is strengthened by considering slot sharing and using the
estimated knowledge of possible contentions while allocating slots
to VCs. Besides, to use flexible routing in a network, messages
within a flow are scheduled individually and may use different routes.
Consequently, the message scheduling is complicated because it has
also to ensure the correct message ordering. In [7], dynamic slot-
allocation methods are presented to dynamically perform both routing
and allocation of slots at run-time to establish guaranteed connections.

These approaches above only derive sufficient but not necessary
configurations because they lack formal analysis on the contentions
and their avoidance. In our approach, we formally derive and proof
the sufficient and necessary conditions for conflict analysis and
avoidance. Using these theorems, the slot allocation can be conducted
predictably and in well-defined steps.

1-4244-1382-6/07/$25.00 ©2007 IEEE 18

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on January 6, 2009 at 09:59 from IEEE Xplore. Restrictions apply.

The core concept for our slot allocation method is LN, which
generalizes the concepts of admission class [10] and Temporally
Disjoint Network (TDN) [2]. As with LNs, packets belonging to
different classes or TDNs do not collide with each other. Admission
classes and TDNs are essentially LNs. Comparing with an admission
class, a LN takes not only time slots but also the VC path into
consideration, thus the VC path-overlapping scenarios can be studied.
Comparing with a TDN, a LN is locally defined for a group of
overlapping VCs, which can be open-ended or closed-loop. A TDN
can be viewed as a special case of a LN in the closed-loop VC when
it is globally set up for all overlapping and non-overlapping VCs.

III. TDM-BASED VIRTUAL CIRCUITS IN NOCS

A. Open-ended VCs

The on-chip TDM VCs assume that the network is packet-
switched, and nodes share the same notion of time. They have the
same clock frequency but not phase [9]. The time unit is slot. Since
VC packets encounter no contention, they synchronously advance
one step per time slot and never stall, using consecutive slots in
consecutive switches. A node must configure a routing table for
VC packets such that no simultaneous use of shared resources is
possible. The routing table, by configuration, knows the time slot
when a VC packet reaches which inport, and addressing information
about which outport to use. In effect, the routing function partitions
the link bandwidth and avoids contention.

Figure 1 shows two VCs, v1 and v2, and the respective routing
tables for the switches. The output links of a switch are connected
to a buffer or register. A routing table (t, in,out) is equivalent to
a routing or slot-allocation function R(t, in) = out, where t is time
slot, in an inport, and out an outport. v1 passes switches sw1 and sw2

through buffers {b1→ b2}; v2 passes switches sw3 and sw2 through
{b3→ b2}. The Æthereal NoC [1] proposes this type of VC for QoS.
As the path of such a VC is not a loop, we call it open-ended.

t in out

t in out

N

W E

S

t in out

2k W E
2k+1 W E
2k E

2k+1 W N

S

v1

v2

b1 b2

b3

sw1 sw2

sw3

Fig. 1. Open-ended virtual circuits

In open-ended VCs, packets may be partitioned into target classes
to avoid contention. With respect to a buffer b, a target class is the
set of packets that will occupy slot d in a slot window D. This set
of packets may come from any network node as long as they will
take slot d in a slot window D of buffer b. As a target class owns
dedicated slots of buffers, packets of different classes do not collide.
A target class has a reference buffer whereas an admission class
[10] does not. It can be viewed as a special case of the admission
class. The union of all the target classes for all buffers in the network
gives the corresponding admission class. By globally orchestrating the
packet admission, contention can be avoided for packets belonging
to different VCs. As illustrated in Figure 1, v1 and v2 only overlap
in b2, denoted v1∩ v2 = {b2}. v1 packets are admitted on even slots
of b1. In sw1, (2k,W,E) means that sw1 reserves its E (East) output
link at slots 2k (k∈N) for its W (West) inport (R(2k,W) = E). As we
can also see, v2 packets are admitted on odd slots 2k +1 of b3, and
sw3 configures its odd slots for v2. Since a v1 packet reaches sw2 one

slot after reaching sw1, sw2 assigns its odd slots to v1. Similarly, sw2

allocates its even slots to v2. As v1 and v2 alternately use the shared
buffer b2 and its associated output link, v1 and v2 do not conflict.

B. Container-based Closed-loop VCs

The Nostrum NoC [2] also suggests a TDM VC for QoS. However,
a Nostrum VC has a cyclic path, i.e., a closed loop. On the loop, at
least one container is rotated. A container is a special packet used
to carry data packets, like a vehicle carrying passengers. The reason
to have a loop is due to the fact that Nostrum uses deflection routing
[10] whereas switches have no buffer queues. An incoming packet
is either sunk or has to be switched out occupying one outgoing
link. Since all outgoing links of a switch might be occupied by all
incoming packets, a looped container ensures that there is an output
link available for locally admitting a VC packet into the container,
thus the network. VC packets are loaded into the container from a
source, and copied (for multicast) or unloaded at the destination, by-
passing other switches. Similarly to open-ended VCs, containers as
VC packet carriers have higher priority than BE packets and do not
contend with each other.

w

S

E

t

t

t
N

in out in out

in outt in out

4k
4k+2 N

NE N
E N4k+1

4k+3

4k+2 S E
ES4k 4k+1 W S

W S4k+3

E2k E

2k+1 W W
W
W

v1

v2

T DN0

T DN0

T DN1

b0

b1

b2

b3

b4

sw1 sw2

sw3sw4

Fig. 2. Closed-loop virtual circuits

The Nostrum VC [2] uses TDNs to ensure conflict freedom. In
[2], TDNs are descriptively rather than formally defined. TDNs are
independent of VC paths. They are globally set up in a network. The
number of TDNs depends on the network topology and the buffer
stages in the switches [2]. For example, as shown in Figure 2, in a
mesh network with one buffer per outport in the switches, exactly two
TDNs exist, T DN0 and T DN1. To allow more TDNs, more buffers in
the switches must be used. For example, placing two buffers in the
switches, one at the inport, the other at the outport, results in four
TDNs. In Figure 2, two VCs, v1 and v2, are configured. v1 loops on
sw3, sw4, sw1 and sw2 through {b0→ b1→ b2→ b3→ b0}; v2 loops
on sw3 and sw4 through {b0→ b4→ b0}; and v1∩v2 = {b0}. v1 and
v2 subscribe to T DN0 and T DN1, respectively. Besides, v1 launches
two containers and v2 one container. The resulting routing tables for
switches are also shown in Figure 2. Since TDNs are temporally
disjoint, overlapping VCs allocated on different TDNs are free from
conflict.

IV. SLOT ALLOCATION USING LNS

A. An Overview of Slot Allocation in a VC Configuration Flow

Figure 3 sketches a VC configuration flow. The input to the flow
is a VC specification set. A VC allows having multiple sources
and destinations (multi-node VC, see examples in Section VII.B).
The output is a set of TDM VC implementations, which can be
either open-ended or closed-loop. The configuration consists of path
selection and slot allocation. Both problems are interdependent. They
are also orthogonal. The VC configuration is likely iterative until a

19

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on January 6, 2009 at 09:59 from IEEE Xplore. Restrictions apply.

Path selection

VC implementation
(open−ended/closed−loop)

Section IV.C

Bandwidth conversion

Slot partitioning

Slot refinement

Multi−node VC
specification set

Section IV.DSlot allocation

Section IV.BThe problem

(Satisfy bandwidth)

(Avoid conflict)

VC−to−LN assignment

Y

TerminateN

Slot mapping

Fig. 3. Slot allocation in a VC configuration flow

termination condition is met. In this paper, we only briefly introduce
our path selection method in Section VII-A. Assuming that the path
selection is done, we focus on the slot allocation problem.

In the following of this section, we first formulate the slot allo-
cation problem in Section IV-B. Then we illustrate the concept of
the LN by exemplifying the LN construction for conflict freedom in
Section IV-C. Then we show how to satisfy bandwidth demand using
LNs in Section IV-D. We shall see that our method is applicable to
both open-ended and closed-loop VCs.

B. The Slot-Allocation Problem Formulation

We first introduce definitions, and then define the problem.
Definition 1: A network is a directed graph G = M×E, where each

vertex mi ∈M represents a node, and each edge ei ∈ E represents a
link. All edges are unique.

Definition 2: A VC specification set after path selection V̄ com-
prises a set of VCs to be configured on the network G, V̄ =
{v̄1, v̄2, · · · , v̄n}. For each VC v̄i ∈ V̄ , v̄i = (mi, b̄wi), where:

• mi ⊆M: a subset of nodes in M to be visited by v̄i. The node
set is ordered and two consecutive nodes in mi are adjacent in
the network.

• b̄wi: minimum bandwidth requirement (bits/second) of v̄i.
Definition 3: A VC implementation set V comprises a set of

TDM VC, V = {v1,v2, · · · ,vn} . Each VC implementation vi ∈ V
implements v̄i, and vi = (bwi, Ri, j), where:

• bwi: the supported bandwidth (bits/second) of vi.
• Ri, j: a partial routing table created for a visiting node n j by vi.
∀rz ∈ Ri, j , rz is an entry (t,ein,x,eout,y), specifying that node n j
reserves slot t for a vi packet from input link ein,x to use output
link eout,y. R j is the routing table of n j , and R j = ∑i Ri, j .

Definition 4: At node n j , a slot-allocation function R j :
(T,Ein, j)→ Eout, j reserves slot t ∈ T for a VC packet from input
edge ein, j ∈ Ein, j to use output edge eout, j ∈ Eout, j.

Using the definitions above, we formulate the problem as follows:
Given a network G and a VC specification set V̄ , find a VC
implementation set V and determine for V a slot-allocation function
R j() for each node n j, such that

∀ein,x �= ein,y,R j(t,ein,x) �= R j(t,ein,y) (1)

b̄wi ≤ bwi (2)

∀ edge ek, Bw(ek)≤ κbw(ek) (3)

where Bw(ek) = ∑i bwi if ek ∈ Edge(vi)

Condition (1) says that VC packets can not be switched to the
same output link simultaneously, i.e., VCs must be conflict free.
Condition (2) expresses that each VC’s bandwidth constraint must
be satisfied. Condition (3) means that the total normalized (with the
link capacity) bandwidth reserved by all VCs on a link cannot exceed
the link bandwidth threshold κbw, which is defined in terms of the
link capacity and 0≤ κbw ≤ 1.

C. Conflict Avoidance with LNs

To convey the basic ideas of a LN before delving into formalism,
we describe how conflict can be avoided between overlapping VCs
by alternatively scheduling VCs on the use of the shared buffer(s).
As we develop further, we shall see that LNs are the natural result
of systematically avoiding collision between overlapping VCs. To be
specific, when two VCs overlap, the conflict avoidance is assured
through two steps: slot partitioning and slot mapping. These two
steps create LNs and complete assigning VCs to LNs. We describe
the two steps with a pair of closed-loop VCs (v1,v2) in Figure 2.

1) Slot partitioning: As conflicts might occur in a shared buffer,
we partition the slots of the shared buffer into sets with a regular
interval. In Figure 2, b0 is the only shared buffer of v1 and
v2, v1 ∩ v2 = {b0}. We partition the slots of b0 (b0 is called
the reference buffer for v1 and v2, Re f (v1,v2) = b0.) into two
sets, an even set s2

0(b0) for t = 2k and an odd set s2
1(b0) for

t = 2k + 1. The notation sT
τ (b0) represents pairs (τ + kT,b0),

which is the τth slot set of the total T slot sets, τ ∈ [0,T) and
T ∈ N. Pair (t,b0) refers to the slot of b0 at time instant t.

2 4 6 83 5 7 90 1

ln 2
10

2ln

3 5 7 9

2 4 6 8

3 5 7 92

2

2

3

4

3 5 7 9

4 6 8

4 6 8

5

6

7

8

9

0

0

0

0

1

1

1

1

t
0 1 2 4 6 83 5 7 9

2
1

0
2: s

: s
(v1,b0) (v2,b0)

(b0)
(b0)

(t,b4):

(t,b0):

(t,b1):

(t,b2):

(t,b3):

Fig. 4. Creating LNs by mapping slots on VCs

2) Slot mapping: The partitioned slot sets can be mapped to slot
sets of other buffers on a VC regularly and unambiguously
because a VC packet or container advances one step each
and every slot. For example, a v1 packet holding slot t at
buffer b0, i.e., pair (t,b0), will consecutively take slot t + 1
at b1 (pair (t + 1,b1)), slot t + 2 at b2 (pair (t + 2,b2)),
and slot t + 3 at b3 (pair (t + 3,b3)). After mapping the slot
set s2

0(b0) on v1 and s2
1(b0) on v2, we obtain two slot sets

{s2
0(b0),s2

1(b1),s2
0(b2),s2

1(b3)} and {s2
1(b0),s2

0(b4)}. We refer
to the logically networked slot sets in a set of buffers of a VC
as a LN. We denote the two LNs as ln2

0(v1,b0) and ln2
1(v2,b0),

respectively. ln2
0(v1,b0) = {s2

0(b0),s2
1(b1),s2

0(b2),s2
1(b3)} and

ln2
1(v2,b0) = {s2

1(b0),s2
0(b4)}. Let T be the number of LNs,

the notation lnT
τ (v,b) represents the τth LN of the total T LNs

on v with respect to b. We illustrate the mapped slot sets for
s2
0(b0) and s2

1(b0) and the resulting LNs in Figure 4. We can
also see that LNs are the result of VC assignment to slot sets,
specifically, v1 to ln2

0(v1,b0) and v2 to ln2
1(v2,b0).

As ln2
0(v1,b0)∩ ln2

1(v2,b0) = /0, v1 and v2 are conflict free, as we
shall show formally in Section V.

20

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on January 6, 2009 at 09:59 from IEEE Xplore. Restrictions apply.

D. Bandwidth Satisfaction with LNs

In addition to be contention free, VCs must satisfy their bandwidth
requirements. This is achieved in three steps: bandwidth conversion,
VC-to-LN assignment and slot refinement. We exemplify the three
steps with Figure 5 that shows three open-ended VCs, v1, v2 and v3.
The buffer set of VCs is listed in Table 5. As can be seen, v1∩ v2 =
{b1}, v1∩ v3 = {b2,b3} and v2∩ v3 = /0.

0 6 81 92 45 730 6 81 92 45 73 0 6 81 92 45 73

0 6 81 92 45 730 6 81 92 45 730 6 81 92 45 73

s 1
4

admit packet

time slot

tt t

tt t

slot set:

slot set:

6
0,2s 6

1,3s 6
2,4s

1,3,5
8s0,2,4

8s

b1 b2 b3

b4

(b1) (b2) (b3)

(b1) (b2) (b3)

w1=6 w1=6w1=6 w1=6w1=6w1=6

w2=4w2=4 w3=8w3=8

sw1 sw2 sw3
v1

v2 v3

v1:v1:v1:

v2: v3:v3:

Fig. 5. Packets admitted on slot sets of buffers, i.e., on LNs

VC Buf. set bw N W LN Slot set

v1 b1,b2,b3 1/3 2 6 ln2
0(v1,b1) {s6

0,2(b1), s6
1,3(b2), s6

2,4(b3)}
v2 b1,b4 1/4 1 4 ln2

1(v2,b1) {s4
1(b1), s4

0(b4)}
v3 b2,b3 3/8 3 8 ln2

0(v3,b2) {s8
0,2,4(b2), s8

1,3,5(b3)}
TABLE I

VC PARAMETERS AND VC-TO-LN ASSIGNMENT RESULTS FOR FIG. 5

1) Bandwidth conversion: We first translate the VC bandwidth
requirement in bits/second into packets/slot. As bandwidth is
an average measurement, we can further scale it to N packets
per W slots. W is the window size. For example, we translate
bw1 = 1/3 into 2/6 (2 packets every 6 slots), i.e., N1 = 2,
W1 = 6, as listed in Table I, where the bandwidth bw metric is
packets/slot.

2) VC-to-LN assignment: In this step, we assign VCs to LNs pair-
wise using the two steps for conflict avoidance in Section IV-C.
Additionally we must check whether their bandwidth demand
can be satisfied. This check is conducted after the first step slot
partitioning. Given a pair of overlapping VCs, the number T of
partitioned sets with respect to the reference buffer equals the
number of LNs. To satisfy the bandwidth requirement of a VC
v, a sufficient number Nln of LNs must be allocated to v. This
number can be derived from Nln = �NT/W	1, because we must
satisfy Nln/T ≥N/W , where Nln/T is the bandwidth supported
by the allocated LNs and N/W the requested bandwidth. The
bandwidth requirements of the three VCs in Figure 5 are given
in column bw of Table I.
We first perform the VC-to-LN assignment with VC pair
(v1,v2). Since v1∩ v2 = {b1}, Re f (v1,v2) = b1. Let T = 2, we
partition b1’s slots into odd and even sets, implying two LNs.
Either VC can be allocated to one LN, i.e., Nln,1 = Nln,2 =
1, offering bandwidth Nln,1/T = Nln,2/T = 1/2. Since the
bandwidth demand of v1 and v2 is less then 1/2, the resulting
VC-to-LN assignment will meet the bandwidth constraint. Then
we can continue to map the even set on v1 and the odd set on

1�x	 is the ceiling function that returns the least integer not less than x.

v2, obtaining the even LN ln2
0(v1,b1) for v1 and the odd LN

ln2
1(v2,b1) for v2. Since ln2

0(v1,b1)∩ ln2
1(v2,b1) = /0, v1 and v2

are conflict free.
Next, we perform the VC-to-LN assignment with (v1,v3). Let
their reference buffer be b2, Re f (v1,v3) = b2. Since v1 already
holds even slots in b1, it takes odd slots in b2, i.e., s2

1(b2). We
assign the remaining even slots in b2, i.e., s2

0(b2), to v3. There-
fore, Nln,3/T = 1/2 > 3/8. We are certain that the supported
bandwidth suffices the demand of v3. We map the slot set s2

0(b2)
on v3, obtaining ln2

0(v3,b2). As ln2
0(v1,b1)∩ ln2

0(v3,b2) = /0, v1
and v3 are also conflict free. The VC-to-LN assignments are
shown in column LN of Table I.

3) Slot refinement: The success of VC-to-LN assignment for all
VCs means that all VCs are conflict free and enough bandwidth
can be reserved. But, a VC may demand only a fraction of slot
sets from its assigned LNs. For instance, “v2 on ln2

1(v2,b1)”
means that v2 can use one of every two slots. But N2 =
1 and W2 = 4, v2 actually demands only one out of four
slots. This means that we need to further refine the supplied
bandwidth. We first find the candidate slot sets of a reference
buffer and then only assign N of them within window size
W to v. For example, v3 has four candidate slot sets over b2,
s8
0,2,4,6(b2). We allocate any three of the four to v3, for instance,

s8
0,2,4(b2). These slot sets are mapped to s8

1,3,5(b3), forming the
LN ln2

0(v3,b2). The slot sets reserved by the three VCs are
illustrated in Figure 5 and listed in column Slot set of Table
I. Note that the two columns LN and Slot set of Table I are
equivalent.

After the three steps above, the VCs are constructed without
conflict and with bandwidth requirements satisfied. In the following,
we consider the Slot refinement as part of step VC-to-LN assignment
to make the presentation concise.

E. Requirements for LN-oriented Slot Allocation

We have described so far three techniques: (1) establishing VCs
by configuring slot-sliced routing tables; (2) partitioning and mapping
slots into LNs; (3) assigning VCs to different LNs. These techniques
must promise conflict freedom and provide enough bandwidth. How-
ever, there are several key questions that are not yet addressed:

• How many LNs exist when VCs overlap? LN is not global for
all VCs. Instead it is local for a group of overlapping VCs. This
number is crucial because it defines how to partition and then
map slots.

• In the examples, assigning overlapping VCs to different LNs
has secured conflict freedom. Is it a sufficient and necessary
condition, in general?

• LN is partitioned with respect to a reference buffer, which is
a shared buffer. As overlapping VCs may have many shared
buffers, how is this reference buffer selected? Are LNs with
respect to all shared buffers equivalent?

In the next section, we answer these questions formally.

V. FORMAL UNDERPINNING ON LN-BASED SLOT ALLOCATION

A. Assumptions and Definitions

We consider static VCs, meaning that VCs do not change their
paths and characteristics throughout system execution. We also as-
sume that one LN is allocated to only one VC. But one VC may
subscribe to multiple LNs.

Definition 5: A VC v comprises an ordered set of buffers <
b0,b1,b2, · · · ,bH−1 >. The size of v, denoted |v|, is the number of

21

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on January 6, 2009 at 09:59 from IEEE Xplore. Restrictions apply.

buffers, H. d �bib j
is the distance in number of slots2 from bi to b j.

On v, d �bibi+1
= 1, meaning that the buffers are adjacent.

Definition 6: The admission pattern on a VC requires that N
packets are admitted in a sequence of D (D ≥ N) time slots. This
gives a bandwidth requirement of N/D packets/slot, but the exact
time slots for admitting the N packets are not specified. A packet flow
is defined by infinitely repeating the admission pattern. We call D the
admission cycle. With respect to a buffer b and a natural d < D, we
define a target class as an infinite set of packets that arrive at buffer
b at slots d +kD, ∀k ∈N. We call d the initial distance of the target
class to buffer b.

For an open-ended VC, D = W , where W is the window size of a
VC packet flow; For a closed-loop VC, D = H, since v is a loop and
a container revisits the same buffer after H slots. N is the number of
containers launched on the VC.

Definition 7: Two VCs v1 and v2 overlap if they share at least
one buffer, i.e., v1 ∩ v2 �= /0. The two VCs conflict in buffer b,
denoted b∈ v1∧v2, if and only if it is possible that two packets, one
from each VC, visit buffer b at the same time. v1 ∧ v2 = /0 means
that v1 and v2 are conflict free.

Definition 8: Given a VC v =< b0,b1,b2, · · · ,bH−1 > and its
admission cycle D, bi ∈ v, a natural 1 ≤ T ≤ D and a natural τ,
0≤ τ < T , we define a LN lnT

τ (v,bi) as an infinite set of (time slot,
buffer) pairs as follows:

lnT
τ (v,bi) = {(t,b j)|t = τ+d �bib j

+kT, 0≤ j <H, ∀k ∈N}
Hence, a LN is defined for a given VC and one of its buffers. The

number of LNs for a VC is always equal to T . The motivation of
the LN is to precisely define the flow of packets on the VC and each
target class is dedicated to exactly one LN. The time when packets
visit buffers of the VC is given by the (time slot, buffer) pairs of
the LN. On a LN, every T slots a packet visits a particular buffer.
Consequently, the bandwidth possessed by a LN is 1/T packets/slot.

The LNs of a VC have an inherent property: if τ1,τ2 ∈ [0,T −1]
and τ1 �= τ2, then packets admitted on different LNs never collide,
because lnT

τ1
(v,b)∩ lnT

τ2
(v,b) = /0.

Definition 9: A LN-cover is a complete set of LNs defined for a
VC v with respect to a buffer b, b ∈ v,

LN−cover(v,b,T) = {lnT
τ (v,b) | 0≤ τ< T}

Definition 10: VC-to-LN assignment/subscription: a VC v is as-
signed to or subscribes to lnT

τ (v,b) if and only if, on v, a target class,
which has an initial distance d to buffer b and the admission cycle
D, satisfies mod(d +kD,T) = τ, ∀k ∈N.

If a VC v does not overlap with any other VCs, the maximum
number of LNs on v is D, since v allows for up to D target classes
and one class uses exactly one LN.

B. Overlapping VCs

Lemma 1: Let v1 and v2 be two overlapping VCs and D1,D2 be
their admission cycles, respectively. Let c1 and c2 be any two target
classes on v1 and v2 with respect to a shared buffer b, respectively; d1
and d2 are the initial distances of c1 and c2 to buffer b, respectively.
We have b ∈ v1∧v2 iff ∃ k1,k2 ∈N such that d1 +k1D1 = d2 +k2D2.

Proof:
(1) Sufficient: We assume that ∃k1,k2 ∈ N such that d1 + k1D1 =

d2 + k2D2(= t). The left-hand side of the equation implies that c1
enters buffer b at time slot t, and the right-hand side implies that c2
enters b the same slot. Hence b ∈ v1∧ v2.

2As one hop takes one slot to travel, we equivalently measure the distance
in number of slots.

(2) Necessary: Suppose, after t slots, c1 and c2 collide in buffer b,
b ∈ v1 ∧ v2. For c1, t = d1 + k1D1; for c2, t = d2 + k2D2. Therefore
d1 +k1D1 = d2 +k2D2.

Theorem 1: Let T be the number of LNs, which two overlapping
VCs, v1 and v2, can subscribe to without conflict. Then T is a
Common Factor (CF) of their admission cycles, D1 and D2.

Proof: Suppose that b is the reference buffer.
Let lnT

τ1
(v1,b) and lnT

τ2
(v2,b) be the LN subscribed by v1 and v2,

respectively. According to Definition 10, we have τ1 = mod(d1 +
k1D1,T) and τ2 = mod(d2 +k2D2,T).

We start with τ1 = mod(d1 + k1D1,T), ∀k1 ∈ N. When k1 = 0,
d1 = k′1T + τ1; when k1 = 1, d1 +D1 = k′′1T + τ1 and k′′1 > k′1. From
the last two equations, we get D1 = (k′′1 −k′1)T , meaning that T is a
factor of D1.

Similarly, using τ2 = mod(d2 + k2D2,T), ∀k2 ∈ N, we can derive
that T is a factor of D2.

Therefore T is a CF of D1 and D2, i.e., T ∈CF(D1,D2).
By Theorem 1, the number T of LNs for v1 and v2 can be any

value in the common factor set CF(D1,D2). The least number of
LNs is 1. However, if the number of LNs for two VCs is 1, only
one of the two VCs can subscribe to it. There is no room for the
other VC. Therefore we need at least two LNs. In general, if n VCs
overlap in a shared buffer, there must be at least n LNs, one for each
VC, to avoid conflict. In order to maximize the number of options
and have finer LN bandwidth granularity, we consider the number T
of LNs to be the Greatest Common Divisor (GCD) throughout the
paper. Hence, for the two overlapping VCs, v1 and v2, the number
T of LNs equals GCD(D1,D2).

Theorem 2: Assigning v1 and v2 to different LNs with respect to
any shared buffer is a sufficient and necessary condition to avoid
conflict between v1 and v2.

Proof: By Theorem 1, the maximum number T of LNs for v1
and v2 is T = GCD(D1,D2). We can write D1 = A1T and D2 = A2T ,
where A1 and A2 are co-prime.

By Definition 10, v1 and v2 subscribe to different LNs ⇔
mod(d1 +k1D1,T) �= mod(d2 +k2D2,T). Since D1 = A1T and D2 =
A2T , mod(d1 + k1D1,T) �= mod(d2 + k2D2,T) ⇔ mod(d1,T) �=
mod(d2,T).

(1) Sufficient: mod(d1,T) �= mod(d2,T) ⇒ d1 + k′1T �= d2 +
k′2T, ∀k′1,k′2 ∈ N. When k′1 = k1A1 and k′2 = k2A2, ∀k1,k2 ∈ N ⇒
d1 + k1A1T �= d2 + k2A2T ⇒ d1 + k1D1 �= d2 + k2D2. According to
Lemma 1, v1 and v2 do not conflict, i.e., v1∧ v2 = /0.

(2) Necessary: Suppose v1 ∧ v2 = /0 ⇒ d1 + k1D1 �= d2 +
k2D2, ∀k1,k2 ∈ N. But let us assume mod(d1,T) = mod(d2,T).
Then we have d1− d2 �= k2D2− k1D1 but d1− d2 = kT , k ∈ Z. ⇒
k+k1A1 �= k2A2, ∀k1,k2 ∈N. However, this inequality is not always
true, for example, when k1 = A2; k2 = A1 + 1; k = A2. Thus, our
assumption cannot be true, and mod(d1,T) �= mod(d2,T). This means
that v1 and v2 subscribe to different LNs.

(b)(a)

A

A

B
B

C

D

c1

c2

d1
d′1

d2
d′2 v1

v1

v2v2

Fig. 6. Two or multiple shared buffers

22

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on January 6, 2009 at 09:59 from IEEE Xplore. Restrictions apply.

By Theorem 2, VCs must stay in different LNs referring to any
shared buffer. However, as overlapping VCs may have multiple
shared buffers, LN partitioning might change with a different ref-
erence buffer. Figure 6a shows that two open-ended VCs, v1 and v2,
overlap in buffers A and B. Apparently, no conflict with respect to
buffer A does not imply no conflict with respect to another buffer B.
We derive the following theorem to check the reference consistency.

Theorem 3: Suppose that two overlapping VCs, v1 and v2, have
two shared buffers A and B. Let the distances from buffer A to B
along v1 and v2 be d �AB(v1) and d �AB(v2), respectively. Let the initial
distance of c1 to A be d1, to B be d′1; from c2 to A be d2, to B be
d′2. Assume that c1 on v1 and c2 on v2 do not conflict in A, then
d �AB(v1)− d �AB(v2) = kT , where T = GCD(D1,D2) and k ∈ Z, is a
sufficient and necessary condition for c1 and c2 to be conflict-free
with respect to B. If so, we say the two shared buffers are consistent.

Proof: d �AB(v1) = d′1−d1 and d �AB(v2) = d′2−d2 ⇒ d �AB(v1)−
d �AB(v2) = (d′1 − d′2)− (d1 − d2). Further, d �AB(v1)− d �AB(v2) = kT
⇔ mod(d′1 − d′2,T) = mod(d1 − d2,T). Condition mod(d1,T) �=
mod(d2,T) ⇔ mod(d′1,T) �= mod(d′2,T). Thus c1 and c2 are conflict
free with respect to B.

By Theorem 3, we can further conclude that if two VCs have
multiple shared buffers, all shared buffers must be consistent in order
to be conflict-free. For instance, as shown in Figure 6b, if the two
closed-loop VCs, v1 and v2, have no conflict, then all shared buffers
v1∩v2 = {A,B,C,D} must be consistent. If the consistency is checked
pair-wise, the total number of checking times is C2

u = u(u− 1)/2,
where u is the number of shared buffers. However, the check can be
done efficiently.

Theorem 4: Suppose that v1 and v2 have at least three shared
buffers A,B,C ∈ v1 ∩ v2. If A and B, and B and C are consistent,
then A and C are consistent.

Proof: As A and B are consistent, d �AB(v1)−d �AB(v2) = k1T . As
A and C are consistent, d �AC(v1)−d �AC(v2) = k2T . By deducting the
two equations, we have, d �AB(v1)−d �AB(v2)− (d �AC(v1)−d �AC(v2)) =
(k1 − k2)T . Further, we have d �BC(v1) − d �BC(v2) = k3T, k3 ∈ Z.
According to Theorem 3, B and C are consistent.

By Theorem 4, reference consistency may be linearly checked. As
a result, the total number of checking times is reduced to u− 1. If
all shared buffers are consistent, any shared buffer can be used as a
reference buffer to conduct LN partitioning and assignment. If they
are not consistent, v1 and v2 conflict.

In summary, we have formally answered the questions in Section
IV-E. The number of LNs of two overlapping VCs, v1 and v2,
equals GCD(D1,D2). Assigning VCs to different LNs is sufficient
and necessary to promise conflict freedom. If overlapping VCs have
multiple shared buffers, reference consistency must be first checked,
and this check can be done linearly. If consistent, anyone of the
shared buffers can be used as the reference buffer.

VI. THE LN-BASED SLOT ALLOCATION METHOD

A. The Slot Allocation Algorithm

Algorithm 1 shows the pseudo code of the slot allocation method.
The input is a set of n VC specifications, and the output is a set
of TDM VC implementations. If the procedure returns true, the
implementation set contains a TDM VC implementation for each VC
specification, and routing tables in switches. If the procedure fails,
the implementation set is empty. As the slot allocation is iterative, the
algorithm has a complexity of O(n2). The slot allocation comprises

• VC-to-LN assignment: This step assigns VCs to different LNs. It
is conducted pair-wise in a well-defined order and incrementally.

Algorithm 1 The pseudo code of LN-based slot allocation

Input: Q: a set of path-defined VC specification, {v̄1, v̄2, · · · , v̄n}.
Output: S: a set of TDM VC implementation, {v1,v2, · · · ,vn}.
Initially, state(vi)=0; // vi’s LN assignment is not conducted.
Sort Q by a priority criterion;
bool slot allocation(Q, &S){

for i=1 to n {
for j=1 to n {
if (i!=j)
if (VC to LN(vi,v j)==false) // pair-wise VC-to-LN assignment

return false;
for i=1 to n

create routing table(vi);
return true; }

• Routing table creation: This step is performed only if the
previous step is performed successfully. Using the VC-to-LN
assignment for each VC and the VC path, we can accordingly
configure routing tables in switches.

Next, we detail the two steps.

B. The VC-to-LN Assignment Procedure

VC-to-LN assignment is the key step for the LN-based slot
allocation method. We sketch the VC-to-LN procedure in Algorithm
2. The input to the algorithm is a pair of VCs, (vi,v j)3, and their
paths are known. The function returns true if VC-to-LN assignment
is done successfully for both VCs, and returns false otherwise. A
VC v has two configuration states, either 0 or 1. ’state(v)=0’ means
that VC-to-LN assignment has not performed for v yet; ’state(v)=1’
means that the VC-to-LN assignment for v is done successfully.

72 64 81 3 5 90

0
2ln ln 2

1

6

2 4 6 8

3 5 7 9

5 93 7

1

1

2 80 4

0

74 80 1 2 3 5 6 9
t

0
2ln

v1

v2 v3

b1 b2

b3

(t,b1):

(t,b2):

(t,b3):

(v1,b1) (v2,b1) (v3,b2)

Fig. 7. An example of VC-to-LN assignment

VC Buf. set bw N W(D) LN

v1 b1,b2 1/2 1 2 ln2
0(v1,b1) = {s2

0(b1), s2
1(b2)}

v2 b1,b3 1/4 1 4 ln2
1(v2,b1) = {s4

1(b1), s4
2(b3)}

v3 b2,b3 3/8 3 8 ln2
0(v3,b2) = {s8

0,2,4(b2), s8
1,3,5(b3)}

TABLE II
VC PARAMETERS AND VC-TO-LN ASSIGNMENT RESULTS FOR FIG.7

We exemplify how this VC-to-LN assignment is conducted. Figure
7, where a bubble represents a buffer, shows three VCs, v1, v2 and
v3. Their paths and parameters are listed in Table II. As elaborated
below, the VC-to-LN assignments are performed in order (v1, v2),
(v1, v3) and (v2, v3).

3VC pairs (vi,v j) and (v j,vi) are equivalent in the paper.

23

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on January 6, 2009 at 09:59 from IEEE Xplore. Restrictions apply.

Algorithm 2 The VC-to-LN assignment procedure

bool VC to LN(vi, v j){
if (vi∩ v j == /0) return true;
if (reference consistency(vi , v j)==false) return false;
// vi and v j overlap but satisfy reference consistency
take any shared buffer b as the reference buffer Re f (vi,v j) = b;
compute the shared number T of LNs, T = GCD(Di,D j);
if (state(vi)==0 && state(v j)==0) {

// Both states are 0
for v in {vi,v j} {
compute the available LN set for v, ASln(v);
compute the required number of LNs Nln(v) = �NT/D	;
if |ASln(v)|< Nln(v) return false;
assign LNs from ASln to v;
allocate slot sets in the assigned LNs within D to v;
state(vi)=1; state(v j)=1; }

return true; }
if (state(vi) != state(v j) {

// One state is 0 and the other 1
// suppose (state(vi)=0 and state(v j)=1)
map v j’s allocated slot sets to the new LN set as the consumed

LN set by v j, CSln(v j);
compute the available LN set for vi, ASln(vi);
compute the required number of LNs Nln(vi) = �NiTi/Di	;
if |ASln(vi)|< Nln(vi) return false;
assign LNs from ASln(vi) to vi;
allocate slot sets in the assigned LNs within Di to vi;
state(vi)=1;
return true; }

if (state(vi)==1 && state(v j)==1) {
// Both states are 1
map vi’s allocated slot sets to the new LN set as the consumed

LN set by vi, CSln(vi);
map v j’s allocated slot sets to the new LN set as the consumed

LN set by v j, CSln(v j);
if (CSln(vi)∩CSln(v j) == /0)

return true;
else return false;}

1) VC to LN(v1,v2): Re f (v1,v2) = b1. Since D1 = 2 and D2 = 4,
T = GCD(D1,D2) = 2. We can partition b1’s slots into two
logical sets. Initially, state(v1)=0 and state(v2)=0. The branch
of “Both states are 0” is executed. We take v1 first. The
available LN set for v1 ASln(v1) = {0,1}, thus |ASln(v1)|= 2.
The required number of LNs Nln(v1) = �N1T/W1	 = 1. As
|ASln(v1)| > Nln(v1), there are enough LNs to support v1
bandwidth. We assign ln2

0(v1,b1) to v1. The consumed LN set
of v1 CSln(v1) = {0}. We then allocate slot sets s2

0(b1) and
s2
1(b2) to v1. The two sets constitute LN ln2

0(v1,b1). Next, we
take v2 up. ASln(v2) = {0,1}−CSln(v1) = {1}. The required
number of LNs of v2 Nln(v2) = �N2T/W2	 = 1. We assign
ln2

1(v2,b1) to v2. Then we allocate slot sets s4
1(b1) and s4

2(b3)
to v2. After this assignment, state(v1)=1 and state(v2)=1.

2) VC to LN(v1,v3): Re f (v1,v3) = b2. As D1 = 2 and D3 = 8,
T = GCD(D1,D3) = 2. Since state(v1)=1 and state(v3)=0, the
branch of “One state is 0 and the other 1” is executed. We map
ln2

0(v1,b1) with respect to the reference buffer b2, resulting in
an equivalent LN ln2

1(v1,b2). Thus the consumed LN set of
v1 CSln(v1) = {1}. The available LN set of v3 is ASln(v3) =

{0,1}−CSln(v1) = {0}. The required number of LNs of v3
Nln(v3) = �N3T/W3	 = 1. We assign ln2

0(v3,b2) to v3. Then
we allocate slot sets s8

0,2,4(b2) and s8
1,3,5(b3) to v3. After this

assignment, state(v3)=1.
3) VC to LN(v2,v3): Re f (v2,v3) = b3. As D2 = 4 and D3 = 8,

T = GCD(D2,D3) = 4. Since state(v2)=1 and state(v3)=1, the
branch of “Both states are 1” is executed. In this step, we check
whether the allocated slot sets for v2 and v3 can stay in different
LNs after mapping them to the four LNs with respect to the
reference buffer b3. We map s4

1(b1) of v2 on b3, obtaining an
equivalent LN ln4

2(v2,b3). Then we map s8
0,2,4(b2) of v3 on b3,

obtaining LN ln4
1,3(v3,b3). Because ln4

2(v2,b3)∩ ln4
1,3(v3,b3) =

/0, v2 and v3 are conflict free with their slot assignment.

After the above three steps, the VC-to-LN assignments for the three
VCs are successful. The slot sets are allocated accordingly, as shown
in Table II. These can be used to create routing tables in switches.

C. Routing Table Creation

When the VC-to-LN assignment is successful for all VCs, a
feasible solution or configuration is found. With each VC, a switch’s
partial routing table is created according to the VC’s path and the
allocated LNs, more accurately, the allocated slot sets within the
admission cycle. The slot sets determine when the VC passes a
particular buffer in a switch. For instance, if a VC v with an admission
cycle D subscribes to sD

τ1
(b) and sD

τ2
(b), then slots τ1 +kD and τ2 +kD

(k ∈ N) of b are reserved for v. The VC path determines the input
link ein and the output link eout of the switch used by v packets at
the reserved slots. Thus, two routing table entries, (τ1 +kD,ein,eout)
and (τ2 + kD,ein,eout), can be created in the switch. By composing
the partial routing tables of all visiting VCs in a switch, we obtain
a complete routing table for the switch. Optimization is also used to
shrink the size of the routing tables. For example, entries (4k,ein,eout)
and (4k +2,ein,eout) can be reduced to one entry (2k,ein,eout).

VII. AN INDUSTRIAL CASE STUDY

A. The TDM VC Configuration Program

We have integrated the LN-based slot allocation method into our
TDM VC configuration program. To explore the path diversity of
VCs, this program runs a back-tracking algorithm. The algorithm
is a recursive function performing a depth-first search. The solution
space in a tree structure is generated while the search is conducted.
At any time during the search, only the route from the start node
to the current expansion node is saved. As a result, the memory
requirement of the algorithm is O(n), where n is the number of
VCs. This is important since the solution space organization needs
excessive memory if stored in its entirety. Whenever two VCs overlap,
the assignment of VCs to LNs is performed. If they can be assigned
to two different LNs with sufficient bandwidth, the assignment is
done successfully. Otherwise, the assignment fails, and other path
alternatives (back-tracking) have to be considered. This VC-to-LN
assignment serves as a bounding function by which, if it fails, the
algorithm prunes the current expansion node’s subtrees, thus making
the search efficient. In general, the more the alternative paths, the
longer the run time. The program allows us to set the number of
alternative paths to tradeoff between runtime and capability.

B. The Case Study

We applied our program to a real application provided by Ericsson
Radio Systems. As mapped onto a 4×4 mesh in Figure 8, this
application consists of 16 IPs. Specifically, n2, n3, n6, n9, n10 and n11
are ASICs; n4, n7, n12, n13, n14 and n15 are DSPs; n5, n8 and n16 are

24

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on January 6, 2009 at 09:59 from IEEE Xplore. Restrictions apply.

FPGAs; n1 is a device processor which loads all nodes with program
and parameters at start-up, sets up and controls resources in normal
operation. Traffic to/from n1 is for system initial configuration and
no longer used afterwards. There are 26 node-to-node traffic flows
that are categorized into nine types of traffic flows {a, b, c, d, e, f, g,
h, i}, as marked in the figure. Traffic a and h are multi-cast traffic,
and others are unicast traffic. The traffic flows are associated with a
bandwidth requirement. In this case study, we use closed-loop VCs
to implement all traffic flows, κbw = 1.

to/from all

x3: 4096

unit: Mbits/s

x6: 512
x4: 512

x4: 128

x2: 2048

x1: 64

x2: 512

x1: 512

x3: 4096
n1 n2 n3 n4

n5 n6 n7 n8

n9 n10 n11 n12

n13 n14 n15 n16 a

aaa

b

b
bb

b

b

b

cc

cc

c
d

d

d
e

e

f

f

f

f f

gg
hh

h

h
i

i
i

Fig. 8. Traffic flows for a radio system

The case study comprises VC specification and VC configuration.
The first phase involves determining link capacity, normalizing VC
bandwidth demand and merging traffic flows. The second phase runs
the configuration program, exploring VC’s all minimal paths.

We first determine the minimum link capacity bwlink by consid-
ering a heaviest loaded link. Link e(n5,n9) is such a link since the
a-type traffic passes it and bwa = 4096 Mbits/s. To support bwa,
bwlink ≥ 4096 Mbits/s. We choose 4096 Mbits/s for bwlink. This is
an initial estimation and subject to optimization later on. Afterwards,
we normalize the bandwidth demand into a fraction of bwlink. For
example, 512 Mbits/s is equivalent to 1/8 link capacity.

Then we merge traffic flows in order to construct efficient VCs by
taking advantage of multi-node VCs. This can be done for multicast
and low-bandwidth traffic. For the two multi-cast traffic a and h, we
build two multi-node VCs as v̇a(n5,n9,n10,n11) and v̇h(n5,n6,n2,n3).
The notation v̇ refers to a VC specification before path selection.
Traffic b, c and f require low bandwidth. We specify a VC to include
as many nodes as a type of traffic flow spreads. For traffic b, we
define a six-node VC, v̇b(n9,n10,n11,n13,n14,n15); for c, a five-node
VC v̇c(n13,n14,n15,n16,n7); for f, a three-node VC v̇ f (n2,n3,n4).
Furthermore, as we use a closed-loop VC, two-simplex traffic flows
can be merged into one duplex flow. For instance, for two i flows,
we specify only one VC v̇i(n6,n7). Note that, while merging traffic
flows, the resulting VC must be able to provide enough bandwidth to
support the flows. Performing this step results in 9 multi-node VCs.

With the three steps above, we complete defining the VC speci-
fication set. While executing the program to configure the VCs, we
investigate the impact of VC sorting. Since VC sorting determines the
VC levels in the solution tree and the VC-to-LN assignment order,
it affects the runtime and the number of solutions. We tried three
sorting schemes: random, higher bandwidth first, less number of path
options first. In order to compare the potential of the schemes, our
algorithm terminates after all solutions are found. We did not do any
tweaking or tuning but used the original IP-to-node mapping and IP
communication patterns without change. Corresponding to the three
sorting schemes, the number of solutions found is 33, 30 and 76; the
run time is 6, 6 and 12 seconds. Sorting by the number of path options

is best in this example. This means that VCs with fewer alternative
paths should be layouted first because they are more constrained. As
a result, pruning their subtrees and allocating slots are more effective
when they are considered in the upper levels in the tree.

VIII. CONCLUSION

Slot allocation is a critical problem for TDM VC configuration. Its
complexity arises from various path overlapping and bandwidth shar-
ing scenarios. In the paper, based on our concept of LN, we develop
and proof sufficient and necessary conditions for the configuration
of conflict-free and bandwidth-satisfied VCs. They are applicable to
both open-ended and closed-loop VCs in the state-of-the-art NoC
proposals. We have also detailed the steps to perform the VC-to-
LN assignment, i.e., slot allocation, and integrated the method into
our multi-node TDM VC configuration program. Our industrial case
study justifies our approach in effectiveness and practicality.

In the paper, we have considered non-stalled TDM VCs where
VC packets use consecutive slots in consecutive switches. This type
of TDM VC couples the latency requirement with the bandwidth
requirement. For low-bandwidth low-latency traffic, it leads to over-
booking bandwidth in order to satisfy the low latency constraint. In
the future, we will extend our framework to cover stallable TDM
VCs in order to make more efficient use of link bandwidth and to
allow asynchronous network communication.

ACKNOWLEDGMENT

The research is partially supported by the EU FP6 project SPRINT
under contract 027580.

REFERENCES

[1] K. Goossens, J. Dielissen, and A. Rădulescu, “The Æthereal network on
chip: Concepts, architectures, and implementations,” IEEE Design and
Test of Computers, vol. 22, no. 5, pp. 21–31, Sept-Oct 2005.

[2] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within the
Nostrum network on chip,” in Proceedings of the Design Automation and
Test in Europe Conference, February 2004.

[3] T. Bjerregaard and J. Sparso, “A router architecture for connection-
oriented service guarantees in the MANGO clockless network-on-chip,”
in Proceedings of the Design, Automation and Test in Europe Confer-
ence, 2005, pp. 1226–1231.

[4] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS archi-
tecture and design process for network on chip,” The Journal of Systems
Architecture, December 2003.

[5] O. P. Gangwal, A. Rădulescu, K. Goossens, S. González Pestana,
and E. Rijpkema, “Building predictable systems on chip: An analysis
of guaranteed communication in the Æthereal network on chip,” in
Dynamic and Robust Streaming In And Between Connected Consumer-
Electronics Devices, ser. Philips Research Book Series, P. van der Stok,
Ed. Springer, 2005, vol. 3, ch. 1, pp. 1–36.

[6] A. Hansson, K. Goossens, and A. Rădulescu, “A unified approach to
constrained mapping and routing on network-on-chip architectures,”
in Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 2005.

[7] T. Marescaux, B. Bricke, P. Debacker, V. N. Nollet, and H. Corporaal,
“Dynamic time-slot allocation for QoS enabled networks on chip,” in
Proc. of the IEEE 3rd Workshop on Embedded Systems for Real-Time
Multimedia (ESTIMEdia’05), September 2005, pp. 47–52.

[8] S. Stuijk, T. Basten, M. Geilen, A. H. Ghamarian, and B. Theelen,
“Resource-efficient routing and scheduling of time-constrained network-
on-chip communication,” in Proceedings of the 9th Euromicro Confer-
ence on Digital System Design, Aug. 2006.

[9] E. Nilsson and J. Öberg, “Reducing peak power and latency in 2D mesh
NoCs using globally pseudochronous locally synchronous clocking,”
in Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, September 2004.

[10] J. T. Brassil and R. L. Cruz, “Bounds on maximum delay in networks
with deflection routing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 6, no. 7, pp. 724–732, July 1995.

25

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on January 6, 2009 at 09:59 from IEEE Xplore. Restrictions apply.

