
NNSE: Nostrum Network-on-Chip Simulation Environment

Zhonghai Lu, Rikard Thid, Mikael Millberg, Erland Nilsson and Axel Jantsch
Laboratory of Electronics and Computer Systems

Royal Institute of Technology, Sweden
fzhonghai,thid,micke,erlandn,axelg@imit.kth.se

Abstract

A main challenge for Network-on-Chip (NoC) design is
to select a network architecture that suits a particular ap-
plication. NNSE enables to analyze the performance im-
pact of NoC configuration parameters. It allows one to
(1) configure a network with respect to topology, flow con-
trol and routing algorithm etc.; (2) configure various reg-
ular and application specific traffic patterns; (3) evaluate
the network with the traffic patterns in terms of latency and
throughput.

1 Introduction

Network-on-Chip (NoC) architects face many chal-
lenges coming from the huge architectural design space and
time-to-market/time-in-market pressures. One major diffi-
culty is to select a communication network that suits a spe-
cific application or a range of specific applications with the
constraints of cost, power and performance.

Design decisions are typically made on the basis of simu-
lation before resorting to emulation or implementation since
it is cheap and flexible. To make a right decision on the
network architecture, a simulation tool should enable to (1)
faster explore the architectural design space; (2) assess de-
sign quality regarding performance, cost, power and relia-
bility etc.; (3) evaluate extensively with various regular traf-
fic patterns and application-oriented traffic. Currently no
public simulation tool exists to aid NoC designers to make
the decision. Our configuration and simulation tool NNSE
aims to fill this gap. NNSE stands for Nostrum NoC Sim-
ulation Environment in which Nostrum is the name of our
NoC concept [1]. By parameterizing network and traffic
configurations, NNSE allows one to configure networks and
evaluate them with various traffic configured.

The rest of the paper is structured as follows. We first de-
scribe the simulation kernel in Section 2, then introduce the
network configuration in Section 3 and the traffic configu-
ration in Section 4. The network evaluation flow is given

in Section 5 with the assistance of an evaluation example.
Finally we conclude the paper in Section 6.

2 The simulation kernel

The tool NNSE logically comprises a NoC simulation
kernel wrapped with a graphical user interface (GUI) writ-
ten in Python. The kernel called Semla (Simulation En-
vironMent for Layered Architecture) [2] provides a layered
network simulation engine developed in SystemC. The ben-
efit of layering lies in that changing the implementation of
a layer does not interfere with the layer above provided that
the interface maintains. Semla is programmable as to net-
work topology and size, process-to-node mapping, and traf-
fic generation etc.

Following ISO’s OSI model, the kernel implements five
communication layers, namely, the physical layer (PL), the
data link layer (LL), the network layer (NL), the transport
layer (TL) and the application layer (AL). The upper three
layers are shown in Figure 1, where TG/S stands for traffic
generator/sink, and glue is the TL component which does
packetization/packet-assembly, message queuing etc.

Glue Glue Glue

NetworkNL

TL

AL

TL if
messages

packets

TG/S TG/S TG/S

TG/S

Figure 1. Communication layers

The transport layer offers transaction-level communica-
tion primitives as interface to enable communication via
channels between application processes. A channel is
a transaction-level modeling entity which allows simplex
communication from a source process to a destination pro-
cess. In Semla, we defined and implemented a set of com-
munication primitives for message passing as follows:

� ch* open(int srcpid, int dstpid): it opens a chan-
nel between a source processsrc pid and a destination
processdst pid. The method returns a channel han-
dler which is a class including a unique channel iden-
tity numbercid upon successfully opening the channel.
The current implementation opens channels statically
during compile time and the opened channels are never
closed through simulation.

� bool nbwrite(int cid, void msg): it writesmsgto chan-
nelcid. The size of messages is bounded. It returns the
status of the write. The write is nonblocking.

� bool nb read(int cid, void *msg): it reads channelcid
and writes the received protocol data unit to the ad-
dress starting atmsg. It returns the status of the read.
The read is nonblocking.

Each layer may be configured with a set of parameters
that captures its characteristics. The simulation tool cur-
rently supports to configure the network layer and the appli-
cation layer. The GUI provides a convenient way to specify
parameters for the network and traffic configuration.

3 Network Configuration

A network is characterized by topology, flow control
scheme (switching mode) and routing algorithm etc. Each
of them has a large design space on its own. With the tool,
all of these characteristics are parameterized, as shown by
the configuration tree in Figure 2.

(name, size, interface)

(routing algorithm)
(mesh | torus | tree | ring)

(simplex | duplex)
link bandwidth)
connection
structure

Routing
(mode: deflection | wormhole)

(VC number, VC depth)(deflection policy)
deflection_routing wormhole_routing

(num_nodes_X, num_nodes_Y,

or

and

SwitchingTopology

Network

Figure 2. Network configuration tree

We consider on-chip packet-switched networks with reg-
ular topologies such as 2D meshes/tori, rings, trees etc.
The benefit of the topological regularity is that the network
nodes can be identified more structurally and with less bits.
So far the tool realizes only a limited set of configurations,
which are as follows:

� Topology: 2D mesh and 2D torus.

� Flow control: Wormhole routing and deflection rout-
ing. For wormhole routing, one can choose virtual

channel (VC) parameters like the number and depth
of VCs. For deflection routing, one can specify a de-
flection policy.

4 Traffic Configuration

4.1 The traffic configuration tree

Network messages (traffic) can typically be charac-
terized and constructed by considering their distributions
along the three dimensions:spatial distribution, temporal
characteristics, andmessage size specification. The spatial
distribution gives the communication partnership between
sources and destinations. The temporal characteristics de-
scribe the message generation probability over time. The
size specification defines the length of communicated mes-
sages. We use a traffic configuration tree to express the ele-
ments and their attributes of traffic in Figure 3.

random
(n) [1, n]

Network Traffic

(constant rate | random rate | normal rate) (uniform | random | normal)

uniform random
[1, n](n)

normal
(m, d)

(traffic pattern | channel−by−channel)
Spatial distribution

uniform locality

constant

(uniform | locality)
Traffic pattern

(channel*)
Channel−by−channel

(src. node, dst. node)

Size distribution

(src. node set, dst. node set, locality factors)(src. node set, dst. node set)

normal

or

and

Temporal distribution

(m, d)

Figure 3. Traffic configuration tree

By the spatial distribution, traffic is classified into two
categories:traffic patternand channel-by-channeltraffic.
Traffic patterns consist of uniform and locality traffic. Each
simulation cycle, the destinations of a traffic pattern may
vary. That is to say, the same source node may send mes-
sages to a different channel. With a traffic pattern, all
the channels share the same temporal and size parameters.
In contrast, channel-by-channel traffic consists of a set of
channels with each channel taking its own temporal and size
parameters. The temporal distribution has a list of items
such as constant rate (periodic), random rate, and normal
rate etc. The size distribution has a list of items such as
uniform, random, and normal. As can be observed, these
lists are just examples of possible distributions. Other use-
ful distributions can be integrated into the tree with their as-
sociated parameters. By the tree, each traffic configuration
can be set with a list of parameters.

Please note that, although we have divided the traffic
configuration into three independent axes, it also allows one
to configure traffic by jointly considering two axes. For ex-
ample, the configuration of burstiness traffic may involve
both the time and size axis.

2

4.2 Traffic Patterns

Two types of traffic are considered in the tree. One is
uniformtraffic , the otherlocality traffic. In order to express
them formally, we use a uniform representation.

Suppose the distance between a source node (xs, ys)
and a destination node (xd, yd) is d, we define communica-
tion distribution probabilityDP(xs;ys)>(xd;yd) as a relative
probability to a common probability factorPc (0 � Pc � 1)
in Equation 1 and 2:

DP(xs;ys)>(xd;yd) = coef � Pc (1)

coef = 1 +
�

d+ 1
(2)

wherecoef is thedistribution coefficient; � is calledlo-
cality factor. SinceDP(xs;ys)>(xd;yd) � 0, � � �(d + 1).
Particularly when� = �(d + 1), DP(xs;ys)>(xd;yd) = 0;
when� = 0, DP(xs;ys)>(xd;yd) = Pc. Besides, when
�(d + 1) < � < 0, DP(xs;ys)>(xd;yd) is proportional to
the distanced; When� > 0, DP(xs;ys)>(xd;yd) is inversely
proportional to the distanced. In order to have a symmetric
coefficientcoef when� > 0 and� < 0, we constrain the
distribution coefficientcoef(d)to be not greater than2, then
the locality factor falls into the region[�(d + 1); (d + 1)]
and0 � Pc � 0:5.

If all the source nodes’ locality factors� are zero, their
distribution coefficientscoefare one. In this case, the traffic
is uniformly distributed.

4.3 Channel-by-channel traffic

Channel-by-channel traffic differs from the traffic pat-
terns in that the traffic’s spatial pattern is built on per-
channel basis and static. This type of traffic is used to con-
struct application-oriented workloads. The temporal char-
acteristics and message size specification can be approxi-
mated using analysis or communication traces. The set of
traffic parameters of a channel isfs node; d node; T ;Sg,
wheres node represents the source node,d node the des-
tination node,T its temporal characteristics, andS is its
message size specification.

5 Performance evaluation

5.1 The network evaluation flow

After configuring a network and a traffic pattern, one can
evaluate the network with the traffic pattern. The evalua-
tion is based on the kernel simulation results which can be
shown as figures and textual statistics in NNSE. The net-
work evaluation flow may be iterative until satisfaction as
illustrated in Figure 4. The main performance measures are
latency and throughput.

(topology, routing, switching)

(spatial, temporal, size)

Build NoC simulation

Traffic configuration

Network configuration

Y

(Cost, performance)

Start

End

Y

N

N

Evaluate comm. platform

Continue?

Satisfied?

Figure 4. Network evaluation flow

We denotate the number of network nodes asM , the
link capacity asC, the number of simulation cycles as
T , the number of flits injected/offered into the network is
Nin/Nof , the number of flits ejected from the network is
Nout. Suppose that the shortest distance a fliti travels is
Di, then the total shortest distance to be traveled by all of-
fered flits isDof =

PNof

i=1 Di; the total shortest distance
traveled by all ejected/received flits isDout =

PNout

i=1 Di.
We define the following terms for performance evaluation:

o�ered load =
Dof

C � T
(3)

link utilization =
Dout

C � T
(4)

flit injection rate =
Nin

M � T
(5)

throughput =
Nout

M � T
(6)

For a 2DK�K mesh,M = K2, C = 4K(K� 1); For
a 2DK �K torus,M = K2, C = 4K2.

5.2 An evaluation example

Figure 5 shows the performance of a 4x4 mesh net-
work under uniform and locality traffic. The network em-
ploys wormhole-based virtual-channel (VC) flow control
with dimension-ordered XY routing, which is determinis-
tic and deadlock free. Switches operate synchronously with
each hop taking one cycle. The number of VCs per physical
channel is 4 and the depth of a VC is 2. The network diame-
ter is 6. All the network nodes are both message sources and
sinks. The source nodes inject packets into the network via

3

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

Offered load (fraction of capacity)

A
v
e

ra
g

e
 l
a

te
n

c
y
 [
c
y
c
le

s
]

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Offered load (fraction of capacity)
#

P
a

c
k
e

ts
 d

ro
p

p
e

d

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Offered load (fraction of capacity)

L
in

k
 u

ti
li
z
a

ti
o

n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Injection rate [flits/cycle/node]

T
h

ro
u

g
p

u
t
[f
li
ts

/c
y
c
le

/n
o

d
e

]

Locality
Uniform

Locality
Uniform

Locality
Uniform

Locality
Uniform

Figure 5. A performance evaluation example

bounded FIFOs with a constant rate, as illustrated in Figure
6. One message contains only one packet and each packet
is split into four flits.

offered

dropped

Packets injected accepted

offered

dropped

Packets injected accepted

offered

dropped

Packets injected accepted

Packet FIFOs

Packet latency

(From IN to OUT network layer)

ejected

ejected

ejected
1

2

M

1

2

M

Network
(M nodes)

Figure 6. The packet injection model

By the traffic configuration tree, both traffic belong to
periodic traffic with a fixed message size. With the uniform
traffic, a network node sends packets to other nodes with
the same probability. With the locality traffic, a network
node sends packets to itsnearernodes with higher proba-
bility. We list the traffic’s locality factors� and calculated
distribution coefficientscoef in Table 1.

The four figures in Figure 5 show average packet latency
v.s. offered load, number of packets dropped v.s. offered
load, link utilization v.s. offered load, and throughput v.s.
flit injection rate, respectively. As can be seen, the network
shows significant performance improvement if the traffic is

TRAFFIC d 0 1 2 3 4 5 6

Locality � -1 0 -1.2 -2.4 -4.0 -5.4 -6.3
coef 0 1 0.6 0.4 0.2 0.1 0.1

Uniform � -1 0 0 0 0 0 0
coef 0 1 1 1 1 1 1

Table 1. Traffic specifications

more locally distributed. We can conclude that, with the
dimension-order routing, the wormhole network can effi-
ciently benefit from traffic locality. This implies that map-
ping to achieve traffic locality is crucial.

6 Conclusion

We have presented our Nostrum Network-on-Chip simu-
lation environment (NNSE). It enables to flexibly configure
not only networks but also traffic, and then evaluate the net-
works with various traffic patterns. Although we list only a
limited set of alternatives for network and traffic configura-
tion, the trees could be expanded given the support from the
simulation kernel. At this point, it is meaningful to point
out several interesting directions for future extensions:

� Fledge the network and traffic configuration tree. Par-
ticularly, as the simulation kernel is upgraded, virtual-
circuit service is to be integrated. Consequently con-
figuring QoS traffic needs to be supported.

� Integrate cost and power model into NNSE. Design
quality has to be evaluated from multiple angles.

� Support investigations on the TL, LL and PL layer. For
example, from the TL, we can explore end-to-end flow
control; from the LL, we can explore the link band-
width, asynchrony etc.; from the PL, we can examine
physical integrity.

� Incorporate mapping network clients onto network
nodes. Mapping potentially impacts network perfor-
mance and power consumption.

� Develop an implementation flow using, for example,
VHDL. In NNSE, network and traffic configurations
are stored in an intermediate data format using XML,
thus can be shared by the SystemC and VHDL flow.

References

[1] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch.
Guaranteed bandwidth using looped containers in temporally disjoint
networks within the Nostrum network on chip. InProceedings of the
Design Automation and Test Europe Conference (DATE), 2004.

[2] Richard Thid, Mikael Millberg, and Axel Jantsch. Evaluating NoC
communication backbones with simulation. InProceedings of the
IEEE NorChip Conference, November 2003.

4

