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Secure Detection: Performance Metric and
Sensor Deployment Strategy

Xiaoqiang Ren and Yilin Mo∗

Abstract—This paper studies how to deploy sensors in the
context of detection in adversarial environments. A fusion center
is performing a binary hypothesis testing based on measurements
from remotely deployed heterogeneous sensors. An attacker may
compromise some of the deployed sensors, which send arbitrary
measurements to the fusion center. The problems of interest are:
1) to characterize the performance of the system under attack and
thus develop a performance metric; 2) to deploy sensors within
a cost budget, such that the proposed performance metric is
maximized. In this paper, we first present a performance metric
by formulating the detection in adversarial environments in a
game theoretic way. A Nash equilibrium pair of the detection
algorithm and attack strategy, with the deployed sensors given, is
provided and the corresponding detection performance is adopted
as the performance metric. We then show that the optimal
sensor deployment can be determined approximately by solving
a group of unbounded knapsack problems. We also show that the
performance metric gap between the optimal sensor deployment
and the optimal one with sensors being identical is within a fixed
constant for any cost budget. The main results are illustrated by
numerical examples.

Index Terms—Secure detection, Byzantine attacks, sensor de-
ployment, game

I. INTRODUCTION

Background: Network embedded sensors are widely used
to monitor systems. However, due to the limited capacity and
sparsely spatial deployment, they are vulnerable to malicious
attacks. An attacker may compromise the sensors and send
arbitrary messages, break the communication channels and
tamper with the transmitted data, or just launch jamming
noises to block the communication channels. Such attacks have
motivated many researches on how to process information
securely under attack in the context of networked estimation,
detection and control [1]–[5].

Our Work and its Contributions: We consider binary hy-
pothesis testing with sensors under Byzantine attack. A fu-
sion center is performing a binary hypothesis testing based
on measurements from a group of deployed heterogeneous
sensors, among which some may be compromised by an
attacker. The measurements of a compromised sensor can be
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arbitrarily manipulated. The fusion center knows the number
of the compromised sensors1, but does not know what sensors
are compromised.

The following two problems are to be addressed in this
paper. First, given the deployed sensors, what is a reasonable
metric to characterize the performance of the system under
attack? Second, suppose that the system manager can choose
what sensors to deploy from a sensor pool, in which different
types of sensors incur different costs and provide information
of different quality. Then with a sensor cost budget, what is the
optimal sensor deployment strategy to maximize the proposed
performance metric?

The main contributions of this work are summarized as
follows:

1) We provide a performance metric by formulating the
detection in adversarial environments in a game theoretic
way. A Nash equilibrium pair of detection algorithm
and attack strategy is identified (Theorem 3) and the
corresponding detection performance is adopted as the
metric.

2) To solve the sensor deployment problem, two heuristics
are provided: 1) A suboptimal sensor deployment strat-
egy, which maximizes a upper bound of the performance
metric, is given by solving a group of unbounded
knapsack problems (UKPs). We also prove that this
suboptimal strategy is indeed the optimal one in certain
cases, for example, detecting mean shift of Gaussian
noises. 2) We consider using identical sensors and show
that the performance metric gap between the optimal
sensor deployment and the optimal identical sensors
deployment is within a fixed constant for any cost budget
(Theorem 5). Notice that this result does not rely on
the approximation techniques used in the above UKP
formulation.

Related Literature: Minimax robust detection has been
studied over decades to deal with the uncertainties of input
data [6]–[8]. The classical approach is to identify the “least
favorables” among the allowable set of uncertainties first,
and then perform the classic probability ratio test. These
allowable sets usually consist of a nominal element and others
that are somewhat “close” to this nominal one [7]. This
“nice” structure may not hold in security settings. Also, it is
usually difficult to identify the “least favorables” for arbitrary
uncertainties as there does not exist a systematic way to do
so.

1This number can also be interpreted as how many bad sensors the system
can or is willing to tolerate, which is a design parameter.
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Detection under Byzantine attack has also been studied
in [9], [10]. In [9], the authors took the respective of an
intruder and found the optimal attacks to minimize the
Kullback–Leibler divergence of the manipulated measure-
ments. The manipulated measurements are assumed to be
independent and identical, which limits the capability of the
adversary. On the contrary, this paper assumes that the mea-
surements of the compromised sensors can be arbitrary, which
might be correlated. Also, we adopt a different performance
index (i.e., Chernoff information), the analysis method is
thus fundamentally different. In [10], the Byzantine sensors
can collaborate when generating malicious data. The optimal
detector when the number of Byzantine sensors is less than
1/2 is shown to be of a threshold structure. The authors only
focus on one-step detector, while we consider an infinite time
sequence of detectors, which is more challenging. Besides, the
problem in this paper is formulated in a game-theoretic way,
while the above two works take the perspective of either an
attacker or a system manager.

Detection with Byzantine sensors have also been studied
in a game-theoretic way [11], where binary and noisy sensors
are used. A zero-sum game was formulated and (approximate)
equilibrium was obtained. However, as in [10], they focus on
one-step scenario, which is contrasted by the asymptotic per-
formance index in this paper. In the asymptotic regime, each
strategy consists of an infinite time sequence of behavior rules.
This renders the analysis challenging and requires fundamen-
tally different analysis techniques. Notice also that the binary
sensor model in [11] restricts its application, and the explicit
equilibrium was only obtained under certain conditions. At
last, we should note that none of the aforementioned literature
has studied the sensor deployment strategy.

This paper extends our previous work [12] from homo-
geneous sensors to heterogeneous sensors. However, due to
the heterogeneity of sensors in this paper, the equilibrium
detection algorithm (i.e., f∗ in Section IV) is fundamentally
different. Our recent work [13] studied the fundamental trade-
off between security and efficiency for given homogeneous
sensors, while this paper focus on interactive behaviors of
an attacker and a system. The detection algorithm f∗ is
inspired by [13]. However, since the sensors in this paper
are heterogeneous, the analysis techniques are significantly
different.

Organization: In Section II, we provide the detection model,
attack model, detection performance index and the problem of
interest. The large deviation theory is presented in Section III,
which is a key supporting analysis tool. In Section IV,
we formulate the detection in adversarial environments with
given heterogeneous sensors in a game theoretic way, and
identify a Nash equilibrium of the detection algorithm and
attack strategy. The performance metric is proposed as the
detection performance when the equilibrium strategy is played.
In Section V, two heuristics of the sensor deployment problem
are provided: 1) the problem is relaxed to UKPs, 2) identical
sensors are considered. Numerical examples are given in Sec-
tion VI and concluding remarks are provided in Section VII.

Notations: R (R+) is the set of (nonnegative) real numbers.
N (N+) is the set of nonnegative (positive) integers. For a set

A ⊂ Rn, int(A) denotes its interior. The cardinality of finite
set A is denoted as |A|. Given a function f : R→ R, we use
f (1)(x) to denote its first-order derivative at point x. For two
vectors x, y ∈ Rn, x ·y denotes their dot product. For a vector
x ∈ Rn, define ‖x‖0 as the “zero norm”, i.e., the number of
nonzero elements of the vector x. bxc is the floor function of
x ∈ R. For a vector x ∈ Rn, the support of x, denoted by
supp(x), is the set of indices of nonzero elements:

supp(x) , {i ∈ {1, 2, . . . , n} : xi 6= 0}.

The main notations used in this paper are summarized in
the following table:

y(k) all sensors’ original measurements at time k
ỹ(k) all sensors’ manipulated measurements at time k
y(k) all sensors’ accumulated original measurements from time 1 to k
y(k) all sensors’ accumulated manipulated measurements from time 1 to k
µi (νi) probability measures for sensor i when hypothesis θ = 1 (θ = 0)
λi(·) log-likelihood ratio function between µi and νi
I0,i(·) rate function of λi when θ = 0
I1,i(·) rate function of λi when θ = 1
Ci Chernoff information between µi and νi
CO Chernoff information between

∏
i∈O µi and

∏
i∈O νi

H set of sensors that will be healthy under the worst-case attacks
C(d) detection performance of sensor deployment strategy d
cp Chernoff information of a sensor of type p
up cost of a sensor of type p
U cost budget
n number of compromised sensors

II. PROBLEM FORMULATION

A. Detection Model

Consider the problem of detecting a binary state θ ∈ {0, 1}
using m sensors’ measurements. Define the measurement y(k)
at time k to be a row vector:

y(k) ,
[
y1(k) y2(k) · · · ym(k)

]
∈ Rm, (1)

where yi(k) is the scalar measurement from sensor i at time k.
For simplicity, we define y(k) as a vector of all measurements
from time 1 to time k:

y(k) ,
[
y(1) y(2) · · · y(k)

]
∈ Rmk. (2)

Given θ, we assume that all measurements from sensor i,
{yi(k)}k=1,2,... are independent and identically distributed
(i.i.d.), and measurements from different sensors are inde-
pendent but not necessarily with the same distributions. The
probability measure generated by yi(k) is denoted as νi when
θ = 0 and it is denoted as µi when θi = 1. In other words,
for any Borel-measurable set A ⊆ R, the probability that
yi(k) ∈ A equals νi(A) when θ = 0 and equals µi(A)
when θ = 1. We denote the probability space generated by
all measurements y(1), y(2), . . . as (Ωy, Fy, Pθ), where for
any l ≥ 1

Pθ(yi1(k1) ∈ A1, . . . , yil(kl) ∈ Al)

=

{
νi1(A1)νi2(A2) . . . νil(Al) if θ = 0,

µi1(A1)µi2(A2) . . . µil(Al) if θ = 1

when (ij , kj) 6= (ij′ , kj′) for all j 6= j′. We further assume
that νi and µi are absolutely continuous with respect to each
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other. Hence, the log-likelihood ratio λi : R → R of yi(k) is
well defined as

λi(yi) , log

(
dµi
dνi

(yi)

)
, (3)

where dµi/dνi is the Radon-Nikodym derivative.
We define fk : Rmk → [0, 1], the detector at time k, as

a mapping from the measurement space y(k) to the interval
[0, 1]. When fk(y(k)) = 0, the system makes a decision θ̂ =
0, and when fk(y(k)) = 1, θ̂ = 1. When fk(y(k)) = γ ∈
(0, 1), the system then “flips a biased coin” to choose θ̂ = 1
with probability γ and θ̂ = 0 with probability 1 − γ. The
system’s strategy f , (f1, f2, · · · ) is defined as an infinite
sequence of detectors from time 1 to ∞.

B. Attack Model

An adversary wants to deteriorate the performance of the
system, the model of which is described as follows.

Assumption 1 (Attacker’s knowledge).
1) The attacker knows the probability measures µi, νi, and

the true state θ.
2) At each time, the attacker knows the current and all the

historical measurements available at the compromised
sensors.

This assumption is in accordance with Kerckhoffs’s princi-
ple [14], i.e., the security of the system should not rely on its
obscurity. By the knowledge about the sensor, the attacker can
develop the probability measures µi and νi. To obtain the true
state, the attacker may deploy its own sensor network. Though
it might be difficult to satisfy in practice, this assumption is
in fact conventional in literature concerning the worst-case
attacks, e.g., [9], [15].

One may verify that the main result (i.e., Theorem 3)
remains even if the attacker is “strong” enough to access the
measurements from all the sensors (rather than the compro-
mised ones only as in Assumption 1).

In the following, how an attacker, with the above knowledge
assumed, affects the detection system is introduced. Let the
manipulated measurements received by the fusion center at
time k be

ỹ(k) = y(k) + ya(k). (4)

where ya(k) ∈ Rm is the bias vector injected by the attacker
at time k.

Assumption 2 (n-sparse attack).
1) There exists an index set I ⊂ M , {1, 2, . . . ,m} with
|I| = n such that

⋃∞
k=1 supp(ya(k)) = I.

2) The system knows the number n, but it does not know
the set I.

Assumption 2 says that the set of compromised sensors is
somewhat “constant” over time. This is reasonable in the sense
that a time varying set of compromised sensors would require
the attacker to abandon the sensors it already controlled. We
should note that although the set I is fixed over time, attacker
has the freedom to choose I at the beginning.

It is also assumed that the number of compromised sensors
is upper bounded by n. It is practical to assume that the
attacker possesses limited resources since otherwise it would
be too pessimistic and the problem becomes trivial. The
quantity n might be determined by the a priori knowledge
about the quality of each sensor. On the other hand, the
quantity n may be viewed as a design parameter, which
indicates the resilience level that the system is willing to
introduce. In general, increasing n will increase the resilience
of the detector under attack, which, however, might lead to a
more conservative design.

Finally, we should note that we do not assume any pattern
of the bias yai (k) for i ∈ I, i.e., the injected malicious bias
may take any value, and may be correlated across the compro-
mised sensors and over time. Compared to the independence
assumption in [9], the capability of an attacker is increased in
this work. Furthermore, this is more realistic in the sense that
the attacker is malicious and intelligent, and will fully utilize
the sensors it controlled.

In fact, the same sparse attack model as in Assumption 2
has been widely adopted by literature dealing with Byzantine
sensors, e.g., binary hypothesis testing [9], [10], state estima-
tion [2], [16]–[18], and quickest change detection [15].

An admissible attack strategy is any causal mapping from
the attacker’s available information to a bias vector that
satisfies Assumption 2. This is formalized as follows. Let
I = {i1, i2, . . . , in}. Define the true measurements of the
compromised sensors from time 1 to k as

yI(k) ,
[
yI(1) yI(2) · · · yI(k)

]
∈ R|I|k

with

yI(k) ,
[
yi1(k) yi2(k) · · · yin(k)

]
∈ R|I|.

Let ỹ(k) (ỹa(k), respectively) be defined as all the manipu-
lated measurements (bias vectors, respectively) from time 1 to
k. The bias at time k, ya(k), is chosen as a random function
of the attacker’s available information at time k:

ya(k) , g(yI(k),ya(k − 1), I, θ, k), (5)

where g is a random function of yI(k),ya(k−1), I, θ, k such
that ya(k) satisfies Assumption 2. By random function, we
mean that given yI(k),ya(k−1), I, θ, k, the bias ya(k) might
be a random vector with a distribution determined by g. We
denote g as an admissible attacker’s strategy. Notice that due
to the time k and “increasing” yI(k),ya(k−1), the definition
in (5) does not exclude time-varying attack strategies.

Denote the probability space generated by all manipulated
measurements ỹ(1), ỹ(2), . . . as (Ω, F , P̃θ). The expectation
taken with respect to the probability measure P̃θ is denoted
by Ẽθ.

C. Asymptotic Detection Performance

Given the strategy of the system and the attacker, the
probability of error at time k can be defined as

e(θ, I, k) ,

{
Ẽ0fk(ỹ(k)) when θ = 0,

1− Ẽ1fk(ỹ(k)) when θ = 1.
(6)
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Notice that fk could take any value from [0, 1]. Hence, the
expected value of fk is used to compute the probability of
error. In this paper, we are concerned with the worst-case
scenario. As a result, let us define

ε(k) , max
θ=0,1,|I|=n

e(θ, I, k). (7)

In other words, ε(k) indicates the worst-case probability of
error considering all possible sets of compromised sensors and
the state θ.

It is quite difficult to analyze ε(k) when k takes finite values
since computing the probability of error usually involves
numerical integration. Thus, in this work, we consider the
asymptotic detection performance, i.e., the exponential rate
that the worst-case probability of error goes to zero:

ρ , lim inf
k→∞

− log ε(k)

k
. (8)

Clearly, ρ is a function of both the system strategy f and
the attacker’s strategy g. As such, we will write ρ as ρ(f, g)
to indicate such relations. Obviously, the system would like
to maximize ρ to make the detection error smaller. On the
contrary, the attacker wants to minimize ρ to increase the
detection error.

D. Problems of Interest

The following two problems are to be addressed:
1) What is a reasonable performance metric that can char-

acterize the detection performance when the attacker is
present?

2) Suppose that the types of the deployed sensors can
be selected from a sensor pool, i.e., the distribution
pairs of (µi, νi) (and hence m) in Section II-A are to
be determined. Then from the perspective of a system
manager, how to deploy sensors, with a sensor cost
budget, such that the performance metric is maximized?

III. PRELIMINARY: LARGE DEVIATION THEORY

In this section, we first introduce the large deviation theory,
which is a key supporting technique of this paper. We then
impose two quite weak assumptions on the observations of a
sensor.

To proceed, we first introduce some definitions. Let
Mψ(w) ,

∫
Rp e

w·Xdψ(X), w ∈ Rp be the moment gener-
ating function for the random vector X ∈ Rp that has the
probability measure ψ, where w · X is the dot product. Let
domψ , {w ∈ Rp|Mψ(w) < ∞} be the support such that
Mψ(w) is finite. Define the Fenchel–Legendre transform of
the function logMψ(w) as

Iψ(x) = sup
w∈Rp

{x · w − logMψ(w)}, x ∈ Rp. (9)

Theorem 1 (Multidimensional Cramér’s Theorem [19]). Sup-
pose X(1), . . . , X(k), . . . be a sequence of i.i.d. random
vectors and X(k) ∈ Rp has the probability measure ψ. Let
X(k) ,

∑k
t=1X(t)/k, k ∈ N+ be the empirical mean. Then

if 0 ∈ int(domψ), the probability P(X(k) ∈ A) with A ⊆ Rp
satisfies the large deviation principle, i.e.,

1) if A is closed,

lim sup
k→∞

1

k
logP(X(k) ∈ A) ≤ − inf

x∈A
Iψ(x).

2) if A is open,

lim inf
k→∞

1

k
logP(X(k) ∈ A) ≥ − inf

x∈A
Iψ(x).

To apply the multidimensional Cramér’s Theorem, we
make assumptions concerning the observations of a sensor
as follows. The moment generating function of the log-
likelihood ratio λi(yi) under θ = 0 is given by M0,i(w) ,∫
R e

wλi(yi)dνi(yi), w ∈ R. The support such that M0,i(w) <
∞ is denoted by dom0,i. The quantities M1,i(w) and dom1,i

are defined similarly. We assume that both dom0,i and dom1,i

contain 0 as an interior point. This is formalized as follows.

Assumption 3. For any sensor i, there hold 0 ∈ int(dom0,i)
and 0 ∈ int(dom1,i).

Denote the the Kullback-Leibler (K–L) divergences
by KL(1, i) ,

∫
R λi(yi)dµi(yi) and KL(0, i) ,

−
∫
R λi(yi)dνi(yi). To avoid degenerate problems, we assume

Assumption 4. The K–L divergences are well-defined for any
sensor i, i.e., 0 < KL(1, i) <∞ and 0 < KL(0, i) <∞.

IV. PERFORMANCE METRIC: A GAME-THEORETIC
APPROACH

In this section, we assume that the set of sensors deployed
to collect observations are given, the model of which is the
same as in Section II-A. With the sensors fixed, we model the
system’s strategy f and the attacker’s strategy g as a zero-sum
game. We then identify a Nash equilibrium (NE) of strategy
pair (f∗, g∗). Since ρ(f, g) is unique for any NE (f, g) in our
game, we adopt ρ(f∗, g∗) as the performance metric.

We detail the game model G as follows. The players are
the system manager and the attacker, which can adopt any
admissible strategy f and g, respectively. The payoff for the
system manager and the attacker playing (f, g) is respectively
ρ(f, g) and −ρ(f, g).

To present the NE (f∗, g∗), we need the following defini-
tions. For the log-likelihood ratio λi(yi), we use I0,i(x) and
I1,i(x) to denote As suggested by the reviewer, we have also
added a table in the end of introduction. its rate function when
yi(k) follows the distribution νi and µi, respectively. Given
any non-empty set O ⊂ M, let λO(yO) =

∑
i∈O λi(yi),

and I0,O(x) (M0,O(w), respectively) be the rate function
(moment generating function, respectively) for λO when for
every i ∈ O, yi(k) follows the distribution νi. The terms
I1,O(x) and M1,O(w) are defined similarly. Further define
KL(j,O) ,

∑
i∈O KL(j, i) for j ∈ {0, 1}. Here we list some

results concerning the above quantities, the proof of which can
be found in our work [13].

Theorem 2. To simplify presentations, i might be any element
or any subset of the setM. With Assumption 3, the followings
hold:

1) I0,i(0) = I1,i(0).
2) For any x ∈ R, I0,i(x) ≥ 0 and I1,i(x) ≥ 0.
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3) I0,i(x) (I1,i(x)) is non-decreasing (non-increasing) on
[−KL(0, i),KL(1, i)].

To simplify presentations, we denote

Ci , I0,i(0), CO , I0,O(0). (10)

In addition, we let CO = 0 if O = ∅. Notice that Ci or CO
is just the Chernoff information [19, Corollary 3.4.6], which
can be written as

Ci = − inf
w∈R

log

∫
R
ewλi(yi)dνi(yi),

CO = − inf
w∈R

log

∫
R|O|

ew
∑

i∈O λi(yi)
∏
i∈O

dνi(yi),

respectively.
Let H be the set of sensors such that

H = arg min
{O:|O|≥(m−2n)+}

CO, (11)

where (m− 2n)+ = max(m− 2n, 0) with the understanding
that if (m − 2n)+ = 0, H = ∅. Roughly speaking, M \
H provides the best information quality among the sets that
consist of no more than 2n sensors, and, thus, will be attacked
by the adversary. Therefore, the sensors in H, which are less
informative, will not be attacked by the adversary.

We now present the equilibrium attack strategy g∗. Let
I ′, I ′′ ⊂M\H be two sets such that I ′ ∪I ′′ =M\H. The
attack strategy g∗ is as follows.
(i). When θ = 0, sensors in I ′ are compromised and the

distributions are flipped, i,e., the measurements of sensor
i in I ′ are i.i.d. as µi.

(ii). When θ = 1, sensors in I ′′ \I ′ are compromised and the
distributions are flipped, i.e., the measurements of sensor
i in I ′′ \ I ′ are i.i.d. as νi.

We then present the equilibrium detection strategy f∗: at
each time k, it is implemented as follows:

1) Compute the empirical mean of the likelihood ratio from
time 1 to time k for each sensor i:

λ̄i(k) ,
k∑
t=1

λi(ỹi(t))/k

=
k − 1

k
λ̄i(k − 1) +

1

k
λi(ỹi(k)) (12)

with λ̄i(0) = 0.
2) Compute I0,i(λ̄i(k)) and I1,i(λ̄i(k)) for each i. Then

compute the following quantities:

δ(0, k) , min
O⊂M,|O|=m−n

∑
i∈O

I0,i(λ̄i(k)), (13)

δ(1, k) , min
O⊂M,|O|=m−n

∑
i∈O

I1,i(λ̄i(k)). (14)

3) If δ(0, k) ≤ δ(1, k), make a decision θ̂ = 0; make a
decision θ̂ = 1 otherwise.

We are ready to present the main result and the proof is
presented in Appendix A.

Theorem 3. The system’s strategy f∗ and the attacker’s
strategy g∗ have the following properties:

1) The pair (f∗, g∗) is a Nash equilibrium of the game G,
i.e., the following holds: for any system strategy f and
attack strategy g,

ρ(f, g∗) ≤ ρ(f∗, g∗) ≤ ρ(f∗, g).

2) ρ(f∗, g∗) = CH.

It is well known that ρ(f, g) = CH for any equilibrium
of strategy profile (f, g) since G is a two-player zero-sum
game [20]. Therefore, we adopt CH as the performance metric.
This performance metric is reasonable since: 1) an intelligent
and malicious adversary will launch the most dangerous at-
tacks. 2) CH is the best performance the system can achieve
when faced with the worst-case n-sparse attack.

Remark 1. Notice that in the equilibrium attack strategy g∗,
the attacker confines itself to compromising the sensors in the
setM\H and does not attack the sensors in H at all. Notice
also that under g∗, the compromised sensors generate i.i.d.
measurements, though we do not restrict the statistical pattern
of a possible attack strategy. This is in accordance with the
intuition that a powerful attacker would make the compromised
sensors generate measurements with an identical distribution
under two hypotheses, and, thus, provide no information to a
detection system. Under attack strategy g∗, the measurements
of the sensor i in I ′ (I ′′ \I ′, respectively) are i.i.d. as µi (νi,
respectively) whatever θ is.

Remark 2. The computational complexity of steps 1) and 2)
of f∗ is O(m) and O(m log(m)), respectively. To compute
δ(0, k), one can first sort I0,i(λ̄i(k)) in ascending order
and then sum the first m − n elements. The quantity δ(1, k)
can be computed similarly. Therefore, the total computational
complexity for each time step is O(m logm).

Remark 3. Notice that when n ≥ m/2, ρ(f∗, g∗) = CH = 0
holds. In other words, when not less than half of the total
sensors are compromised, the detection system would be
blind. Such “breakdown at 1/2” phenomenon actually exist
pervasively in literature that assume a fusion center processing
information collected from possible Byzantine sensors, e.g.,
binary hypothesis testing [9], [10], state estimation [2], [16]–
[18], and quickest change detection [15]. This is in accordance
with the intuition that an attack capable of compromising n
sensors will make 2n sensors behave the same under two
different states, hence, provide no information.

V. SENSOR DEPLOYMENT STRATEGY

In this section, we address the following problem: with a
fixed sensor cost budget, how to deploy sensors such that the
resulting CH is maximized. The problem is formulated and
is difficult to solve. We thus provide two heuristics: 1) We
relax CO to its upper bound

∑
i∈O Ci and solve the problem

using a group of unbounded knapsack problems (UKPs). This
relaxation is indeed exact in certain scenarios, for which
sufficient conditions and examples are given. 2) We consider
using identical sensors and prove that the performance metric
gap between the optimal sensor deployment and the optimal
identical sensor deployment is within a fixed constant for any
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cost budget. We also show that how the results obtained in
the above two approximate algorithms can be leveraged to
reduce the computation burden of obtaining the optimal sensor
deployment strategy.

Let s ∈ N+ be the number of the types of available sensors.
For simplicity, it is assumed that the number of each type of
available sensors is unlimited. Let d ∈ Ns denote the sensor
deployment strategy with dp being the number of the p-th type
of sensors deployed. Given a sensor deployment strategy d,
C(d) denotes its associated CH introduced in Section IV.

For a sensor of p-th type, we use the Chernoff information
defined in (10), denoted by cp2, to quantify its contributions.
The costs of a p-th type of sensor (e.g., manufacturing cost and
deployment cost) is denoted by up. In the sequel, we assume

Assumption 5.
1) If up ≥ uq , then cp ≥ cq for any 1 ≤ p, q ≤ s.
2) Without loss of any generality, assume that u1 ≤ u2 ≤
· · · ≤ us.

The above assumption indicates that: “better” sensors incur
more costs. Let U be the sensor cost budget. Define DU as
the set of admissible sensor deployment strategies:

DU , {d ∈ Ns :

s∑
p=1

dpup ≤ U}. (15)

The problem of interest then can be formalized as follows:

(P1) max
d

C(d)

subject to d ∈ DU

A. Unbounded Knapsack Problems Formulation

The main difficulty with the problem (P1) lies in the
complicated expression of C(d). To circumvent this, we adopt
the following approximation:

CO ≈
∑
i∈O

Ci, (16)

where Ci and CO are defined in (10). By the following
theorem, we know that adopting the approximation in (16)
will maximize a upper bound of C(d).

Theorem 4. It always holds that

CO ≤
∑
i∈O

Ci. (17)

If for any i and j in a index set O, the following equality
holds:

I
(1)
0,i (0) = I

(1)
0,j (0) (18)

then we have

CO =
∑
i∈O

Ci. (19)

2This is different from Ci, which denotes the Chernoff information of the
i-th sensor (instead of i-th type of sensor) of a bunch of deployed sensors.

Proof. Since the observations of different sensors are indepen-
dent, one has that for any w ∈ R, M0,O(w) =

∏
i∈OM0,i(w).

Therefore

CO = sup
w∈R

{
−
∑
i∈O

logM0,i(w)
}

≤
∑
i∈O

sup
w∈R
{− logM0,i(w)} =

∑
i∈O

Ci, (20)

which proves (17). Furthermore, notice that

I
(1)
0,i (0) = arg sup

w∈Rn

{− logM0,i(w)}. (21)

Then if (18) holds, the inequality in (20) becomes equality,
which proves (19).

Remark 4. Notice that if there exists “symmetry” between
distribution µi and νi, then I

(1)
0,i (0) = 0.5 holds for any

i [13] and, therefore, (19) holds. The symmetry is formalized
as follows: if for each sensor i, there exists a constant ai such
that for any Borel measurable set A, we have

µi(ai +A) = νi(ai −A).

One example of the symmetric distribution arises in detecting
the mean shift in Gaussian noises. Specifically, each yi(k)
satisfies the following equation:

yi(k) = aiθ + vi(k),

where ai 6= 0 and vi(k) ∼ N (v̄i, σ
2
i ) is i.i.d. Gaussian

distributed.

Under the approximation in (16) and Assumption 5, an
explicit expression of C(d) can be obtained. To this end, for
any sensor deployment strategy d, let τ(d) be the type of its
(2n+ 1)-th best sensor, i.e., τ(d) is chosen such that:

s∑
p=τ(d)+1

dp ≤ 2n,
s∑

p=τ(d)

dp > 2n. (22)

Further define φ(d) as the number of the remaining τ(d)-th
type of sensors after “removing” the 2n best sensors, i.e.,

φ(d) ,
s∑

p=τ(d)

dp − 2n. (23)

Then one verifies that the problem (P1) can be transformed
to:

(P2) max
d

τ(d)−1∑
p=1

dpcp + φ(d)cτ(d)

subject to d ∈ DU
The above problem is still quite complicated to solve since
τ(d) is nonconvex with respect to dp. In the following, we
transform it equivalently to a group of UKPs. With Assump-
tion 5, one easily obtains the following lemma:

Lemma 1. If d is a solution to problem (P2), then the
following d′ is also a solution:

d′p = dp, for 1 ≤ p ≤ τ(d)− 1 (24)

d′τ(d) = φ(d) + 2n (25)

d′p = 0, for p ≥ τ(d) + 1 (26)
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The intuition of Lemma 1 is as follows. The 2n most expen-
sive sensors will not contribute to the detection performance.
Therefore, we should choose them to be as cheap as possible
in the sense that they are the same as the (2n + 1)-th most
expensive one.

For 1 ≤ q ≤ s, suppose that the 2n most expensive sensors
are of the q-th type, then Lemma 1 gives that (P2) can be
transformed to

Cq ,max
d

q−1∑
p=1

dpcp + (dq − 2n)cq

s.t. dp = 0, for p > q, and dq ≥ 2n

d ∈ DU .

Now to obtain the optimal solution to (P2), we enumerate q
over {1, . . . , s} to find the maximum Cq .

Remark 5. Notice that obtaining Cq is an UKP, which can
be solved using dynamic programming or branch and bound
techniques. The computational complexity of a dynamic pro-
gramming approach is O(qU). The computational complexity
of obtaining the maximal one among {Cq}1≤q≤s is O(s).
Therefore, the total computational complexity of obtaining the
optimal solution of (P2) is O(s2U).

In the following, we provide a sufficient condition under
which the strategy obtained by the above UKP algorithm is
indeed optimal.

Proposition 1. Let dukp be the solution to (P2). If (18) holds
for any i, j in the set supp(dukp), then dukp is also the solution
to (P1).

Proof. Given a sensor deployment strategy d, we denote by
C(d) the objective function in (P2), i.e.,

C(d) ,
τ(d)−1∑
p=1

dpcp + φ(d)cτ(d). (27)

Then from the definition of C(d) and (17), it follows that for
any strategy d:

C(d) ≤ C(d). (28)

Moreover, since (18) holds for any i, j in the set supp(dukp),
then by Theorem 4, one obtains that

C(dukp) = C(dukp). (29)

Notice also that dukp is the solution to (P2), i.e., for any
admissible strategy d ∈ DU , there holds

C(d) ≤ C(dukp). (30)

Then combing (28)–(30), one concludes Proposition 1.

In practice, instead of computing the optimal algorithm for
(P1) directly, which is computation-heavy, one may first obtain
the strategy dukp and check whether it is optimal based on the
above proposition. Notice that if dukp only contain one type
of sensors, it will surely satisfy the condition and be optimal.

However, in principle the performance gap between dukp

and the solution to (P1) can not be assured. To this end, we

propose another heuristic algorithm in the next subsection.
Nevertheless, we shall show later in Sections V-C and VI
that dukp will help reduce the search space in computing the
solution to (P1) significantly.

B. Identical Sensors

In this section, we propose a different heuristic and prove
that the performance metric gap between the optimal sensor
deployment and the optimal one with sensors being identical
is within a fixed constant for any cost budget. Notice that the
results in this subsection do not rely on the approximation
in (16).

Let dop be the solution to (P1) and dide the optimal identical
sensors deployment strategy. Then we have the following
theorem and the proof is presented in Appendix B.

Theorem 5. For any U ≥ 0, there holds C(dide) > C(dop)−
cp∗, where p∗ , arg max1≤p≤s cp/up.

Notice that the optimal identical sensors deployment strat-
egy dide can be obtained by solving

max
p∈{1,...,s}

(bU/upc − 2n)cp,

the computational complexity of which is O(s).

C. Further Discussions

In this subsection, we show how dukp and dide can be
utilized to reduce the burden of computing dop. In particular,
given a strategy d ∈ DU , to compute its performance C(d),
one need to compute the Chernoff information for every
possible set of sensors that is obtained by removing 2n sensors,
which is of combinatorial nature and is computation-heavy.
Therefore, it would be greatly beneficial to prune the set DU .
In the following, we provide some necessary conditions that an
optimal sensor deployment strategy should satisfy, by which
the set DU can be pruned. Our simulations in the next section
show that this pruning is indeed significant.

Proposition 2. The optimal strategy dop should satisfy the
following:

1)
∑s
p=1 d

op
p upg > U − u1.

2) C(dop) ≥ max{C(dukp), C(dide)}.

Proof.
1) Since if

∑s
p=1 dpupg ≤ U − u1, then one may just

deploy one more sensor of type 1. The resulting perfor-
mance would be better.

2) This directly follows from (28) and the fact the optimal
performance is lower bounded by C(dukp) and C(dide).

VI. NUMERICAL EXAMPLES

Example 1. We show that ρ(f∗, g∗) = CH holds. To this end,
we assume that there are totally m = 10 sensors deployed.
The first 5 sensors are of the same type: the observations
are Bernoulli distributed under each hypothesis, i.e., P0(yi =
1) = 0.2 and P1(yi = 1) = 0.6. The remaining 5 sensors also
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have Bernoulli distributed observations: P0(yi = 1) = 0.2
and P1(yi = 1) = 0.8. We let n vary from 1 to 4 and simulate
ρ(f∗, g∗). To simulate the performance with high accuracy,
we adopt the importance sampling approach [21]. The results
are given in Table I, where the simulated ρ(f∗, g∗) is quite
close to CH.

TABLE I: ρ(f∗, g∗) and CH for different n.

n CH ρ(f∗, g∗)
1 1.1297 1.1294
2 0.6835 0.6831
3 0.3685 0.3683
4 0.1842 0.1841

Example 2. In this example, we assume there are three
different types of sensors, the details of which are summarized
in Table II. It is assumed that n = 3 and 200 different
valued U are randomly chosen from in [10, 350]. In Fig. 1, we

TABLE II: Information of sensors.

type P0(yi = 1) P1(yi = 1) c I
(1)
0,i (0) u c/u

1 0.2 0.8 0.2231 0.5 1.5 0.1487
2 0.8 0.15 0.2762 0.49 1.7 0.1625
3 0.05 0.65 0.2832 0.56 1.8 0.1573

plot performance of different deployment strategies: dukp the
solution to (P2), dide the optimal identical sensor deployment
strategy, and dop the solution to (P1). To make the simulation
results clearer, the performance gap is also illustrated. One
may see that both C(dukp) and C(dide) are quite close to
C(dop) for every cost budget U . In particular, the performance
gap between dide and dop satisfies:

C(dop)− C(dide) < 0.25 < cp∗ = 0.2762,

which verifies Theorem 5.
Given a cost budget U , to obtain the optimal sensor de-

ployment strategy dop, instead of computing the performance
C(d) for every strategy d in DU , we leverage dukp and dide as
in Propositions 1 and 2. The numbers of remaining strategies
needed to evaluate after the optimality check of dukp and the
pruning procedure for different budget U are plotted in Fig. 2.
The numbers are rather small in all cases, and, thus, the
computation complexity is reduced significantly considering
that computing C(d) is quite computation-heavy.

VII. CONCLUSION AND FUTURE WORK

In this paper, we study the sensor deployment strategy in the
context of detection in adversarial environments. The deployed
heterogeneous sensors send measurements to a fusion center to
perform a binary hypothesis testing, among which some may
be compromised by an attacker and their measurements can
be arbitrarily manipulated. We first formulate the detection
with an attacker present as a zero-sum game and present a
Nash equilibrium pair of the detector and attack strategy. A
performance metric is provided as the detection performance
when the equilibrium pair is played. We then assume that the
system manager, with a sensor cost budget, needs to decide
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Fig. 1: Upper: Performance of different sensor deployment
strategies as functions of the total cost budget U . Lower:
Performance gap between dukp (or dide) and dop.
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Fig. 2: Number of remaining sensor deployment strategies that
are required to evaluate after the optimality check of dukp as
in Proposition 1 and the pruning indicated in Proposition 2.
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what sensors to deploy such that the above performance metric
is maximized. The problem is difficult to solve. Therefore, we
provide two heuristics: 1) A upper bound of the performance
metric is used as the objective and the problem is solved by a
group of unbounded knapsack problems (UKPs). We further
give sufficient conditions and examples where the relaxation is
indeed exact. 2) We consider using identical sensors and show
that the performance metric gap between the optimal sensor
deployment and the optimal one with sensors being of same
type is within a fixed constant for any cost budget. Notice that
this result does not rely on the approximation techniques used
in the above UKP formulation. Future works include investi-
gating sensor deployment strategies with Byzantine attacks in
other settings, such as networked estimation and distributed
optimization.

APPENDIX A
THE PROOF OF THEOREM 3

We present two lemmas (i.e., Lemmas 2 and 3) on the
properties of g∗ and f∗, based on which the NE (f∗, g∗) and
the equality ρ(f∗, g∗) = CH are established.

Lemma 2. For any detection strategy f , ρ(f, g∗) ≤ CH holds.

Proof. One obtains that under attack strategy g∗, for either
θ = 1 or θ = 0, sensor i with i ∈ I ′ will follow the distribution
µi and sensor i with i ∈ I ′′ \ Î will follow the distribution νi.
In other words, only sensors in H have different distributions
when θ is different. Notice that when m ≤ 2n, H = ∅, which
means that every sensor will have the exact same distribution
regardless of whether θ = 0 or θ = 1. Therefore, ρ(f, g∗) = 0
for any g.

When m > 2n, consider a detection strategy f† =
(f†1 , f

†
2 , · · · ) as follows3:

f†k(ỹ(k)) =

{
0 if

∑
i∈H λ̄i(k) < 0,

1 if
∑
i∈H λ̄i(k) ≥ 0,

(31)

where λ̄i(k), the empirical mean of the likelihood ratio from
time 1 to time k for each sensor i, is defined in (12). It is well
known from the classical Bayesian detection theory [22] that,
the detector f† is optimal against the attacker’s strategy g∗, in
the sense that for any f :

E0f
†
k(ỹ(k)) +

(
1− E1f

†
k(ỹ(k))

)
≤ E0fk(ỹ(k)) + (1− E1fk(ỹ(k))) , ∀k ≥ 1. (32)

Notice that for any f and k, there holds

log (E0fk(ỹ(k)) + (1− E1fk(ỹ(k))))

≤ log max (E0fk(ỹ(k)), 1− E1fk(ỹ(k))) + log 2.

Therefore, (32) implies that for any f :

lim
k→∞

− log max (E0fk(ỹ(k)), 1− E1fk(ỹ(k)))

k

≤ lim
k→∞

−
log max

(
E0f

†
k(ỹ(k)), 1− E1f

†
k(ỹ(k))

)
k

= CH, (33)

3Notice that f† is only optimal when g∗ is used, and may have poor
performance when another g is used.

where the last equality follows from Cramér’s Theorem.
Therefore, for any f , there holds ρ(f, g∗) ≤ CH, which

completes the proof.

Lemma 3. For any attack strategy g, ρ(f∗, g) ≥ CH holds.

Combining Lemmas 2 and 3, one easily obtains Theorem 3.
The remaining is devoted to the proof of Lemma 3. Notice

that when m ≤ 2n, Lemma 3 is trivial since CH = 0.
Therefore, in the following, we focus on the case where
m > 2n. We first present the following supporting definitions
and lemmas.

Lemma 4.
1) For any O ⊂M, x ∈ Rm and j ∈ {0, 1}, it holds that

Ij,O

(∑
i∈O

xi

)
≤
∑
i∈O

Ij,i(xi). (34)

2) For any O ⊂M, we have the following set inclusions:{
x ∈ Rm :

∑
i∈O

I0,i(xi) < CO

}
⊆
{
x ∈ Rm :

∑
i∈O

xi < 0

}
,

(35){
x ∈ Rm :

∑
i∈O

I1,i(xi) < CO

}
⊆
{
x ∈ Rm :

∑
i∈O

xi > 0

}
.

(36)

Proof.
1) Notice that since all the measurements are independent

from each other (to define Ij,O), we can prove that for any
w ∈ R, Mj,O(w) =

∏
i∈OMj,i(w). Therefore,

Ij,O

(∑
i∈O

xi

)
= sup
w∈R

{∑
i∈O

xiw −
∑
i∈O

logMj,i(w)
}

≤
∑
i∈O

sup
w∈R
{xiw − logMj,i(w)} =

∑
i∈O

Ij,i(xi).

2) We will focus on proving (35), since (36) can be proved
in a similar manner. By (34), it is easy to see that

I0,O(
∑
i∈O

xi) ≤
∑
i∈O

I0,i(xi) < CO

By the definition in (10), I0,O(0) = CO. By Theorem 2, I0,O
is non-decreasing on [−KL(0,O),KL(1,O)], we thus obtain
that

I0,O(
∑
i∈O

xi) < CO ⇒
∑
i∈O

xi < 0.

Let us introduce the following definition:

Definition 1. Let O ⊂M, j ∈ {0, 1}, define a ball as

Balj(O) =
{
x ∈ Rm :

∑
i∈O

Ij,i(xi) < CH

}
.

We further define

EBalj ,
⋃

|O|=m−n

Balj(O).
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We then have the following lemma on the intersections of
balls.

Lemma 5. EBal0
⋂

EBal1 = ∅.

Proof. We will prove that for any O0 and O1 with cardinality
m− n, Bal0(O0)

⋂
Bal1(O1) = ∅. To this end, let us define

O = O0

⋂
O1. Therefore, |O| ≥ m− 2n.

Since each I0,i are non-negative by Theorem 2, if x ∈
Bal0(O0), then∑

i∈O
I0,i(xi) ≤

∑
i∈O0

I0,i(xi) < CH ≤ CO,

where the last inequality is due to the definition of H in (11).
Now by Lemma 4, we know that

∑
i∈O xi < 0. Similarly, one

can prove if x ∈ Bal1(O1), then
∑
i∈O xi > 0. Therefore

Bal0(O0)
⋂

Bal1(O1) = ∅,

which finishes the proof.

We now come to the main body of the proof of Lemma 3.
Let λ̄(k) = (λ̄1(k), . . . , λ̄m(k)), then Lemma 5 means that
for j = {0, 1}, if λ̄(k) ∈ EBalj , i.e., δ(j, k) < CH, then there
holds δ(1− j, k) ≥ CH and, thus, δ(1− j, k) > δ(j, k), where
δ(j, k) is defined in (13) and (14). Therefore,

f∗k (ỹ(k)) =

{
0 if λ̄(k) ∈ EBal0, (37a)
1 if λ̄(k) ∈ EBal1. (37b)

The values of f∗k (ỹ(k)) when λ(k) is not in EBal0 or
EBal1 do not affect the following analysis. Notice that if
x ∈ Balj(M) and ‖x− x′‖0 ≤ n, then

x′ ∈ EBalj , (38)

which implies that if the unmodified (λ̄1, . . . , λ̄m) ∈ Balj(M)
and no more than n sensors are compromised, then the
compromised (λ̄1, . . . , λ̄m) will be in EBalj . One thus obtains
that under any attacks, there holds

lim sup
k→∞

1

k
log P̃0(f∗k = 1)

≤ lim sup
k→∞

1

k
logP0(λ̄k ∈ Rm \ Bal0(M))

≤ − inf
x∈Rm\Bal0(M)

m∑
i=1

I0,i(xi)

= −CH, (39)

where the first inequality follows from (37a) and (38); the
second inequality holds because of the multi-dimensional
Cramér’s Theorem, and the fact that Rm \Bal0(M) is closed
and the observations at different sensors are independent.

Similarly, one obtains that under any attacks, there holds

lim sup
k→∞

1

k
log P̃1(f∗k = 0) ≤ −CH. (40)

Combing (39) and (40), one concludes Lemma 3.

APPENDIX B
THE PROOF OF THEOREM 5

Given the optimal solution dop, define its most “economi-
cal” type of sensor to be

p∗(dop) , arg max
p≤τ(dop)

cp/up,

where the function τ(·) is defined in (22). With abuse of nota-
tion, we use p∗(dop) to emphasize its dependence on the strat-
egy used dop, which is contrasted with the universally most
economical type p∗ defined in Theorem 5. We create a strategy
d′ using identical sensors. Let d′p∗(dop) = bU/up∗(dop)c with
other elements of d′ being zero. In the following, we derive
the performance gap between d′ and dop.

Notice that we assume u1 ≤ u2 ≤ · · · ≤ us. Since none
of the best 2n sensors in strategy dop is cheaper than uτ(dop)
and hence up∗(dop), one obtains that

(U/up∗(dop) − 2n)up∗(dop) ≥
τ(dop)−1∑
p=1

dopp up + φ(dop)uτ(dop),

(41)

where the function φ(·) is defined in (23). Multiplying both
sides of (41) by cp∗(dop)/up∗(dop), we get

(U/up∗(dop) − 2n)cp∗(dop) ≥
τ(dop)−1∑
p=1

dopp cp + φ(dop)cτ(dop),

(42)

where we use the fact that p∗(dop) is the most “economical”
type of sensors. Furthermore, it follows from (17) that

τ(dop)−1∑
p=1

dopp cp + φ(dop)cτ(dop) ≥ C(dop). (43)

Notice also that homogeneity of d′ yields that

C(d′) = (bU/up∗(dop)c − 2n)cp∗(dop)

≥ (U/up∗(dop) − 2n)cp∗(dop) + cp∗(dop)

Combining (42) and (43), one obtains that C(d′) > C(dop)−
cp∗(dop). Furthermore, it follows from the definitions of
p∗(dop) and p∗ that p∗(dop) ≤ p∗ and, thus, cp∗(dop) ≤ cp∗ .
Notice also that C(dide) ≥ C(d′) holds by the optimality of
dide among strategies that only use identical sensors. One thus
concludes the proof.
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