Secure Detection in Adversarial Environments: the Price of Security

Xiaoqiang Ren

School of EEE Nanyang Technological University, Singapore

Joint work with Jiaqi Yan and Yilin Mo

Xiaoqiang Ren (NTU)

Secure Detection

November 16, 2017 1 / 26

Outline

1 Research Background: CPS Security

2 Trade-off Between Efficiency and Security

3 Conclusion

3

イロト イヨト イヨト

Cyber-Physical System

• Cyber-Physical System (CPS) refers to the embedding of computation, communication and control into physical spaces.

 Applications: aerospace, chemical processes, civil infrastructure, manufacturing, transportation, internet of things.

Xiaoqiang Ren (NTU)

Secure Detection

November 16, 2017 3 / 26

Security Threats for the CPS

Extensive use of widespread sensing and networking makes the CPSs vulnerable to malicious attacks.

- 1 Devices have low computation capability
- 2 Legacy hardware and software: not designed with security in mind
- **3** Complex interaction between the physical space and cyber space
- CPS cannot be shutdown easily during the attack: economical reasons, inertia, ...
- **6** Critical CPS requires high reliability/provable performance

6 . . .

(日) (周) (三) (三)

Research Background: CPS Security

Stuxnet

Stuxnet is the first discovered malware that spies on and subverts industrial control systems. It was discovered in June 2010.

(日) (同) (三) (三)

2015 Ukraine Power Outage

Figure: A successful attack on CPS can have devastating effects.

Industrial Control Systems

Figure: Reported Number of ICS Incidents by Fiscal Year

In FY 2016, ICS-CERT (Industrial Control Systems Cyber Emergency Response Team) received and responded to 290 incidents as reported by asset owners and industry partners.

Hardening CPS Security using Control Theory

- System Modelling
- Attack Modelling
- Intrusion Detection and Isolation
- Resilient Algorithm Design
- Fundamental Limitations
- Security Investment
- . . .

Outline

1 Research Background: CPS Security

2 Trade-off Between Efficiency and Security

Conclusion

3

(日) (同) (三) (三)

Binary Hypothesis Testing Under Attack

- Up to *n* sensors' measurements arbitrarily manipulated
 - 1 Compromising the sensors' hardware/software
 - **2** Hijacking the communication from sensors
 - 3 Physical attacks
- The system knows *n*, but does not know what sensors are compromised.

Motivating Example: Classic Probability Ratio Test

• At each time k, classic probability ratio test runs as

$$\theta = \begin{cases} 0 & \text{if } \sum_{t=1}^k \sum_{i=1}^m L(\tilde{y}_i(t)) \leq 0\\ 1 & \text{if } \sum_{t=1}^k \sum_{i=1}^m L(\tilde{y}_i(t)) > 0, \end{cases}$$

where $L(\tilde{y}_i(k))$ is the log-likelihood ratio.

Optimal without attacks

Motivating Example: Classic Probability Ratio Test

• At each time k, classic probability ratio test runs as

$$\theta = \begin{cases} 0 & \text{if } \sum_{t=1}^k \sum_{i=1}^m L(\tilde{y}_i(t)) \leq 0\\ 1 & \text{if } \sum_{t=1}^k \sum_{i=1}^m L(\tilde{y}_i(t)) > 0, \end{cases}$$

where $L(\tilde{y}_i(k))$ is the log-likelihood ratio.

Optimal without attacks

not secure at all

Xiaoqiang Ren (NTU)

Secure Detection

Motivating Example: Trimmed Mean Algorithm

- At each time k, trimmed mean algorithm runs as
 - Remove the measurements with the largest n and smallest n log-likelihood ratios;
 - 2 Apply classic probability ratio test to the remaining m 2n data

Motivating Example: Trimmed Mean Algorithm

- At each time k, trimmed mean algorithm runs as
 - Remove the measurements with the largest n and smallest n log-likelihood ratios;
 - 2 Apply classic probability ratio test to the remaining m 2n data

too conservative?

Tradeoff Between Security and Efficiency

• Security: The performance of the information fusion algorithm when under attack

$$\liminf_{k \to \infty} - \frac{\log \max_{g, \theta} \Pr(f_k \neq \theta | \theta)}{k}$$

• Efficiency: The performance of the fusion algorithm when all sensors are benign.

$$\liminf_{k \to \infty} -\frac{\log \max_{\theta} \Pr(f_k \neq \theta | \theta)}{k}$$

• What is best achievable trade-off between security and efficiency?

Main Results

Xiaoqiang Ren (NTU)

Proofs of Upper Bounds

- The best achievable efficiency is *mC*.
 - Classic probability ratio test

3

Image: A match a ma

Proofs of Upper Bounds

- The best achievable efficiency is mC.
 - Classic probability ratio test
- The best achievable security is (m-2n)C.
 - The achievability is deferred
 - The limit is shown by construct the following attack strategy.

$$\begin{aligned} \theta &= 0: & \blacktriangle & \neg & \diamond & \neg & \diamond & \neg & \diamond \\ & & & & & & & & & & & & \\ \theta &= 1: & & & & & & & & & & & & & & & \\ \end{array}$$

green/red: healthy/compromised sensors circle/triangle: different distributions

Fundamental Limits of Trade-off

• Consider the following two hypotheses:

Suppose that we aim to find a detector such that the following is minimized.

$$\Pr(f = 1|0) + \phi \Pr(f = 0|1).$$

• Bayesian detection theory \implies fundamental relation between $\Pr(f = 1|0)$ and $\Pr(f = 0|1)$.

Fundamental Limits of Trade-off

• Consider the following two hypotheses:

Suppose that we aim to find a detector such that the following is minimized.

$$\Pr(f = 1|0) + \phi \Pr(f = 0|1).$$

- Bayesian detection theory \implies fundamental relation between $\Pr(f = 1|0)$ and $\Pr(f = 0|1)$.
- Efficiency $\leq \Pr(f = 1|0)$, Security $\leq \Pr(f = 0|1)$

イロト 不得下 イヨト イヨト

Fundamental Limits of Trade-off

• Consider the following two hypotheses:

Suppose that we aim to find a detector such that the following is minimized.

$$\Pr(f = 1|0) + \phi \Pr(f = 0|1).$$

- Bayesian detection theory \implies fundamental relation between $\Pr(f = 1|0)$ and $\Pr(f = 0|1)$.
- Efficiency $\leq \Pr(f = 1|0)$, Security $\leq \Pr(f = 0|1)$
- Vary ϕ

イロト イポト イヨト イヨト

Trade-off Between Efficiency and Security

Fundamental Limits of Trade-off: Cont'd

• Consider the following two hypotheses:

3

(日) (同) (三) (三)

Achievability

There exists algorithms achieving the limits, i.e., the limit is tight.

- **1** Each of the *m* measurements is mapped to *nonnegative* numbers by two functions I_0, I_1 .
- 2 If there are m n values of I_0 whose sum is "small" enough, then choose $\hat{\theta} = 0$.
- **3** If there are m n values of l_1 whose sum is "small" enough, then choose $\hat{\theta} = 1$.
- ④ Compare the average of log-likelihood ratios with 0 to decide if $\hat{\theta} = 0$ or 1.

3

(日) (周) (三) (三)

Intuitions of the Algorithm

• Nonnegative mapping.

• Safe kernel

Xiaoqiang Ren ((NTU))
-----------------	-------	---

Gaussian Cases

- The best security (m 2n)C and the best efficiency mC are achieved simultaneously
- Security is cost-free
 - Somputational burden: O(m) versus $O(m \log m)$
- More than Gaussian: "symmetric" distributions. There exists a constant *a* such that for any Borel measurable set *A*,

$$\mu(\mathbf{a} + \mathcal{A}) = \nu(\mathbf{a} - \mathcal{A}).$$

Non-Asymptotic Performance

- 一司

-

3

Secure Sensors

- A subset of sensors are well protected and cannot be compromised.
- Trade-offs?
- Similar ideas to prove limits and design algorithm?

Fundamental Trade-off when There are Secure Sensors

m_s normal sensors are replaced with secure ones.

- 2n ≤ m − m_s: nothing affected
 If the redundancy of the m − m_s normal sensors is enough
- 2n > m − m_s: the trade-off limit remains, and the maximum security level is increased from max(0, (m − 2n)C) to m_sC
- Do nothing or secure more than m 2n sensors

Detection Algorithm when There are Secure Sensors

- **1** Mapping by nonnegative functions I_0, I_1 .
- 2 Sum I_0 of the m_s secure sensors and any $m m_s n$ of I_0 of the $m m_s$ normal sensors, if there exist one "small" enough, then choose $\hat{\theta} = 0$.
- **3** Sum I_1 of the m_s secure sensors and any $m m_s n$ of I_1 of the $m m_s$ normal sensors, if there exist one "small" enough, then choose $\hat{\theta} = 1$.
- Compare with 0.

Conclusion

- We indeed can design algorithms that perform "well" whether or not the attacker is present
- In some cases, the cost of security is zero

Thank you for your time!

3