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@ Research Background: CPS Security
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Cyber-Physical System

o Cyber-Physical System (CPS) refers to the embedding of
computation, communication and control into physical spaces.

Physical Space

e Applications: aerospace, chemical processes, civil infrastructure,
manufacturing, transportation, internet of things.
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Security Threats for the CPS

Extensive use of widespread sensing and networking makes the CPSs
vulnerable to malicious attacks.

@ Devices have low computation capability
® Legacy hardware and software: not designed with security in mind
©® Complex interaction between the physical space and cyber space

O CPS cannot be shutdown easily during the attack: economical
reasons, inertia, ...

@ Critical CPS requires high reliability /provable performance
0 ...
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Stuxnet

Stuxnet is the first discovered malware that spies on and subverts
industrial control systems. It was discovered in June 2010.
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2015 Ukraine Power Outage
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Figure: A successful attack on CPS can have devastating effects.
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Industrial Control Systems

300

200 - 2
100 ] 2
0

2012 2013 2014 2015 2016

Figure: Reported Number of ICS Incidents by Fiscal Year

In FY 2016, ICS-CERT (Industrial Control Systems Cyber Emergency
Response Team) received and responded to 290 incidents as reported by
asset owners and industry partners.
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Hardening CPS Security using Control Theory

System Modelling
Attack Modelling

Intrusion Detection and lIsolation

Resilient Algorithm Design

Fundamental Limitations

Security Investment
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Trade-off Between Efficiency and Security
Outline

® Trade-off Between Efficiency and Security
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Binary Hypothesis Testing Under Attack
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e Up to n sensors’ measurements arbitrarily manipulated

@® Compromising the sensors’ hardware/software
@® Hijacking the communication from sensors
© Physical attacks

e The system knows n, but does not know what sensors are
compromised.
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Motivating Example: Classic Probability Ratio Test
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e At each time k, classic probability ratio test runs as

0 — {0 if th(:l Y Lmi(t) <o
1if Yoy S L(3i(t) > 0,

where L(¥i(k)) is the log-likelihood ratio.
1 Optimal without attacks
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Motivating Example: Classic Probability Ratio Test
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o At each time k, classic probability ratio test runs as
. k ~
0 — 0 if Yop 2 L(Fi(t) <0
- . k ~
1oif 3000 2 Li(t) > O,
where L(¥i(k)) is the log-likelihood ratio.
== Optimal without attacks
not secure at all
Secure Detection November 16, 2017 11 /26



Motivating Example: Trimmed Mean Algorithm

n(k) % yi(k)
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e At each time k, trimmed mean algorithm runs as

@ Remove the measurements with the largest n and smallest n
log-likelihood ratios;
@ Apply classic probability ratio test to the remaining m — 2n data
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Motivating Example: Trimmed Mean Algorithm

e At each time k, trimmed mean algorithm runs as

@ Remove the measurements with the largest n and smallest n
log-likelihood ratios;
@® Apply classic probability ratio test to the remaining m — 2n data

too conservative?
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Tradeoff Between Security and Efficiency

e Security: The performance of the information fusion algorithm when
under attack

Fminf log maxg g Pr(fi # 0]6)

k—o0 k

o Efficiency: The performance of the fusion algorithm when all sensors
are benign.

fminf — log maxg Pr(fx # 0|0)

k—o0 k

e What is best achievable trade-off between security and efficiency?
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Trade-off Between Efficiency and Security
Main Results

Security

Efficiency
C: biggest contribution that one healthy sensor can provide
. log maxg Pr(f} # 0|0
C 2 liminf 08 M2* Prlfi 7 619)
k—o00 k
where f* is the classic probability ratio test.
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Proofs of Upper Bounds

e The best achievable efficiency is mC.
e Classic probability ratio test
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Proofs of Upper Bounds

e The best achievable efficiency is mC.
e Classic probability ratio test
e The best achievable security is (m — 2n)C.

e The achievability is deferred
e The limit is shown by construct the following attack strategy.

0=0: A-A®-00-@
nlln
0=1: HHAA

green/red: healthy/compromised sensors
circle/triangle: different distributions
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Trade-off Between Efficiency and Security

Fundamental Limits of Trade-off

e Consider the following two hypotheses:

0: 0-00-~0C0-0
n

1: O~OA=MA-A

Suppose that we aim to find a detector such that the following is
minimized.
Pr(f =1|0) + ¢ Pr(f = 0[1).
e Bayesian detection theory = fundamental relation between
Pr(f = 1|0) and Pr(f = 0[1).
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Trade-off Between Efficiency and Security

Fundamental Limits of Trade-off

e Consider the following two hypotheses:

0: 0-00-~0C0-0
n

1: O-OA-AA-A
Suppose that we aim to find a detector such that the following is
minimized.
Pr(f =1|0) + ¢ Pr(f = 0[1).
e Bayesian detection theory = fundamental relation between
Pr(f = 1|0) and Pr(f = 0[1).
e Efficiency < Pr(f = 1|0), Security < Pr(f =0|1)
e Vary ¢
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Fundamental Limits of Trade-off: Cont'd

o Consider the following two hypotheses:

0: A-AO-CO-O
n

1: A=DA-DA-A
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Achievability

There exists algorithms achieving the limits, i.e., the limit is tight.

@® Each of the m measurements is mapped to nonnegative numbers by
two functions /o, /1.

@ If there are m — n values of Iy whose sum is “small” enough, then
choose 8 = 0.

© If there are m — n values of /; whose sum is “small” enough, then
choose 0 = 1.

O Compare the average of log-likelihood ratios with 0 to decide if 6=0
or 1.
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Intuitions of the Algorithm

e Nonnegative mapping.

e Safe kernel
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Gaussian Cases

e The best security (m — 2n)C and the best efficiency mC are achieved
simultaneously

e Security is cost-free
= Computational burden: O(m) versus O(mlog m)

e More than Gaussian: “symmetric” distributions. There exists a
constant a such that for any Borel measurable set A,

ua+ A) = v(a— A).
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Trade-off Between Efficiency and Security

Non-Asymptotic Performance
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Secure Sensors

e A subset of sensors are well protected and cannot be compromised.
e Trade-offs?

e Similar ideas to prove limits and design algorithm?
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Fundamental Trade-off when There are Secure Sensors

ms normal sensors are replaced with secure ones.
e 2n < m — mg: nothing affected
= The redundancy of the m — ms normal sensors is enough

e 2n > m — mg: the trade-off limit remains, and the maximum security
level is increased from max(0, (m — 2n)C) to msC

1 Do nothing or secure more than m — 2n sensors
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Trade-off Between Efficiency and Security

Detection Algorithm when There are Secure Sensors

@® Mapping by nonnegative functions Iy, /1.

® Sum Iy of the ms secure sensors and any m — ms — n of Iy of the
m — mg normal sensors, if there exist one “small” enough, then
choose § = 0.

©® Sum /1 of the m, secure sensors and any m — ms — n of I of the
m — ms normal sensors, if there exist one “small” enough, then
choose 6 = 1.

® Compare with 0.
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Conclusion

e We indeed can design algorithms that perform “well” whether or not
the attacker is present

e In some cases, the cost of security is zero
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Conclusion

Thank you for your timel!
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