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a b s t r a c t

This paper considers a remote state estimation problem, where a sensor measures the state of a linear
discrete-time system. The sensor has computational capability to implement a local Kalman filter. The
sensor-to-estimator communications are scheduled intentionally over a finite time horizon to obtain
a desirable tradeoff between the state estimation quality and the limited communication resources.
Compared with the literature, we adopt a Gaussianity-preserving event-based sensor schedule bypassing
the nonlinearity problem met in threshold event-based polices. We derive the closed-form of minimum
mean-square error (MMSE) estimator and show that, if communication is triggered, the estimator cannot
do better than the local Kalman filter, otherwise, the associated error covariance, is simply a sum of the
estimation error of the local Kalman filter and the performance loss due to the absence of communication.
We further design the scheduler’s parameters by solving a dynamic programming (DP) problem. The
computational overhead of the DP problem is less sensitive to the system dimension compared with that
of existing algorithms in the literature.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of controlled communication for the state es-
timation of a dynamical system has been prevailing in recent
years. Controlled communication in general refers to reducing the
communication rate intentionally to obtain a desirable tradeoff
between the state estimation quality and the limited communi-
cation resources. This is rooted in the fact that the communica-
tion between the wireless sensors and the estimator at full rate
is unlikely to occur for most practical applications. For instance,
since the sensors are usually battery-powered and sparsely de-
ployed, the replacement of onboard battery is not possible in
most occasions. Reducing the communication rate is reasonably an
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alternative approach to resolve the energy saving problem. An-
other incentive for controlled communication is to avoid traffic
congestion of the network shared by a vast number of sensors.

Estimation error covariance is most widely used for measuring
the estimation quality. Tominimize inevitable enlarged estimation
error covariance due to the reduced communication rate, a
communication scheduling strategy for a sensor is needed. Yang
and Shi (2011) provided an insight that communications should be
initiated periodically ormore generally, as uniformly as possible, to
minimize the average error covariance. For the so-called variance-
based triggered scheduling in Trimpe and D’Andrea (2014),
covariance recursion asymptotically converges to a periodic one.
Informally, purely using the information in the error covariance is
likely to lead to a periodic communication schedule. Another line
of research direction such as Han, Cheng, Chen, and Shi (2013),
Shi, Chen, and Darouach (2016), Shi, Chen, and Shi (2015) and
Shi, Elliott, and Chen (2016) is the event-based sensor scheduling,
where communication is triggered by a certain event defined on
the systemstate. Threshold event-based communication schedules
have been proposed by Battistelli, Benavoli, and Chisci (2012),
Lipsa and Martins (2011), Molin (2014), Wu, Jia, Johansson, and
Shi (2013) and Xu and Hespanha (2005), in different contexts
but can hardly generate closed-form of the minimum mean-
square error (MMSE) estimates. To obtain a tractable and simple
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estimator, Han et al. (2015) proposed a stochastic event-based
mechanism, bypassing the nonlinear problem met in threshold
event-based policies.

In thisworkwe focus on a finite-horizon sensor communication
scheduling problem. The sensor, as a smart one, has computational
capability to implement a local Kalman filter. The utilization of
the onboard computation unit has been shown to help improve
estimation performance (Hovareshti, Gupta, & Baras, 2007). To
alleviate the degradation of estimation performance, we adopt
an event-based sensor scheduling mechanism. The benefit we
obtain from this type of mechanisms is attributed to the fact
that the absence of triggering provides side information to the
estimator. If we pursue an optimal event-based law, it is very
likely that the Gaussianity of the conditional distribution in
the system state will be destroyed, for which no closed-form
expression of the MMSE estimate can be derived. The distribution
propagation turns out to be computationally costly under non-
Gaussian circumstances. In summary, the information contained
in the absence of triggering, on one hand, mitigates the Kalman
filtering’s performance degradation, but on the other hand, may
cause difficulty in computing distribution propagation. To tackle
the challenge, in this paperwe introduce a similar stochastic event-
based mechanism used in Han et al. (2015). Compared with Han
et al. (2015), the contribution of this paper is summarized as
follows:

(1) We use a simple static parameter estimation example to
motivate the stochastic event-based scheduling policy. In the
example, the stochastic strategy maintains the a posteriori
distributions Gaussian with possibly the least variance.

(2) We present a closed-form expression of the MMSE estimate
for the remote estimator and show that, if and when the
communication is triggered, the estimator cannot do any
better than the local Kalman filter, otherwise, the associated
error covariance, is simply a sum of the estimation error of the
local Kalman filter and the performance loss due to the absence
of communication.

(3) The sensor scheduling problem can be modeled as a decision
process. The sensor can sequentially design the scheduler’s
parameters by solving a dynamic programming (DP) problem,
efficiently allocating communication resource over a finite
time-horizon. The computational overhead of the DP problem
is less sensitive to the dimension of systems comparedwith the
existing works.

Notation: N is the set of positive integers numbers. Sn
+

is the
set of n by n symmetric positive semi-definite matrices over the
real field. The notation p(x, x) represents the probability density
function (pdf) of a random variable x taking value at x. For a matrix
X , we abuse the notations det(X) and X−1, in case of a singular
matrix X , to respectively denote the pseudo-determinant and the
Moore–Penrose pseudoinverse ofX . The notationX1/2 is the square
root of a positive semidefinite matrix X . For a Borel set B,L(B)
stands for the Lebesguemeasure.× denotes Cartesian product and
⊕ stands for Minkowski addition of two sets, respectively. Define
the function h: Sn

+
→ Sn

+
as h(X) , AXA′

+ Q .

2. Kalman filter under controlled communication

Consider a linear time-invariant system:

xk+1 = Axk + wk, (1a)
yk = Cxk + vk, (1b)

where xk ∈ Rn is the system state vector and yk ∈ Rm is the
observation vector. The noises wk ∈ Rn and vk ∈ Rm are zero-
mean Gaussian random vectors with E[wkw

′

j] = δkjQ (Q ≥
Fig. 1. Remote state estimation with a communication scheduler.

0),E[vkv
′

j ] = δkjR (R > 0), where δkj is the Kronecker delta
function with δkj = 1 if k = j and 0 otherwise, and E[wkv

′

j ] =

0 ∀j, k. The initial state x0 is a zero-mean Gaussian random vector
that is uncorrelated with wk and vk and has covariance Σ0 ≥

0. The pair (C, A) is assumed to be observable and (A,Q 1/2) is
controllable.

All the measurements collected by the sensor up to time k is
denoted by y1:k , {y1, . . . , yk}. The sensor locally computes x̂sk ,
E[xk|y1:k], the MMSE estimate of xk based on y1:k. Let P s

k be the
associated estimation error covariance matrix, i.e., P s

k , E[(xk −

x̂sk)(xk − x̂sk)
′
|y1:k], which is computed via a standard Kalman filter

initialized with x̂s0 = 0 and P s
0 = Σ0. The sensor is equipped with a

transmission scheduler (see Fig. 1), which determines whether or
not x̂sk should be sent to the estimator, according to the history of
transmission decision actions and the measurements collected by
the sensor up to time k. Let γk ∈ {0, 1} denotes the communication
decisionmade by the scheduler. If γk = 1, x̂sk is sent; otherwise x̂sk is
not sent. Since the sensor local estimation is initializedwith x̂sk = 0,
without loss of generality, we assume γ0 = 1. To focus on the role
of the sensor scheduler in achieving a desired tradeoff between
the remote estimation quality and communication resource, other
aspects of imperfect communication, such as packet dropouts,
delays and data quantization, will not be taken into account, that
is, if sent by the senor, the data will reach the estimator side.

It should be noted that before deciding γk at time k, γ1:k−1 ,
{γ1, . . . , γk−1} is known by the sensor. Besides, the sensor has all
the measurements collected by itself. The information pattern of
the sensor up to after communication at time k, if any, is denoted
as IS

k , i.e.,

IS
k , {y1, . . . , yk} ∪ {γ1, . . . , γk}, with IS

0 = ∅.

Similarly, we denote by IE
k the information pattern at the remote

estimator up to after communication at time k. Because of the
perfect communication channel assumed, γk is known to the
estimator. IE

k contains both the history of communication actions
γ1:k and the measurement data received from the sensor, that is,

IE
k = {γ1x̂s1, . . . , γkx̂

s
k} ∪ {γ1, . . . , γk}, with IE

0 = ∅.

We define a communication scheduling policy applied by the
sensor at time k as a function fk:

γk = fk(IS
k−1, yk), (2)

where fk’s are assumed to be measurable mappings. A finite-
horizon sensor communication policy Θ is accordingly defined as
a sequence of fk’s: Θ , {f1, f2, . . . , fT} . Because the estimator
is aware of Θ being used by the sensor, it computes x̃k, its own
estimate of the state xk based on IE

k , x̃k = gk(IE
k ), where gk’s

are measurable mappings. A finite-horizon remote estimator Ξ is
accordingly defined as a sequence of gk’s: Ξ , {g1, g2, . . . , gT} .
The estimator computes Pk, the corresponding estimation error
covariance matrix, as: Pk = EΘ


(xk − x̃k)(xk − x̃k)′ | IE

k


, where

EΘ [·|·] denotes conditional expectation with respect to a fixedΘ .
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Let us denote by JE (Θ,Ξ) the penalty associated with the
total expected estimation errors of the remote estimator within a
horizon T, i.e.,

JE (Θ,Ξ) = E


T

k=1

Tr


EΘ

(xk − x̃k)(·)′|IE

k

 
. (3)

The communication cost incurred is defined as the expected
sensor-to-estimator communication times within the horizon T:
JC (Θ) = E

T
k=1 EΘ [γk|I

E
k−1]


. The expectation is taken with

respect to the noise processes wk’s and vk’s. We simultaneously
consider JE (Θ,Ξ) and JC (Θ)within a single objective function:

minimize
Θ,Ξ

J(λ,Θ,Ξ) , JE (Θ,Ξ)+ λJC (Θ), (4)

where λ is a Lagrange coefficient. A range of rate-error tradeoff
problems, such as Imer and Başar (2005), Li, Lemmon, and Wang
(2010), Molin (2014), Wu, Johansson, and Shi (2014), etc., are
incorporated in (4).

In general, it is difficult to find a global optimal solution of (4)
since Θ and Ξ are coupled in JE (Θ,Ξ). We first give a quick
answer to ‘‘what is the optimal estimator Ξ∗ for problem (4)?’’by
invoking the following lemma.

Lemma 1. For any given Θ , the optimal estimator Ξ∗ for the
estimator is the MMSE estimator x̂k , g∗

k (I
E
k ) = EΘ [xk|IE

k ].

Proof. WhenΘ is fixed, JC (Θ) in (4) is fixed and only JE (Θ,Ξ) is
to be minimized. Then, from the optimal filtering theory Anderson
andMoore (1979),Ξ∗ is given by the MMSE estimator of xk, which
is also specified as the conditional expectation of xk given IE

k . �

Having established Lemma 1, we only need to focus on seeking
an optimal communication scheduling policy Θ∗. However,
Problem (4) remains challenging, asΞ∗ is affected by the choice of
Θ through the a posterioripdf pΘ(xk, x|IE

k ). Even if this problemhas
been relaxed to aMarkov decision process (MDP) by variousmeans
in the literature, e.g., an iterative algorithmwas presented inMolin
(2014), and a fixed estimator was imposed in Gatsis, Ribeiro,
and Pappas (2013) and Li et al. (2010), it may still encounter
computational difficulties. When fixing a Ξ and executing an
algorithm to solve the MDP, one resorts to solving a Bellman
equation backwards:

uk(sk) = min
γk={0,1}


cΞ (sk, γk)+ EΞ [uk+1(sk+1)|sk, γk]


, (5)

where sk ∈ S is the state of the MDP, cΞ (sk, γk) is the cost
involved, given Ξ , when the system is in state sk and performs
action γk, and uT(sk) = 0 for any sk ∈ S. In each of the afore-
mentioned works, although differently defined, but in general, sk
is a variable related to xk. To numerically solve (5), a first step is to
discretize the continuous state space. Decisions should be made to
select an action for each state in the discretized state space. In or-
der to guarantee the desired calculation accuracy, computational
complexity exponentially increases with respect to the dimension
of system (1a), which makes it impossible to scale the algorithm
to high-dimensional systems. In addition, the MDPs formulated in
the aforementionedworks lead to nonlinear state estimation prob-
lems, for which a closed-form expression of the MMSE estimate is
difficult to obtain. To obtain an exact MMSE estimate, it is required
to calculate the a posteriori pdf in the state xk at each time, using
Bayes’ theorem. This recursive propagation only has a conceptual
solution and cannot be computed analytically. Gaussian approxi-
mation is a suboptimal solution to solve the intractable nonlinear
filtering problem heuristically. Interested readers can refer to Shi,
Chen, and Shi (2014), Sijs and Lazar (2012) andWu et al. (2013) for
threshold event-triggering. In their works, numerical integrations
and approximations were involved. However, after a few updates,
the a posteriori distribution may become a poor approximation.
3. Gaussianity-preserving event-based sensor scheduling for
state estimation

The beauty of the event-based communication policy for state
estimation is its resources saving, but it also encounters analytical
and computational difficulties when it is deterministic as we
discussed in the previous section. To overcome the computational
complexity issue and the nonlinear state estimation problem,
we adopt a special type of communication schedules that can
preserve Gaussianity of the a posteriori pdf in the system
state. By taking the advantage of Gaussianity, the computational
complexity issue and the nonlinearity of the state estimation can
be bypassed.Parameters of such a scheduling policy are to be
designed to fulfill performance restrictions.

The event-based communication scheduling to be adopted
was originated in Han et al. (2015). While a primitive sensor is
considered inHan et al. (2015), amodified policy for a smart sensor
case is presented in this work. To introduce this policy, let us first
define zk, the incremental innovative information of x̂sk relative to
the information sent by the sensor at the most recent instance
before time k, as

zk , x̂sk − Aτk−1 x̂sNk−1
(6)

where Nk , max

j : γj = 1, 1 ≤ j ≤ k


denotes the most recent

triggering instance before time k and τk , k − Nk + 1 represents
the distance between k + 1 and Nk. Both Nk and τk are measurable
to IE

k . We now present the Gaussianity-preserving communication
scheduling policyΘ as follows. At each time k, the sensor randomly
generates a uniformly distributed random variable ξk ∈ [0, 1]. Let

γk =


0, if ξk ≤ s(zk,Γk),
1, otherwise, (7)

where s(·, ·) is defined as

s(x,Γ ) = e−
1
2 x

′Γ−1x, x ∈ Rn and Γ ∈ Sn
+
, (8)

and Γk ∈ Sn
+

is a weight matrix to be designed. At each
time communication is randomly triggered with probability
1 − s(zk,Γk). If s(zk,Γk) is smaller, the sensor-to-estimator
communication is more likely to be triggered.

Remark 1. The realization γk not only depends on the outcome of
zk but also on an auxiliary random variable ξk. Though introducing
a little more uncertainty, ξk plays a crucial role of smoothing the a
posteriori distribution into a Gaussian one when γk = 0 as we will
see later. Some other type of strategies might produce the same
effect, but to the best of our knowledge, there are no any such
deterministic ones in the literature.

The scheduling policy (7) does not produce as good estimation
performance as deterministic ones, since ξk introduces additional
uncertainty. However, the following simple example suggests that
the performance loss is possibly the least, where a static parameter
estimation problem is given to help readers understand the idea in
an easier way. After this example, in the rest of this section, wewill
provide answers to the following two questions:

(1) How shall we compute the remote estimate and the associated
estimation error covariance?

(2) How shall we design the parameters for Θ to minimize
J(λ,Θ,Ξ)?

3.1. State parameter estimation example

Consider a static parameter estimation problem: a parameter x
is observed by a set of sensors indexed by V = {1, . . . , l} via

y(i) = x + v(i), i ∈ V, (9)
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Fig. 2. Illustrations of a Gaussian pdf (black full line), a truncated Gaussian pdf (red
dash-dotted line), and a Gaussian pdf majorized by the truncated Gaussian pdf (red
dash line).

where y(i), x, v(i) ∈ R, and p(x, x) ∼ N (µ, σx) and p(v(i), v) ∼

N (0, σ (i)v ) are independent of each other. Then p(y(i), y) ∼

N (µ, σ
(i)
y ) with σ (i)y = σx + σ

(i)
v . Without loss of generality, we

let µ = 0. All the measurements are scheduled to be sent to an
estimator. Let γ (i) denote whether or not y(i) is sent: γ (i) = 1 if y(i)
is sent; otherwise γ (i) = 0. A commonly used scheduling policy,
denoted as θ , is a threshold one, which is of the following form:

γ (i) =

0, if
|y(i) − x̂(i−1)(θ)|

σ
(i)
y

≤ δi,

1, otherwise,
(10)

where x̂(i−1)(θ) is the MMSE estimate of x based on {γ (1), . . . ,
γ (i−1)

} ∪ {γ (1)y(1), . . . , γ (i−1)y(i−1)
} with x̂(0)(θ) = 0 and δi

is a parameter to be designed to fulfill the tradeoff between
communication cost and estimation error. Measurements from the
l number of sensors, if sent, are collected in numerical order and
fused.

Suppose γ (1) = 0. The conditional pdf of y(1) is

pθ (y(1), y|γ (1) = 0) =

 p(y(1), y)
1 − 2q(δ0)

, if γ (1) = 0,

0, otherwise,
(11)

where q(x) ,


+∞

x
1

√
2π

e−
x20
2 dx0 is the Q -function. It is evident

that pθ (y(1), y|γ (1) = 0) is not Gaussian. Fig. 2 illustrates
pθ (y(1), y|γ (1) = 0) when σy = 1. Conditioning on y(1), the
MMSE estimate of x is x̂(1)(θ) , σx

σx+σ
(1)
v

y(1). From optimal filtering

theory, x − x̂(1)(θ) is orthogonal to y(1). Noting that x = x −

x̂(1)(θ)+ σx
σx+σ

(1)
v

y(1) and x− x̂(1)(θ) ∼ N (0, σx −
σ 2
x

σx+σ
(1)
v
), through

pθ (y(1), y|γ (1) = 0), we obtain that pθ (x, x|γ (1) = 0) is not
Gaussian. Then, when y(2) (or γ (2) = 0) is received, the conditional
distribution is updated according to Bayes’ theorem. Due to loss
of Gaussianity, updating the conditional distribution at each step
needs to resort to numerical integrations,which is computationally
intractable. To overcome the computational problem, let γ (1) be
decided according to an analogue, denoted by θ̂ , of policy (7):

γ (1) =


0, if ξ (1) ≤ s(y(1),Γ (1)),
1, otherwise, (12)

where ξ (1) is a uniformly distributed random variable in [0, 1],
s(·, ·) is defined as (8) and Γ (1)

∈ R is a weight.

Lemma 2. Consider system (9) and scheduling policy θ̂ given in
(12) for γ (1). Then pθ (x, x|γ (1) = 0) is Gaussian. Moreover, suppose
δ1 and Γ (1) are appropriately designed such that Pθ (γ (1) = 0) =

Pθ̂ (γ
(1)

= 0), then pθ̂ (x, x|γ
(1)

= 0) ∼ N (0, σx−
4q(δ1)(1−q(δ1))σ 2

x
σx+σ

(1)
v

).

The proof of Lemma 2, which is presented in the Appendix,
is reported after the proof of Lemma 4, since some techniques
are borrowed from the latter one. If we use scheduling policy
analogous to (12) for each fusion, the a posteriori pdfs remain
Gaussian, reducing the estimation problem from tracking of
distributions, which is usually computationally intractable, to
tracking of the mean and the covariance of distributions. Since
the scheduling policy θ̂ is randomized, it can be expected that
pθ̂ (x, x|γ

(1)
= 0) is more disordered and has a larger covariance

compared with pθ (x, x|γ (1) = 0). Here the ‘‘disorder’’ can be
interpreted by the idea of majorization (cf., Lipsa &Martins, 2011).

Definition 1. Suppose p and p∗ are two pdfs on R. We say p
majorizes p∗, which is denoted by p ≻ p∗, if for any Borel set
B1 ∈ R with L(B1) < ∞, there always exists another Borel set
B2 ∈ R satisfying L(B1) = L(B2) and


B2

p dµ ≥


B1
p∗ dµ.

The following statement suggests that, although leading to some
performance loss, θ̂ generates the a posteriori pdf with possibly the
least variance.

Lemma 3. Consider system (9) and scheduling strategies θ̂ and θ
for γ (1). Suppose δ1 and Γ (1) are appropriately designed such that
Pθ (γ (1) = 0) = Pθ̂ (γ

(1)
= 0). Then pθ (x, y|γ (1) = 0) ≻ pθ̂ (x, y|

γ (1) = 0). Moreover, if there exists a σ > 0 such that pθ (x, y|γ (1) =

0) ≻ N (0, σ ), it implies σ ≥ σx−4q(δ1)(1−q(δ1))σ 2
x /(σx+σ

(1)
v ).

Proof. Themajorization relation between pθ (y(1), y|γ (1) = 0) and
pθ̂ (y

(1), y|γ (1) = 0) follows from the observation that pθ (y(1),
y|γ (1) = 0) ≥ pθ̂ (y

(1), y|γ (1) = 0) for any −σ
(1)
y δ1 ≤ y ≤ σ

(1)
y δ1.

Since pθ (y(1), 0|γ (1) = 0) = pθ̂ (y
(1), 0|γ (1) = 0), it is impossible

for the former pdf to majorize a Gaussian distribution having a
variance smaller than that of the latter one. From optimal filtering
theory, x̂(1)(θ) =

σx
σx+σ

(1)
v

y(1) and x − x̂(1)(θ) is orthogonal to

y(1), then by Lipsa and Martins (2011, Lemma 3) the majorization
relation holds under the convolution of the above pdfs, which
completes the proof. �

The scheduling policy (12) can be extended into Rn. However, for
multi-dimensional cases, the weight matrix Γ (i) corresponding to
a given communication rate is not unique.

3.2. MMSE estimation

In the following lemma, we show that, using Θ , when the
triggering is absent, the conditional distribution of xk is still
Gaussian. This property is preliminary for computing the MMSE
estimate and the associated estimation error covariance.

Lemma 4. Consider Θ given in (7). The conditional distribution of xk
given IE

k is Gaussian, i.e.,

pΘ(xk, x|IE
k ) ∼


N (x̂sk, P

s
k), if γk = 1,

N (Aτk−1x̂sNk , P
s
k + Ψk), if γk = 0,

where Ψk is governed by the following recursive equations:

Σk = (1 − γk−1)AΨk−1A′
+ h(P s

k−1)− P s
k, (13)

Ψk = (Σ−1
k + Γ −1

k )−1, (14)

with initial value Ψ0 = 0.

It can be seen from Lemma 4 that Γ −1
k , like a fisher information

matrix, represents the side information gained from the absence
of the communication.
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Lemma 5. Consider Θ given in (7). The probability of no transmission
is

P(γk = 0|IE
k−1) = det(ΨkΣ

−1
k )1/2. (15)

The proofs of Lemmas 4 and 5 are put in the Appendix.
The following two theorems show how the remote estimator

calculates its own estimate and the corresponding estimation error
covariance recursively under Θ . The simple and efficient recursion
is from the Gaussianity of the a posteriori distribution. The proofs
are straightforward from Lemma 4.

Recall that x̂sk and P s
k are updated locally at the sensor using a

standard Kalman filter.

Theorem 1. Consider Θ given in (7). The MMSE estimator Ξ∗ is
given by

x̂k =


x̂sk, if γk = 1,
Ax̂k−1, if γk = 0, (16)

with x̂k = 0.

For a concise notation, we define the following positive semidefi-
nite matrix:

Φk , (1 − γk)Ψk, (17)

ThenΦk can be computed according to (13), (14) and (17).

Theorem 2. Consider Θ given in (7) and the MMSE estimator Ξ∗

given in Theorem 1. The estimation error covariance Pk of the
estimator is computed as

Pk = P s
k + Φk. (18)

Theorems 1 and 2 show that, when the sensor is capable of imple-
menting a local Kalman filter, the remote estimator can update its
estimate and the associated estimation error covariance in a sim-
ple and efficient way. When γk = 1, (x̂k, Pk) is updated as (x̂sk, P

s
k);

while when γk = 0,Ψk is the performance loss of the remote es-
timator caused by the lack of a point-valued measurement. Com-
pared with an open-loop prediction, Γ −1

k in Ψk can be interpreted
as side information gained from the absent of communication. The-
orem 2 exhibits that Pk is simply a sum of P s

k , which reflects estima-
tion error of the sensor’s local Kalman filter, andΨk, which reflects
the performance loss due to absence of communication.

3.3. Parameter optimization via dynamic programming

The estimation error covariance is a crucial parameter to
evaluate estimation performance. To calculate it, MDP-based
algorithms, such as Imer and Başar (2005), Li et al. (2010), Molin
(2014) and Wu et al. (2014), need to know the a posteriori pdf
of xk. This results in considerable computational overhead when
the dimension of system (1a) increases. In contrast, by taking
the advantages of the closure of Gaussian distribution under
convolutions, calculating the estimation error covariance underΘ is tractable. In this section, we first demonstrate that the
estimation penalty JE (Θ,Ξ∗) and the communication penalty
JC (Θ) can be computed simply by breaking things down according
to either γk = 0 or 1. Then we design the parameters in Θ by
solving a DP problem.

3.3.1. Cost function
In view of Theorem 2, Φk is a function of γ1:k under a givenΘ and the optimal estimator Θ∗. The estimation penalty defined
in (3) can be decomposed as: JE (Θ) , EΘ T
k=0 Tr


P s
k + Φk

 
.

Since
T

k=0 P
s
k does not depend on Θ , we ignore this term and re-

define the cost function in (4) underΘ∗ as follows:

J(λ,Θ) , EΘ


T
k=1

Tr(Φk)


+ λEΘ


T

k=1

γk


. (19)

The optimal Gaussianity-preserving communication scheduling
policy Θ∗ is defined asΘ∗

= argminΘ J(λ,Θ). (20)

3.3.2. Design of Gaussianity-preserving scheduling policy
To solve Θ∗, we need to search Γk (or equivalently Ψk) at each

time. When the dimension of system (1a) exceeds 1, Ψk is chosen
over a positive semidefinite convex cone as long as Σk ≥ Ψk and
rank(Σk) = rank(Ψk). To reduce the computational complexity,
we restrict the searching space within Ψk = ρkΣk, where ρk ∈

(0, 1) is a ratio to be designed. By doing so, Γk = (1/ρk − 1)−1Σk.
Then, instead of dealing with n(n+1)

2 degrees of freedom searching
Ψk, now we only need to design a scaling ratio ρk. Further analysis
when this restriction is removed is left to future work.

When Ψk = ρkΣk in Θ , (18) is reduced to P(γk = 0|IE
k−1) =

(ρk)
rk/2, where rk , rank(Σk). Then (19) can be rewritten as

J(λ,Θ) = EΘ


T−1
k=0


Tr(Φk)+ λ(1 − ρ

rk+1/2
k+1 )


+ Tr(ΦT)


with Φ0 = 0. The following lemma provides a method for calcu-
lating rk offline.

Lemma 6. For given IE
k−1, we have

rk = rank

hτk−1(P s

Nk−1
)− P s

k


.

Proof. First observe that rk = rank(Σk). By (13) and (14), Σk can
be written as

Σk =

τk−1
i=1

αi

hi(P s

k−i)− hi−1(P s
k−i+1)


for some certain constants αi ∈ (0, 1). Then,

Im(Σk) = Im


τk−1
i=1


hi(P s

k−i)− hi−1(P s
k−i+1)


= Im


hτk−1(P s

Nk−1
)− P s

k


,

which completes the proof. �

We define by sk = {Φk, τk} and ρk+1 the state and the action at
time slot k, respectively. Recall that τk is measurable to IE

k . Given
the current state sk and the action ρk+1, the next-step state sk+1 can
be obtained as

sk+1 =


{0, 1}, if γk+1 = 1,

{ρk+1Σk+1, τk + 1}, if γk+1 = 0, (21)

whereΣk+1 = AΦkA′
+ h(P s

k)− P s
k+1. The transition probability is

determined by ρk+1. The one-stage cost function is given by

c(sk, ρk+1) = Tr(Φk)+ λ(1 − ρ
rk+1/2
k+1 ).

Since rk+1 is a function of τk by Lemma 6, c(sk, ρk+1) is fully
determined by sk and ρk+1. Therefore, the optimal ρk’s can be
found by solving a DP problem. Obviously, the action space is A =
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(0, 1). The state space for Φk, denoted as Ŝk, can be computed in a
recursive way:

Ŝ′

k+1 ,A × Ŝk × A′
⊕

h(P s

k)− P s
k+1


,

Ŝk+1 =(0, 1)× Ŝ′

k+1,

with initial value Ŝ0 = 0. The state space for τk, denoted as S̆k, can
be obtained in a similar way as S̆k+1 = {S̆k ⊕ {1}, 1}, with initial
value S̆0 = 1. Since τk = 1 must hold as long as Φk = 0, the state
space of the DP problem for sk, Sk, can be defined as

Sk =

{Ŝk \ 0} × {S̆k \ 1}, {0, 1}


. (22)

The optimal scheduling policy hence can be obtained by solving the
following Bellman’s equation:

ĴT(sT) = Tr(ΦT),

Ĵk(sk) = min
ρk+1∈[0,1]


λ(1 − ρ

rk+1/2
k+1 )+ Tr(Φk)

+ ρ
rk+1/2
k+1 Ĵk+1 (sk+1 = {ρk+1Σk+1, τk + 1})

+ (1 − ρ
rk+1/2
k+1 )Ĵk+1(sk+1 = {0, 1})


, (23)

where Ĵk(sk) is the optimal cost-to-go function at time slot k. Note
that since the action space is compact and the one stage cost
function is bounded, the optimal policy exists (Puterman, 2009).
The above Bellman equation (23) can be solved using standard DP
techniques, such as backward induction algorithm.

From Cheung, Kwok, and Lau (2013), the computational
complexity of computing rk (involves computing the rank of a
matrix and matrix multiplication) is less than O


n3

, where n is

the dimension of system (1a). It is well known that for an MDP
with finite state space (of cardinality N), finite action space (of
cardinality M) and finite horizon T, the computational complexity
is O


N2MT


from Tsitsiklis (2007). If the state space is continuous,

it needs to be discretized first. In general, to provide a solution
with desired accuracy, the computational complexity increases
exponentially with the dimension of the state space (Chow &
Tsitsiklis, 1989). In our algorithm, discretization of the state space
is equivalent to the discretization of ρk, which is a scalar over
(0, 1) (independent of the dimension of the system (1a)). On
the contrary, for the MDPs formulated in Gatsis et al. (2013),
Li et al. (2010) and Molin (2014), the computation complexity
scales at least exponentially with system (1a). Note that the
dimension of the state space for our algorithm is independent of
that of system (1a), however it scales rapidly (exponentially) as T
increases. To alleviate the computation burden, wemay set a time-
out condition for communication. To be precise, the measurement
will be sent if τk is greater than a certain threshold regardless of its
content. Since if γk = 1, Ŝk = 0, the time-out mechanism helps
trim the size of the state space.

4. Numerical examples

To illustrate the Gaussianity-preserving property of the sensor
scheduling Θ defined in (7), we simulate the static parameter
estimation circumstance (9) since the Gaussianity-preserving
event-based scheduling works for parameter estimation and state
estimation in the same way. Consider y(1) = x + v(1), with
p(x, x) ∼ N (0, 1) and p(v(1), v) ∼ N (0, 1). let Γ (1)

= 1 in (12). A
Monte Carlo experiment of 106 simulations is performed, and data
are recorded. We partition the real line into many small intervals
(bi, bi] and use the following approximation: for any y ∈ (bi, bi],

pθ̂ (y
(1), y|γ (1) = 0)

≈
♯ of trails with y in(bi, bi] and with γ (1) = 0

(♯ of trails with γ (1) = 0)× (width of the interval)
.

Fig. 3. Comparison between pθ̂ (y
(1), y|γ (1) = 0) and N (0, 0.76).

Fig. 4. Realization of the decision process in Section 3.3. The red arrows represent
communications of the sensor’s local information. The black dots represent the
values that ρ’s are chosen at each time k.

Fig. 3 shows that the numerical result matches the pdf of the
Gaussian distribution N (0, 0.67) very well.

Then, we consider the application of Kalman filtering for

system (1) with A =


1 1 1
0 1 1
0 0 1


, C =


1 1 1
0 1 1
0 0 1


,Q =

diag ([9 9 9]) , R = 9. Furthermore, we take P s
0 = diag ([6 1 9]) .

To illustrate the communication scheduling policy, we choose
T = 10, λ = 150, and let ρk’s take values from the set
{0.01, 0.2, 0.4, 0.6, 0.8, 0.99}. In Fig. 4, we show a realization
of the decision process and the timing of communication. We
also illustrate the tradeoffs between the transmission usage
and the estimation performance with respect to different λ’s.
In Fig. 5, When λ increases, EΘ

T
k=1 γk


reduces while

EΘ
T

k=1 Tr(Φk)

grows, which suggests that we should choose

a relatively large λ in the presence of strict communication
constraints and a relatively small one the other way round.

5. Conclusion

We considered a remote state estimation problem. In this
problem, a sensor measures the state of a linear discrete-
time system and runs a local Kalman filter. The sensor’s
local information is transmitted to the remote estimator via a
communication channel. The communications are scheduled via
a Gaussianity-preserving event-based sensor scheduler over a
finite time horizon to save communication resources. By doing
so, the estimator can gain side information from absence of
communication, and moreover, the a posteriori distributions in
system states are smoothed into Gaussian ones. We derived
the optimal estimator and communication rate under such a
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Fig. 5. Tradeoffs between the communication usage and the estimation quality.
When λ increases, the total communication times reduce on average (the upper
figure), while the averaged total estimation errors increase (the lower figure).

scheduling policy, and then designed the scheduler’s parameters
by solving a DP problem. The computational overhead of the
proposed design method is less sensitive to the system dimension
compared with that of existing algorithms in the literature.

Appendix. Proof of Lemmas 4, 5 and 2

Define z̃k = x̂sk − Ax̂sk−1. Evidently, we have zk =
k

j=Nk−1+1

Ak−jz̃j. Some properties of z̃k, which are preliminary for proving
Lemma 4, are summarized in the following lemma. Since the
lemma can be readily established from Shi, Johansson, and Qiu
(2011, Lemma 2.2), The proof is omitted.

Lemma 7. The following statements on z̃k hold: (i). z̃k is zero-mean
Gaussian and E[z̃kz̃ ′

k] = h(P s
k−1) − P s

k; (ii). z̃1, . . . , z̃k, . . . are
independent.

Proof of Lemma 4. First we shall prove the Gaussianity of
pΘ(zk, z|IE

k−1) by induction. For k = 1, we have z1 = x̂s1 − Ax̂s0
and z̃1 ∼ N (0,Σ1), where Σ1 = h(P s

0) − P s
1 by Lemma 7. We as-

sume pΘ(zk|IE
k−1) ∼ N (0,Σk) for some k. Define Ωk = {Σ

1/2
k x :

x ∈ Rn
}. Then, with respect to the Lebesgue measure on Ωk, we

have

pΘ(zk, z|IE
k−1) =

1
(2π)rk/2(detΣk)1/2

exp


−
1
2
z ′Σ−1

k z

,

where rk , rank(Σk). Considering the triggering condition in (7),
we have

P

γk = 0|IE

k−1


=


Ωk

exp


−
1
2
z ′Γ −1

k z

pΘ(zk, z|IE

k−1)dz

=


Ωk

exp


−
1
2
z ′(Ψ−1

k −Σ−1
k )z


pΘ(zk, z|IE

k−1)dz

=


Ωk

1
(2π)rk/2(detΣk)1/2

exp


−
1
2
z ′Ψ−1

k z

dz

= det(ΨkΣ
−1
k )1/2. (24)

If γk = 0,

pΘ zk, z|IE
k−1, γk = 0


=

P (γk = 0|zk = z) pΘ zk, z|IE
k−1


P

γk = 0|IE

k−1


=

1
(2π)rk/2(detΨk)1/2

exp


−
1
2
z ′Ψ−1

k z

, (25)
i.e., pΘ zk, z|IE
k−1, γk = 0


∼ N (0,Ψk). Since zk+1 = Azk + z̃k+1,

by Lemma 7,

pΘ(zk+1, z|IE
k−1, γk = 0) ∼ N (0,Σk+1),

where Σk+1 = AΨkA′
+ h(P s

k) − P s
k+1. Otherwise, if γk = 1, x̂sk

is sent to the estimator. Consequently, zk conditioned on IE
k is

deterministic and zk+1 = x̂sk+1 − Ax̂sk = z̃k+1. By Lemma 7,
pΘ(zk+1, z|IE

k−1, γk = 1) ∼ N (0,Σk+1), where Σk+1 = h(P s
k) −

P s
k+1.
From optimal filtering theory, xk − x̂sk is orthogonal to zk. Since

xk− x̂sk and zk are jointly Gaussian and xk− x̂sk ∼ N (0, P s
k), we reach

the conclusion. �

Proof of Lemma 5. The result is immediately from (24). �

Proof of Lemma 2. Letting zk = y(1),Σk = σ
(1)
y ,Γk = Γ (1),

Ψk = ((σ
(1)
y )−1

+ (Γ (1))−1)−1 , ψ1 and IE
k−1 = ∅ in (24)

and (25), then pθ̂ (y
(1), y|γ (1) = 0) ∼ N (0, ψ1) follows from (25)

and Pθ̂ (γ
(1)

= 0) = (ψ1(σ
(1)
y )−1)1/2 follows from (15). Noting

Pθ (γ (1) = 0) = 1 − 2q(δ1), we have ψ1 = (1 − 2q(δ1))2σ
(1)
y .

From optimal filtering theory, x̂(1)(θ) =
σx

σx+σ
(1)
v

y(1), x − x̂(1)(θ) is

orthogonal to y(1) and x − x̂(1)(θ) ∼ N (0, σx −
σ 2
x

σx+σ
(1)
v
). Then, we

obtain pθ (x, x|γ (1) = 0) ∼ N (0, σ )with σ = σx−
4q(δ1)(1−q(δ1))σ 2

x
σx+σ

(1)
v

,

which completes the proof.
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