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Abstract

We consider wireless telecommunications systems with orthogonal frequency
bands, where each band is referred to as a channel, e.g., orthogonal frequency-
division multiple access (OFDMA). For a snap-shot in time, a joint channel
assignment and power allocation optimization problem is presented, both in
downlink and in uplink, where the objective is to maximize the minimum to-
tal Shannon capacity of any mobile user in the system. The corresponding
decision problem is proved to be NP-hard. Another proof gives that for any
constant ρ > 0, a sufficiently large number of channels ensures that the opti-
mization problem is not ρ-approximable, unless P is equal to NP. If assuming
that the channel allocation is known, the remaining power allocation optimiza-
tion problem also has this inapproximability property. This power allocation
optimization problem formulation is not convex in general. However, if each
transmitter only is allowed to use one single channel, then it is shown that every
KKT point is a global optimum.

1. Introduction

This paper concerns wireless telecommunications systems consisting of base stations
and mobile users, either in downlink or in uplink. A constant size of the frequency
band is available for each base station. This bandwidth of each base station is di-
vided into orthogonal parts of the same size, referred to as channels. It is assumed
that the communication takes place over these orthogonal channels, e.g., orthog-
onal frequency-division multiple access (OFDMA). A static multi-user problem is
considered, where a snap-shot in time has been taken. Each mobile user is to be
connected with a certain base station and to be given one or more of its channels,
where each channel of a base station only can be used by at most one mobile user.
In this setting, we define a cell to be a base station and the mobile users using its
channels. The orthogonality between the channels implies that the key property
to analyse is the inter-cell interference, since the interference within a cell does not
need to be considered. Users sharing the same channel will be connected to different
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base stations, and depending on their respective powers used to transmit, the inter-
ference will vary. In this setting we aim to maximize the minimum total Shannon
capacity of any mobile user.

Given a set of base stations B, a set of mobile users M , and a set of channels C,
we aim to locate a cell configuration, distribute the channels within each cell, and
decide the amount of power to transmit on each channel, such that it is advantageous
for the overall system performance.

One can increase the complexity by also considering a controller which, e.g.,
makes decision on which channel each base station can use, see, e.g., [13]. No such
radio network controllers are considered within this paper.

An outline of this paper is as follows, from section 2 to section 4 a joint channel
assignment and power allocation optimization problem is studied, while from sec-
tion 5 to section 7 the power allocation optimization problem is studied. Finally,
summary and conclusion are given in section 8.

In section 2 a system model is described, and the joint channel assignment and
power allocation optimization problem and also the corresponding joint channel
assignment and power allocation decision problem is formulated. As fare as we are
aware, the joint channel and power allocation optimization problem has not been
studied before. In section 3 it is proved that the joint channel assignment and
power allocation decision problem is NP-hard, both in downlink and in uplink. A
similar problem formulation, where the objective is to minimize the total power
consumption [1], is proved to be NP-hard in [2]. In section 4 we prove that for any
positive constant ρ, there is a sufficiently large number of channels |C|, such that
the joint channel and power allocation optimization problem is not ρ-approximable,
unless P is equal to NP.

In section 5 the power allocation optimization problem is formulated, under the
assumption that a feasible channel assignment is given. In, e.g., [12], a channel al-
location approach in downlink for the multi-cell system is given. To our knowledge,
the entire power allocation optimization problem has not been formulated before,
though a restricted version of it has been studied in, e.g., [15]. Section 6 contains
some general properties of the power allocation optimization problem. One impor-
tant result here is that for any positive constant ρ, there exists a sufficiently large
number of channels |C|, such that the power allocation optimization problem is not
ρ-approximable, unless P is equal to NP. Another property concerns when every
mobile user must have the same total Shannon capacity in a local maximizer. It is
also shown that at least one source will transmit with full power in a local maxi-
mizer, which also is proved to be applicable when the objective is to maximize the
total Shannon capacity. This objective, i.e., to maximize the total rate, is another
often used objective, see, e.g., [6] and [11]. In section 7 some convexity properties of
the power allocation optimization problem are investigated. From Yates, [15], it is
known that the setting where each transmitter only can use one channel has a unique
optimal value, which each mobile user can obtain, and there also are algorithms on
how to obtain the optimal value. Our contribution is to show that any first-order
KKT point of this optimization problem is a global maximizer. This is despite that
the power allocation optimization problem, where each transmitter only is allowed
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to use one channel, is not convex in general.

2. System model and problem formulation

In this section the system model is described, and from this model a joint channel
assignment and power allocation optimization problem is formulated. To abbreviate,
the joint channel assignment and power allocation optimization problem is also
referred to as the overall optimization problem.

Given a set of sources S and a set of destinations D, we model that sources use
power to transmit information to destinations in a network. In downlink the source
nodes are the base stations B and the destination nodes are the mobile users M ,
while in uplink it is the other way around. To be able to represent both downlink
and uplink simultaneously, the sets S and D are sometimes used instead of the sets
B and M .

Introduce a real non-negative variable pik, which denotes the power that source
i ∈ S use to transmit information on channel k ∈ C. Also introduce the binary vari-
able xijk, which indicates if information can be sent by source i ∈ S to destination
j ∈ D, on channel k, where

xijk =

{
1, if i ∈ S can send information to j ∈ D on channel k ∈ C,
0, otherwise.

Let yij ∈ [0, 1], i ∈ S, j ∈ D, which due to constraints will behave as a binary
variable, where

yij =

{
1, if xijk = 1 on any channel k ∈ C,
0, otherwise.

To measure the quality of the signal, some well known concepts are introduced.
The effective path gain, gij , is the proportion of the power that source i ∈ S uses
that will reach destination j ∈ D. Within this paper it is assumed that the path gain
vector g, of the entire system is known by each source i ∈ S and each destination
j ∈ D. It holds that

gij ≥ 0, i ∈ S, j ∈ D.

The signal to interference and noise ratio (SINR) is a ratio of the desired signal
over the undesired disturbance, which for source i, destination j and channel k, is
given by

SINRijk = gijpik

σ2
j +
∑

m∈S\{i} gmjpmk
, i ∈ S, j ∈ D, k ∈ C, (2.1)

where σ2
j > 0 is the interior noise at destination j, which is assumed to be known.

The Shannon capacity of the mobile user on arc (i, j), i.e., source i and destination
j, on channel k, is given by

ηijk = W log(1 + SINRijk), i ∈ S, j ∈ D, k ∈ C, (2.2)

where W is a positive scalar given by the size of the frequency band, i.e., in our
setting W is a known constant. Note that the Shannon capacity ηijk is related to



4 On maximizing the minimum Shannon capacity in wireless networks

the mobile user on arc (i, j), whether it is receiving in downlink or transmitting in
uplink. The total Shannon capacity of the mobile user on arc (i, j) is given by

ηij =
∑
k∈C

ηijk, i ∈ S, j ∈ D, (2.3)

where ηijk is given in (2.2).
Let us introduce a utility function which aims for good quality of the signals,

for all mobile users in the system. In this paper, our objective is to maximize the
minimum total Shannon capacity ηij , given in (2.3).

Before formulating the joint channel assignment and power allocation optimiza-
tion problem, some constraints ensuring that the system behaves as expected is
needed. One constraint ensures that each mobile user communicates with exactly
one base station, while each base station in general can transmit to many mobile
users simultaneously. Another constraint ensures that each base station uses each
channel k ∈ C at most once. Finally there is a power restriction on each source i ∈ S,
ensuring that the total power used is at most the upper bound power consumption
constant Pmax

S, i .
From the introduced setting above, the joint channel assignment and power

allocation optimization problem, in downlink, is given by

maximize
η, pik, xijk, yij

η (2.4a)

subject to yijη ≤
∑
k∈C

xijkηijk, i ∈ S, j ∈ D, (2.4b)

∑
i∈B

yij = 1, j ∈M, (2.4c)

∑
j∈M

xijk ≤ 1, i ∈ B, k ∈ C, (2.4d)

∑
k∈C

pik ≤ Pmax
S, i , i ∈ S, (2.4e)

xijk ≤ yij , i ∈ S, j ∈ D, k ∈ C, (2.4f)
0 ≤ yij ≤ 1, i ∈ S, j ∈ D, (2.4g)
xijk ∈ {0, 1}, i ∈ S, j ∈ D, k ∈ C, (2.4h)
pik ≥ 0, i ∈ S, k ∈ C, (2.4i)

where S = B, D = M , and ηijk is given in (2.2). If we let S = M , D = B, and
replace equations (2.4c) and (2.4d) with∑

j∈B

yij = 1, i ∈M, (2.5a)

∑
i∈M

xijk ≤ 1, j ∈ B, k ∈ C, (2.5b)

the corresponding uplink formulation is obtained.
For each of the two optimization problems, (2.4), in downlink and in uplink,

a corresponding joint channel assignment and power allocation decision problem is
formulated in Problem 2.1.
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Problem 2.1. (Joint channel assignment and power allocation) The joint chan-
nel assignment and power allocation problem is defined by the following instance and
question.
Instance: Parameters P , W , σ, g and the scalar η̄.
Question: Is there a choice of p, x, y and η which gives a feasible solution to the
optimization problem (2.4), such that η ≥ η̄?

The complexity of these joint channel assignment and power allocation decision
problems, Problem 2.1, are studied in section 3, while the complexity of the joint
channel assignment and power allocation optimization problems (2.4) are studied in
section 4.

3. The overall decision problems are NP-hard

In this section the complexity of the joint channel assignment and power allocation
decision problems, given in Problem 2.1, are proved to be NP-hard.

In order to prove that these decision problems, Problem 2.1, are NP-hard, a
reduction is made from the graph K-colorability problem.

Problem 3.1. (Graph K-colorability) The K-colorability problem is defined by
the following instance and question.
Instance: Graph G = (V,E), positive integer K ≤ |V |.
Question: Is G a K-colorable graph, i.e., does there exist a function f : V →
{1, 2, ...,K} such that f(u) 6= f(v) whenever {u, v} ∈ E ?

The graph K-colorability problem is one of the classical problems known to be
NP-complete, see, e.g., [7]. This result was originally given by Karp [9], and is
summarized in the following theorem.

Theorem 3.1. (Karp [9]) The graph K-colorability problem, Problem 3.1, is NP-
complete for K ≥ 3.

To prove that the decision problems, Problem 2.1, are NP-hard, we take an
arbitrary instance of the graph K-colorability problem and create an instance for
Problem 2.1, such that solving this created instance also implies solving the graph
K-colorability problem.

Given an arbitrary graph G, our construction of the problem instance is divided
into five stages. For clarity the construction is also illustrated graphically, originating
from a given graph G, illustrated in Figure 1, while the stages are presented in
Figure 2, 3 and 4.

1. For each vertex i ∈ V create a base station B̄i and a mobile user M̄i. Let
the path gain between base station B̄i and mobile user M̄i be denoted by ḡ.
Define the set C = {1, ...,K}, and let pS̄

ik denote the power variable of source
S̄i, on channel k ∈ C. See Figure 2.
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Figure 1: A given graph G.

Figure 2: First stage of creating the problem instance. For each node i ∈ V a source
S̄i is represented by a square, destination D̄i is represented by a circle, and the path
gain between them is illustrated as a link (S̄i, D̄i).

2. For each edge (i, j) ∈ E of the original graph G, let the path gain between base
station B̄i and mobile user M̄j be δ, and also let the path gain between base
station B̄j and mobile user M̄i be δ. Define B = ∪i B̄i and M = ∪i M̄i.
This stage is illustrated in Figure 3.

3. Once again create a base station B̃i and a mobile user M̃i for each node i ∈ V .
Denote the path gain between base station B̃i and mobile user M̃i by g̃. Let the
path gain between source S̃i and destination D̄i be denoted by G̃. Let variable
pS̃

ik denote the transmission power of source S̃i on channel k ∈ C. Also define
B = ∪i

(
B̄i ∪ B̃i

)
and M = ∪i

(
M̄i ∪ M̃i

)
, i.e., we have S = ∪i

(
S̄i ∪ S̃i

)
and

D = ∪i

(
D̄i ∪ D̃i

)
. See Figure 4, where this stage is illustrated.

4. Let all path gains that have not been defined in stages 1 to 3 be equal to
zero. These links are not illustrated graphically as they only correspond to
zero links.

5. Introduce optimization problem (2.4), in downlink or in uplink.
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Figure 3: Second stage of creating the problem instance. Introduce the two blue
links (S̄i, D̄j) and (S̄j , D̄i) for each edge (i, j) ∈ E of the graph G, to illustrate that
the path gain is δ between these sources and destinations.

Figure 4: Third stage of creating the problem instance. Source S̃i is represented by
a square, destination D̃i by a circle. The path gain between base station B̃i and
mobile user M̃i is illustrated by a black link (S̃i, D̃i) and the path gain between
source S̃i and destination D̄i is illustrated by a red link (S̃i, D̄i). This is for each
node i ∈ V of the graph G.

In stage 1 the number of colors in the K-coloring problem is made equal to the
number of channels in the constructed problem instance, i.e., |C| = K. The reason
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for defining B and M in both stage 2 and 3 is that a similar construction is to
be used in Section 4, where stage 3 is omitted. In stage 5 the introduced power
variables pik, i ∈ S, k ∈ C, either correspond to pS̄

ik or pS̃
ik depending on if i ∈ S̄ or

i ∈ S̃, where S̄ = ∪iS̄i and S̃ = ∪iS̃i.
Some parameters and constants are needed to complete the construction of the

decision problem instance of Problem 2.1. The path gains g are composed by ḡ, δ,
g̃, G̃ and zero, according to the stages 1 to 4. Let the parameters and constants of
the problem instances be chosen as follows:

P = Pmax
S,i = 1, i ∈ S, (3.1a)

W = 1, (3.1b)
σ2 = σ2

j < 1, j ∈ D, (3.1c)
ḡ > 1, (3.1d)

η̄ = log
(

1 +
ḡ

σ2

)
, (3.1e)

δ = 1, (3.1f)

g̃ = (K − 1)σ2

((
1 +

ḡ

σ2

) 1
K−1

− 1

)
, (3.1g)

G̃ >
1
p̃

 ḡ

exp
(

1
K−1

(
η̄ − log

(
1 + max{ ḡ

σ2+1
, 1

σ2 }
)))
− 1
− σ2

 , (3.1h)

where p̃ denotes the optimal value of the optimization problem

minimize
p∈IRK

p2

subject to
∑K

i=1 log
(
1 + pi

g̃
σ2

)
≥ (K − 1) log

(
1 + 1

K−1
g̃
σ2

)
,

0 ≤ p1 ≤ p2 ≤ ... ≤ pK ,∑
i pi ≤ 1.

(3.2)

If p1 = 0 in (3.2), then pi = 1/(K − 1), i = 2, ...,K, according to Lemma A.1 in the
appendix. Hence, p2 = 0 is infeasible, and it follows that p̃ > 0. The value of g̃ in
(3.1g) is chosen such that

η̄ = (K − 1) log
(

1 +
1

K − 1
g̃

σ2

)
, (3.3)

which means that a mobile communicating over a link with path gain g̃ must use at
least K−1 channels to obtain η̄ as Shannon capacity, and if only K−1 channels are
used then all available power of the source is needed together with no interference
taking place, according to Lemma A.1 in the appendix. The value of G̃ has to be
“sufficiently large”. Specifically, the value of G̃ in (3.1h) equivalently gives

η̄ > log
(

1 + max
{

ḡ

σ2 + 1
,

1
σ2

})
+ (K − 1) log

(
1 +

ḡ

σ2 + G̃p̃

)
. (3.4)

Note that the lower bound on G̃ in (3.1h) is well defined, as p̃ > 0. Also note that
the path gains of g are non-negative, as g̃ > 0 in (3.1g) and G̃ is chosen positive.
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The decision problem instances have been constructed. These constructed in-
stances are used to prove Lemma 3.1, which then will be used to verify that the
decision problems, Problem 2.1, are NP-hard.

Lemma 3.1. Let G = (V,E) be a given graph, K ≥ 3. Then G is K-colorable if
and only if the associated instances of Problem 2.1, created in the stages 1 to 5,
together with the parameters chosen according to (3.1)-(3.2), have feasible p, x, y
and η such that η ≥ η̄.

Proof. We first prove that graph K-colorability implies that the optimal value
of the corresponding instance of (2.4), is at least η̄. Assume that we have a K-
colorable graph G, and then construct the corresponding instance of problem (2.4),
with parameters and constants chosen according to (3.1)-(3.2). As G is K-colorable,
we can associate one channel ki for each i ∈ V such that ki 6= kj , (i, j) ∈ E. Let
each source S̄i transmit with full power, i.e., 1, over the link with path gain ḡ on
the selected channel ki. Let each source S̃i transmit with power 1/(K − 1) on each
of the K − 1 channels that remain when ki is omitted. This channel assignment
introduces no interference. The mobiles M̄i obtain Shannon capacity η̄, given by
(3.1e), as their information is on a channel without interference, with power 1 and
path gain ḡ. Due to the choice of g̃ in (3.1g), it follows from (3.3) and Lemma A.1
that mobiles M̃i also obtain Shannon capacity η̄, as their information is on K − 1
channels without interference, path gain g̃ and power 1/(K − 1) on each of these
channels. It follows that there is a feasible solution to the created instance of (2.4),
with η = η̄, as required.

We now prove that no graph K-colorability implies that the objective value of
the corresponding instance of (2.4) is less than η̄. We do so by showing that an
objective function value of η̄ eventually leads to a contradiction. Let us begin to
prove that no transmission can take place over any link with path gain G̃. In this
part of the proof the approach differs between downlink and uplink.

Let us first prove this statement in downlink. As discussed after (3.3), the choice
of g̃ in (3.1g) implies that at least K − 1 channels are needed on a link with path
gain g̃ if the mobile user of that link is to obtain Shannon capacity η̄. Hence, the
only situation when a link with path gain G̃ can be used for transmission is when
exactly K − 1 channels are used on the corresponding link with path gain g̃. But in
this situation, all transmission power of source S̃i is used on the K − 1 channels of
the link with path gain g̃, such that the mobile user of that link obtains Shannon
capacity η̄. Therefore no transmission power is left for the link with path gain G̃.

Let us now prove the same statement in uplink. If M̃i transmit to B̄i for any
i ∈ V , then there will exist a mobile user M̄j , j ∈ V , which do not transmit to
any base station. As this situation is infeasible, no transmission is made over a link
with path gain G̃. Therefore it can be concluded that power transmissions only take
place over the links with path gain δ, ḡ or g̃.

However, links with path gain δ can also be excluded as a candidate. First recall
that a link with path gain g̃ has a positive lower bound p̃ on its second smallest
power, if the mobile user of that link is to obtain Shannon capacity η̄. Therefore
transmission on a link with path gain g̃ causes interference along the corresponding
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link with path gain G̃, with at least p̃ on K − 1 channels. Hence, on a link with
path gain δ the total Shannon capacity

η < log
(

1 +
1
σ2

)
+ (K − 1) log

(
1 +

1
σ2 + G̃p̃

)
. (3.5)

By the choice of G̃, a combination of (3.4) and (3.5) gives η < η̄, showing that the
Shannon capacity is not high enough if transmitting power over a link with path
gain δ. Hence, if the Shannon capacity is to be at least η̄ for every mobile user, then
every power transmission is over a link with path gain either ḡ or g̃.

For each node i ∈ V of the original graph, the associated base station B̃i com-
municates with mobile user M̃i on at least K−1 channels with path gain g̃. For each
i, let k̃i be the channel on which least power is used, breaking ties arbitrarily. As
the graph is not K-colorable, there will be two neighboring nodes i ∈ V and j ∈ V ,
where k̃i = k̃j . To simplify notation, denote that channel as k̃, i.e., k̃ = k̃i = k̃j . An
upper bound on the Shannon capacity of mobile user M̄i is then given by

log

1 +
ḡpS̄

ik̃

σ2 + pS̄
jk̃

+ (K − 1) log

(
1 +

ḡ

σ2 + G̃p̃

)
,

and analogously for mobile user M̄j . This upper bound is obtained by assuming that
the link with path gain G̃ cause no interference on the channel k̃, and interfere with
power p̃ on the remaining K − 1 channels. An upper bound on the least Shannon
capacity of these two mobile users M̄i and M̄j on the channel k̃, leads to

maximize
0≤pS̄

ik̃
≤1

0≤pS̄
jk̃
≤1

min

log

1 +
ḡpS̄

ik̃

σ2 + pS̄
jk̃

 , log

1 +
ḡpS̄

jk̃

σ2 + pS̄
ik̃


 . (3.6)

The two expressions are equal, since otherwise the objective value of (3.6) could
be improved by increasing one power and decreasing the other. As the logarithmic
function is strictly increasing, the maximizer is pS̄

ik̃
= pS̄

jk̃
= 1. Hence an upper

bound on the total Shannon capacity is given by

log
(

1 +
ḡ

σ2 + 1

)
+ (K − 1) log

(
1 +

ḡ

σ2 + G̃p̃

)
,

By (3.4), this upper bound is less than η̄, which is a contradiction. Hence, by our
construction it is not possible to obtain an optimal value greater than or equal to η̄
when the graph is not K-colorable.

From Lemma 3.1 it is now straightforward to prove that the decision problems,
Problem 2.1, in both downlink and in uplink are NP-hard, which is stated in Theo-
rem 3.2.

Theorem 3.2. The joint channel assignment and power allocation decision prob-
lems, given in Problem 2.1, are NP-hard.



4. On the approximability of the overall problem 11

Proof. Lemma 3.1 shows that if we can solve the constructed problem instance,
given in Problem 2.1, then we also can solve the graph K-colorability problem. As
the graph K-colorability problem, given in Problem 3.1, is NP-complete, according
to Theorem 3.1, the theorem follows.

4. On the approximability of the overall problem

In this section it is proved that for any positive constant ρ, there exists a suffi-
ciently large number of channels |C|, such that the joint channel assignment and
power allocation optimization problems (2.4), in downlink and in uplink, are not
ρ-approximable, unless P is equal to NP. To prove this statement, a known NP-
hard K-colorable graph result by Khot, see [10, Theorem 1.6], is to be used, and is
therefore restated in the following theorem.

Theorem 4.1. (Khot [10]) For all sufficiently large constants K, it is NP-hard
to color a K-colorable graph with K

1
25

(log K) colors. Moreover this hardness result
holds for graphs with bounded degree, in fact graphs with degree at most 2KO(log K)

.

The definition of an ρ-approximable algorithm is given in the following definition.

Definition 4.1. Let A be an optimization maximization problem with positive cost
function c, and let A be an algorithm which, given an instance I of A, returns a
feasible solution fA(I); denote the optimal solution of I by f̂(I). Then A is called
an ρ-approximate algorithm for A for some constant ρ > 0 if and only if

c(fA(I)) ≥ ρc(f̂(I))

for all instances I.

Let us now consider an arbitrary K-colorable graph G, K ≥ 3, and construct
a problem instance by using stages 1, 2, 4 and 5 in Section 3. The path gain g is
composed by ḡ, δ and zero, according to the construction in stages 1, 2 and 4 in
Section 3. Let the constants within this problem instance be chosen as follows:

Pmax
S,i = 1, i ∈ S, (4.1a)
W = 1, (4.1b)
σ2

j = 1, j ∈ D, (4.1c)
ḡ = 1, (4.1d)

δ =
1

K2
. (4.1e)

Given this constructed problem instance, one can prove the following theorem.

Theorem 4.2. For any constant ρ > 0, there exists a positive N ∈ IR such that
there is no ρ-approximate polynomial algorithm of the optimization problem (2.4),
in downlink or in uplink, for K ≥ N , unless P is equal to NP.
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Proof. Let G = (V,E) be a K-colorable graph. Let us construct the problem
instance of optimization problem (2.4), either considering downlink or uplink, using
stages 1, 2, 4 and 5 in section 3, together with the constants given in (4.1).

With this constructed problem instance, the proof consists of two parts. In the
first part it is proved that there exists a solution, independent of K, with positive
total Shannon capacity, i.e., c(f̂(I)) > 0. So, due to the K-colorability of the graph,
a positive objective value, independent of K, can be obtained. The second part of
the proof is to verify that for a sufficiently large K, there exists an instance I for
which c(fA(I)) can be made arbitrarily small. The theorem follows by combining
these two parts of the proof.

Let us begin to prove the first part. As the graph is K-colorable one can associate
a channel ki ∈ C for each node i ∈ V such that ki 6= kj , (i, j) ∈ E. Now if each
source S̄i transmit information by using full power, i.e., 1, over the link with path
gain ḡ = 1 on channel ki, and no power on its other channels, then the total Shannon
capacity is

log(1 + ḡ) > 0,

for each mobile user, independently of K. Hence, c(f̂(I)) > 0, independently of K,
for an arbitrary problem instance I, which concludes the first part of the proof.

The second part of the proof is to verify that for some instance I, c(fA(I))→ 0
as K → ∞. Our first step is to verify that no transmission can take place over a
link with path gain δ, if the algorithm is to be ρ-approximable for some constant
ρ > 0. If a link with path gain δ is used, then the maximum Shannon capacity of
the mobile user using the link is log(1 + 1

K2 ). Hence, the maximum total Shannon
capacity is at most

K log
(

1 +
1

K2

)
=

1
K

+ o

(
1
K

)
, (4.2)

for the mobile user using the link with path gain δ. As the objective function is to
maximize the minimum total Shannon capacity of all mobile users, it follows that if
a mobile user transmit over a link with path gain δ, then the objective value can be
at most the total Shannon capacity of that mobile user. As (4.2) converges to zero
as K → ∞, this implies that no transmission can take place over a link with path
gain δ, if the algorithm is to be ρ-approximable for some constant ρ > 0. Hence, all
communication must take place over the links with path gain ḡ = 1, i.e., by base
station-mobile user pairs, where each pair originates from the same node i ∈ V .

As the communication only takes place between base station-mobile user pairs
originating from the same node i ∈ V , the communication can be represented as
possible colors of the original graph G. The remaining part of the proof is now
to construct a coloring of the graph, which for an approximation algorithm gives
a positive objective value, but uses to few colors, and by that contradicting the
possibility of existence of an ρ-approximable algorithm, for any constant ρ > 0,
unless P is equal to NP.

To construct a cloring of the graph G, we first introduce a positive scalar

γ =
√

K3/T , (4.3)
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where T = K
1
25

(log K). The choice of γ in (4.3) will turn out to be suitable. Let us
also introduce a set Γi for each communicating base station-mobile user pair i ∈ V ,
where Γi contains the channels on which transmission takes place with power of at
least γ, i.e.,

Γi = {k ∈ C : pik ≥ γ}, i ∈ V.

We refer to the members of the set Γi as the possible colors of node i ∈ V .
To simplify notation, we let ηik, i ∈ V , k ∈ C, denote the Shannon capacity

of the mobile user of the communicating base station-mobile user pair i ∈ V , on
channel k ∈ C.

For î ∈ V , k 6∈ Γî, the Shannon capacity ηîk is bounded, according to

ηîk ≤ log(1 + γ), k 6∈ Γî. (4.4)

Hence, if Γĩ = ∅ for some ĩ, then (4.4) gives an upper bound on the Shannon capacity
for each channel. We will return to this setting, but for now, let us instead consider
the situation where Γi 6= ∅ for all i ∈ V .

As Γi 6= ∅, i ∈ V , we can introduce Fik as the number of neighboring nodes of
i ∈ V for which color k is possible, i.e.,

Fik = |{j ∈ V : k ∈ Γj , (i, j) ∈ E}|, i ∈ V, k ∈ Γi. (4.5)

Let ki be the favorite color of node i, defined as the possible color with the least
number of neighbors of i ∈ V , breaking ties arbitrarily, i.e.,

ki = argmin
k∈Γi

Fik, i ∈ V. (4.6)

We can now create a coloring of the given graph G based on the colors ki by
creating copies of the colors when needed, to avoid the conflicts. If F is defined as

F = max
i∈V

Fiki
, (4.7)

then it gives the largest number of conflicts for any node i ∈ V on its favorite color
ki. Hence, at most F +1 copies of any color is needed, and therefore this construction
gives a coloring of the graph G that in total contains at most K(F + 1) colors.

Let us now consider a node î ∈ V for which Fîkî
= F . Then Fîk ≥ F for each

color k ∈ Γî according to (4.5)-(4.7). Hence, for each k ∈ Γî, the corresponding
base station-mobile user pair î receives interference from at least F other pairs over
links with path gain δ, where each of these pairs use power γ or more. Hence, the
Shannon capacity ηîk, of mobile user î on channel k, is bounded as

ηîk ≤ log
(

1 +
1

1 + Fδγ

)
, k ∈ Γî. (4.8)

According to Theorem 4.1 there exists, for all sufficiently large constants K, an
instance I for which K(F + 1) > T . For this instance I it follows that F ≥ T/K,
which in conjunction with (4.8) gives

ηîk ≤ log

(
1 +

1
1 + T

K δγ

)
≤ log

(
1 +

1
T
K δγ

)
, k ∈ Γî. (4.9)
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Let us now consider (4.4) and (4.9). The choice of γ in (4.3) gives that their
upper bounds become identical. The joint bound, of the Shannon capacity of mobile
user î on a channel k ∈ C, is then given by

ηîk ≤ log

1 +

√
K3

T

 , k ∈ C. (4.10)

By summing (4.10) over all channels, an upper bound of the total Shannon capacity
of mobile user î is obtained as

η ≤ K log

1 +

√
K3

T

 . (4.11)

The choice of T = K
1
25

(log K), which was obtained from Theorem 4.1, gives that the
upper bound in (4.11) is approximately K

5
2
− 1

50
log(K) for large K. As there for all

sufficiently large K exists an instance I where the total Shannon capacity is bounded
by (4.11), it follows that c(fA(I)) converges to zero as K → ∞, and the theorem
follows.

The result of Theorem 4.2 is for a rather large value of K. However, there
should be difficulties when only considering three channels, i.e., |C| = K = 3. This
is due to the known difficulty of coloring an arbitrary 3-colorable graph, for which
it is unknown whether it is a NP-hard problem. The best known algorithm gives a
|V |0.2072 coloring of the graph [5]. Hence, a configuration with only three channels
might not be approximable in general.

5. The power allocation optimization problem

From section 3 and section 4 we know that the joint channel assignment and power
allocation problems are difficult. However, we are still aiming for ”a good solution”
to these problems. Given a feasible channel assignment, it is of interest to be
able to solve the remaining power allocation optimization problem efficiently. One
possibility is to solve the channel assignment and the power allocation problems
interchangeably, which motivates our study of the power allocation optimization
problems that will be defined here, and take place in section 6 and section 7.

As mentioned, the power allocation setting is obtained by assuming that a feasi-
ble channel assignment is known, i.e., both xijk, i ∈ S, j ∈ D, k ∈ C, and yij , i ∈ S,
j ∈ D, are known. Hence for each source i we know which destination j it com-
municates with. This motivates a natural extension of notation by introducing the
concept of links (i, j), where a link contains the source i ∈ S and destination j ∈ D
that are communicating, i.e., i ∈ S and j ∈ D such that yij = 1. Let us introduce
some sets, which will be used when the power allocation optimization problems are
considered. These sets are given in the following definition.
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Definition 5.1. Define the following sets:

L = {(i, j) : yij = 1, i ∈ S, j ∈ D},
Lk = {(i, j) ∈ L : xijk = 1}, k ∈ C,
Cij = {k ∈ C : xijk = 1}, (i, j) ∈ L,
Ci = ∪j∈D: (i,j)∈LCij , i ∈ S.

Note that for a given channel assignment, the sets in Definition 5.1 are known. If
Lk̂ = ∅ for some channel k̂, then we can simply exclude that channel by letting C ←
C\{k̂}, since no user transmit information on that channel anyway. If Cîĵ = ∅, for
some link (̂i, ĵ) ∈ L, then the objective value is trivially zero, since we maximize the
minimum Shannon capacity. Hence, for the power allocation optimization problem
to be well-posed, we will assume that the two conditions, given in Definition 5.2, are
fulfilled.

Definition 5.2. For the power allocation optimization problem to be well-posed, the
given channel assignment must imply that Lk 6= ∅, k ∈ C, and Cij 6= ∅, (i, j) ∈ L.

Before formulating the power allocation optimization problem, let us first rede-
fine the concepts of signal to interference and noise ratio and Shannon capacity, for
a given feasible channel assignment. Let the SINR be given by (2.1) for the existing
links, i.e., for (i, j) ∈ L. Let the Shannon capacity of a mobile user on link (i, j) ∈ L,
at channel k, be given as

ηijk = W log (1 + SINRijk) , (i, j) ∈ L, k ∈ Cij , (5.1)

and let the total Shannon capacity of a mobile user j be given by

ηij =
∑

k∈Cij

ηijk, (i, j) ∈ L, (5.2)

where ηijk is given in (5.1). Note that the remaining links (i, j) 6∈ L are not be used,
so their SINR and Shannon capacity need not be defined.

Given a feasible channel assignment, the power allocation optimization problem
is given by

maximize
η, ηij , pik

η

subject to η ≤ ηij , (i, j) ∈ L,∑
k∈Ci

pik ≤ Pmax
S, i , i ∈ S,

pik ≥ 0, i ∈ S, k ∈ Ci,

(5.3)

where ηij , (i, j) ∈ L is given in (5.2), and Pmax
S, i is the same upper bound power

consumption constant as in (2.4e). In (5.3), S = B gives the downlink formulation,
while S = M gives the uplink formulation.

We can obtain a simplified version of the power allocation optimization problem
(5.3) by introducing an additional constraint on our channel assignment. The con-
straint is to only allow each link (i, j) ∈ L to use one single channel, i.e., |Cij | = 1,
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(i, j) ∈ L. Let us refer to this formulation as a single channel on each link power
allocation optimization problem, which is given by

maximize
η, ηij , pik

η

subject to η ≤ ηijk, (i, j) ∈ L, k ∈ Cij∑
k∈Ci

pik ≤ Pmax
S, i , i ∈ S,

pik ≥ 0, i ∈ S, k ∈ Ci,

(5.4)

where |Cij | = 1, (i, j) ∈ L, ηijk, (i, j) ∈ L, k ∈ Cij is given in (5.1), and Pmax
S, i

is the same upper bound power consumption constant as in (2.4e) and (5.3). As
one channel only occupies each link, the optimization problem (5.4) in uplink can
be decomposed into a separate optimization problem for each channel k ∈ C, since
|Ci| = |Cij |, (i, j) ∈ L, in uplink. However, in downlink this is not necessarily the
case, since base stations can have links to several mobile users.

The power allocation optimization problems (5.3) and (5.4) have been defined
above, and some mathematical properties are now to be presented in section 6 and
section 7.

6. On properties of the power allocation optimization problem

Given a feasible channel assignment, the arising power allocation optimization prob-
lem is given in (5.3). Some general mathematical properties of this problem is to be
given here, while some convexity properties are given in section 7.

If we use a similar construction as for the proof of Theorem 4.2, a complexity
result for the power allocation optimization problem (5.3) can be obtained. The
result is given in the following corollary.

Corollary 6.1. For any constant ρ > 0, there exists a positive N ∈ IR such that
there is no ρ-approximate polynomial algorithm of the optimization problem (5.3),
in downlink or in uplink, for K ≥ N , unless P is equal to NP.

Proof. Consider the proof of Theorem 4.2, for the joint channel assignment and
power allocation optimization problem (2.4). Let xS̄iD̄ik

= 1, i ∈ V , k ∈ C, xS̄iD̄jk =
0, i ∈ V , j ∈ V , i 6= j, k ∈ C, yS̄iD̄i

= 1, i ∈ V , and yS̄iD̄j
= 0, i ∈ V , j ∈ V , i 6= j.

As the entire complexity remains for this instance, the same proof as for Theorem
4.2 gives the corollary.

Let us now for the remaining part of this section assume that each path gain

gij > 0, i ∈ S, j ∈ D.

If so, then a local maximizer to a well-posed power allocation optimization problem
(5.3), where each power pik > 0, i ∈ S, k ∈ C, fulfils that every Shannon capacity
ηij , (i, j) ∈ L, given in (5.2), are equal in downlink. This result also holds in uplink,
but with the additional assumption of the sets L and C being connected, see the
following definition.
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Definition 6.1. The sets L and C are connected if there for every non-empty L̃ ⊂
L, L̃ 6= L, and C̃ = {k ∈ C : xijk = 1 for some (i, j) ∈ L̃}, exists a channel k̃ ∈ C̃
and a link (̂i, ĵ) ∈ L\L̃ such that (̂i, ĵ) ∈ Lk̃.

Let us use a straightforward argument to prove our claim, which is that a local
maximizer of (5.3) with only positive powers, will have an objective value η∗ = ηij ,
(i, j) ∈ L, given that the sets L and C are connected. First we note that a feasible
channel assignment in downlink always is connected. Now assume that there exists
a link (i, j) ∈ L where ηij > η∗. Then we can decrease all its powers pik, k ∈ Ci,
which will improve the Shannon capacity for all users using a channel in Ci. Make
sure that the decrease of the powers pik, k ∈ Ci are sufficiently small, i.e., such that
ηij remain strictly greater than η∗. Let L̃ = {(i, j) ∈ L : ηij > η∗}, if L̃ = L we are
done, so assume that L̃ 6= L. Due to the assumption of connectedness, see Definition
6.1, it follows that with the set of links L̃ there exists a channel k̃ ∈ C̃ and a link
(̂i, ĵ) which both belongs to L\L̃ and to Lk̃. Now, we can decrease the power of the
sources belonging to links (i, j) ∈ L̃, which are using the channel k̃ ∈ C̃. Make sure
that the decrease is sufficiently small, i.e., such that ηij remain strictly greater than
η∗ for all (i, j) ∈ L̃, and also becomes strictly greater than η∗ for all (i, j) ∈ Lk̃.
As the sets L and C are connected, this procedure can be repeated until all links
(i, j) ∈ L eventually have an improved Shannon capacity, which contradicts that
the suggested solution is a local maximizer, and our claim follows.

To motivate our assumptions, used to prove our claim above, we now illustrate
some examples in downlink and in uplink where it does not hold that the Shannon
capacity of each mobile user has to be equal in a local maximizer.

In a local maximizer of the power allocation optimization problem (5.3) in down-
link, where some base station does not transmit on each channel k ∈ C, there might
exists (̂i, ĵ) ∈ L such that ηîĵ > η∗, where η∗ is the objective value. Let B = {1, 2},
M = {1, 2, 3}, C = {1, 2} and L = {(1, 1), (2, 2), (2, 3)}. Let L1 = {(1, 1), (2, 2)},
L2 = {(2, 3)}, C11 = {1}, C22 = {1}, and C23 = {2}. It follows that the sets
Lk, k ∈ C, and Cij , (i, j) ∈ L, are well-posed. Let W = 1, σj = 1, j ∈ M , and
Pmax

B,i = 1, i ∈ B, g = (g11, g12, g13, g21, g22, g23) = (1/2, 1/2,−, 1, 1, 5), where the
value of g13 does not affect the solution. A local maximizer, with objective value η∗,
is for example (p11, p21, p22) = (1, 1/2, 1/2), as η∗ = η11 = η22 = log(1 + 1/3) < η23,
where not both η11 and η22 can be improved.

In a local maximizer of the power allocation optimization problem (5.3) in uplink,
where some base station does not receive information from sources using non-zero
power on each channel k ∈ C, there might exists (̂i, ĵ) ∈ L such that ηîĵ > η∗,
where η∗ is the objective value. Let M = {1, 2, 3}, B = {1, 2}, C = {1, 2} and
L = {(1, 1), (2, 2), (3, 2)}. Let L1 = {(1, 1), (2, 2)}, L2 = {(1, 1), (3, 2)}, C11 =
{1, 2}, C22 = {1}, and C32 = {2}. It follows that the sets Lk, k ∈ C, and Cij ,
(i, j) ∈ L, are well-posed. Let W = 1, σj = 1, j ∈ B, and Pmax

M,i = 1, i ∈ M ,
g = (g11, g12, g21, g22, g31, g32) = (5, 1,−, 1, 1, 5), where the value of g21 does not
affect the solution. One local maximizer, with objective value η∗, is for example
(p11, p12, p21, p32) = (0, 1, 1, 1), as η∗ = η22 = log(1 + 1) < η11 = η32 = log(1 + 5/2),
where η22 cannot be improved. Note that if channel 1 on link (1, 1) is removed, i.e.,
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L1 = {(2, 2)} and C(1,1) = {2} instead, then the sets Lk, k ∈ C, and Cij , (i, j) ∈ L
remain well-posed, and this new problem can be decomposed into two connected
subsets, one for each channel k ∈ C, where these connected subsets have different
objective values.

Another property of the power allocation optimization problem (5.3) is that at
least one source will use full power at any local maximizer, given that the objective
value is positive. To prove this, let us assume that pik, (i, j) ∈ L, k ∈ Cij , is a
local maximizer of optimization problem (5.3), with objective value η∗ > 0, where∑

k∈Ci
pik < Pmax

S,i , i ∈ S. Then there exists some α > 1 such that
∑

k∈Ci
αpik ≤

Pmax
S,i , i ∈ S. Let ηij denote the Shannon capacity of the mobile user of link (i, j) ∈ L,

when the power pik, i ∈ S, k ∈ Ci is used, and let ηα
ij denote the Shannon capacity

of the mobile user of link (i, j) ∈ L, when the power αpik, i ∈ S, k ∈ Ci is used. As
σ2

j /α < σ2
j , j ∈ D, it follows that

min
(i,j)∈L

ηα
ij > min

(i,j)∈L
ηij ,

which contradicts that the suggested pik, (i, j) ∈ L, k ∈ Ci, is a local maximizer, and
our claim follows. For the single channel on each link power allocation optimization
problem (5.4), our claim implies that at least one source i ∈ S will use power equal
to Pmax

S,i at a local maximizer.
A similar result is given in [8], though with the objective to maximize the total

Shannon capacity over one single channel with two base stations, communicating
with one mobile user each. This setting is proved to have at least one source that
uses full power. This result can now be extended, using the same proof as above.
If considering a local maximizer of a modified power allocation optimization prob-
lem (5.3), where the modification is to replace the objective function into being to
maximize the total Shannon capacity, then the same proof, gives that∑

(i,j)∈L

ηα
ij >

∑
(i,j)∈L

ηij ,

which contradicts that the suggested pik, (i, j) ∈ L, k ∈ Ci, is a local maximizer.
Hence, this last result is also applicable when the objective function is to maximize
the total Shannon capacity.

7. On convexity of the restricted problem

This section contains some convexity results for the power allocation optimization
problems given in (5.3) and (5.4). A first observation, due to Corollary 6.1, is that it
is probably unlikely to find a general convex optimization problem that corresponds
to our power allocation optimization problem (5.3), since a convex optimization
problem tend to be solvable in polynomial time in general.

We can also observe that neither problem (5.3) nor (5.4) is convex in general,
which follows from an example with two base stations, two mobile users and one
channel. Let S = {1, 2}, D = {1, 2}, C = {1} and L = {(1, 1), (2, 2)}, together with
the constants W = 1, σ1 = σ2 = 0.1, Pmax

S,1 = Pmax
S,2 = 20 and (g11, g12, g21, g22) =
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(0.011, 0.089, 0.002, 0.004). This gives a non-concave objective function, see Figure
5. Hence, the optimization problems (5.3) and (5.4) are not convex in general.

Figure 5: The Shannon capacity η = min{η11, η22} is a function of the power
variables p11 and p21, which both uses the single channel |C| = 1.

Despite not being convex in general, the single channel on each link power alloca-
tion optimization problem (5.4), with a non-zero objective value η∗ = ηij , (i, j) ∈ L,
given in (5.2), and with each transmitter only using a single channel, has a convexity
property in terms of each local maximizer being also a global maximizer. This is
to be proved, by formulating a corresponding convex single channel optimization
problem, obtained from (5.4), where γ = log{η} and exp(p̄ik) = pik, (i, j) ∈ L,
k ∈ Cij , and then verify that the relation between their KKT-points are one-to-one.
The convex single channel optimization problem is given by

maximize
γ, p̄ik

γ

subject to γ ≤ log
(
W log(1 + SINRijk)

)
, (i, j) ∈ L, k ∈ Cij ,

log
(∑

k∈Ci
exp(p̄ik)

)
≤ log

(
Pmax

S, i

)
, i ∈ S,

(7.1)

where

SINRijk =
gij exp(p̄ik)

σ2
j +

∑
(m,n)∈Lk\{(i,j)} gmj exp(p̄mk)

, (i, j) ∈ L, k ∈ Cij .

Note that if (7.1) is to be well defined, then the corresponding η and pik, (i, j) ∈ L,
k ∈ Cij , of (5.4) must be non-negative. From [14] it is known that W log(1 +
SINRijk), (i, j) ∈ L, k ∈ Cij is a quasiconcave function, i.e., not closed under addi-
tion, and that log

(
W log(1 + SINRijk)

)
, (i, j) ∈ L, k ∈ Cij is a concave function.

Hence, it follows that (7.1) is a convex optimization problem, see, e.g., [4].

Lemma 7.1. In uplink, the two optimization problems (5.4) and (7.1) are equivalent
in the sense that their KKT points are one to one, given that the powers pik =
exp(p̄ik), (i, j) ∈ L, k ∈ Cij, the objective value η∗ of (5.4) is strictly positive, and
η∗ = ηij, (i, j) ∈ L, given in (5.2).
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This result also holds in downlink, under the additional assumption pik = pik̂,
i ∈ B, k ∈ Cij, k̂ ∈ Ciĵ.

Proof. The first-order necessary optimality conditions are necessary and suffi-
cient for global optimality of the corresponding convex single channel optimization
problem (7.1), since it satisfies the Slater constraint qualification. Let us begin by
evaluating the first-order necessary optimality conditions of (7.1) and then com-
pare it with the first-order necessary optimality conditions of (5.4). The optimality
conditions of (7.1) take the form

|M |∑
m=1

λ̄m = 1, (7.2a)

µ̄i

exp(p̄îk)
= −

∑
(̂i,ĵ)∈Lk\{(i,j)}

λ̄m̂

ηm̂

Wgîĵ exp(p̄îk)(
1 + SINRîĵk

) giĵ(
σ2

ĵ
+
∑

(̃i,j̃)∈Lk\{(̂i,ĵ)} gĩĵ exp(p̄ĩk)
)2

+
λ̄m

ηm

W(
1 + SINRijk

) gij(
σ2

j +
∑

(̂i,ĵ)∈Lk\{(i,j)} gîj exp(p̄îk)
) ,

(i, j) ∈ L, k ∈ Cij , (7.2b)

0 = λ̄m

(
log

(
W log(1 + SINRijk)

)
− γ

)
, (i, j) ∈ L, (7.2c)

0 = µ̄i

log
(
Pmax

S,i

)
− log

∑
k∈Ci

exp(p̄ik)

 , i ∈ S, (7.2d)

λ̄m ≥ 0, m ∈M,

µ̄i ≥ 0, i ∈ S, (7.2e)

where λ̄ and µ̄ are the Lagrange multipliers. Note that index m ∈ M , while index
i ∈ S and index j ∈ D.

Now, if we let pik = exp(p̄ik), (i, j) ∈ L, k ∈ Cij , λm = λ̄m, m ∈M , and

µi =
η∗

exp(p̄ik)
µ̄i, i ∈ S, k ∈ Ci, (7.3)

we obtain the KKT points of (5.4). Note that equation (7.3) gives no additional
constraint in uplink, since |Ci| = |Cij | = 1, (i, j) ∈ L. However, in downlink
equation (7.3) states that

p̄ik = p̄ik̂, i ∈ B, k ∈ Cij , k̂ ∈ Ciĵ .

which gives the additional assumption needed in downlink.

In downlink of (5.4), there is no motivation for each base station i ∈ B using
equal power on every link, more than that it is needed in the proof of Lemma
7.1. If we in addition assume that each base station only is allowed to use one
single channel, then this problem is equivalent with the optimization problem (5.4)
in uplink, which can be decomposed into |C| optimization problems, one for each
channel. For this problem it holds that any KKT point is a global maximizer, where
the objective value η∗ = ηij , (i, j) ∈ L. This result is given in the following corollary.
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Corollary 7.1. Any first-order KKT point of a well-posed power allocation opti-
mization problem (5.4), with objective value η∗ > 0, and where every source i ∈ S
has each of its powers equal, is also a global maximizer, where η∗ = ηij, (i, j) ∈ L,
given in (5.2).

Proof. Consider a first-order KKT point of a well-posed power allocation opti-
mization problem (5.4), with objective value η∗ > 0, where each source i ∈ S has
every of its powers equal. Given this setting, we know from Section 6, that η∗ = ηij ,
(i, j) ∈ L̄ both in downlink and in uplink. Then Lemma 7.1 gives that the KKT
point is a global maximizer, and the corollary follows.

It is already known that the unique global maximizer of (5.4) in uplink has
the objective value η∗ = ηij , (i, j) ∈ L. There also exists algorithms which obtain
this global maximizer, see, e.g., Yates [15]. However, Corollary 7.1 gives that it is
sufficient to obtain a first-order KKT point, to ensure global optimality of (5.4).
One setting for Corollary 7.1 is, e.g., when |Ci| = 1, i ∈ S.

This convexification approach, used to prove Lemma 7.1 and Corollary 7.1, is
not applicable for the more general power allocation optimization problem (5.3), for
several reasons. First, it is still necessary for each source i ∈ S to have equal power
on every link. If reformulating (7.1) for the corresponding (5.3) situation, it changes
the first constraints into

γ ≤ log

∑
k∈Ci

W log(1 + SINRijk)

 , (i, j) ∈ L, (7.4)

instead. In the proof of Lemma 7.1 and Corollary 7.1, this modification introduces
an extra factor 1/γij , (i, j) ∈ L, on each term of the right-hand-side of equation
(7.2c). So, if those results are still to hold, then we need the additional assumption
of

γ∗ = γij , (i, j) ∈ L, as well as η∗ = ηij , (i, j) ∈ L.

Hence, such a setting only covers the situation where the number of channels on
each link is the same, together with that the Shannon capacity of each channel is
the same, and that each source i ∈ S use equal power on every link. Another aspect
is that optimization problem (7.1) might no longer be convex, due to (7.4), which
follows from the previously mentioned characteristic of quasiconcave functions not
being closed under addition, see, e.g., [3].

In the slightly more general setting where each base station has two channels,
there exist examples both in downlink and in uplink with more than one local max-
imizer. Consider the following setting where B = {1, 2, 3}, M = {1, 2, 3, 4} and
C = {1, 2} in Figure 6. The constructed examples evolve from a setting of two base
station-mobile user pairs and two channels, where the sources of each pair uses all
power on one channel each. This setting gives rise to two different local maximizers,
which both are equally good in terms of optimal value. However, introducing a third
base station, with two mobile users, two different local maximizers, with different
objective value, can be obtained.
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Figure 6: A setting consisting of three base stations illustrated as squares, four
mobile users illustrated as circles and two channels illustrated as links.

In downlink this setting, of Figure 6, gives L = {(1, 1), (2, 2), (3, 3), (3, 4)},
where channel 1 can be used on the links (1, 1), (2, 2) and (3, 3), and where channel
2 can be used on the links (1, 1), (2, 2) and (3, 4). Let W = 1, σ2

j = 0.1, j ∈ M ,
Pmax

B,i = 10, i ∈ B, and

g =

 1 10 10 1
10 1 1 1

0.01 0.01 2 2

 .

If solving the optimization problem (5.3) in downlink with these sets and constants,
one can obtain the two KKT points

η ≈ 1.4066

p ≈

 0.5961 0
0 0.3286

9.3396 0.6604

 and

η ≈ 2.1791

p ≈

 0 1.1758
1.1758 0
5.0000 5.0000


which both are local maximizers.

In uplink this setting, of Figure 6, gives L = {(1, 1), (2, 2), (3, 3), (4, 3)}, where
channel 1 can be used on the links (1, 1), (2, 2) and (3, 3), and where channel 2 can
be used on the links (1, 1), (2, 2) and (4, 3). Let W = 1, σ2

j = 0.1, j ∈ B, Pmax
M,i = 10,

i ∈M , and

g =


1 10 10
10 1 1

0.01 0.01 2
1 1 2

 .

If solving the optimization problem (5.3) in uplink with these sets and constants,
one can obtain the two KKT points

η ≈ 0.3785

p ≈


2.1560 4.3366
10.0000 0
7.2839 −
− 10.0000

 and

η ≈ 0.8771

p ≈


1.4065 0
0.0802 9.9198
10.0000 −
− 7.0338


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which both are local maximizers. Note that a ”−” in p indicates that the corre-
sponding variable pik does not exist, i.e., the transmitting mobile user i ∈ M does
not have access to channel k ∈ C.

8. Summary and conclusions

In both downlink and uplink a joint channel assignment and power allocation op-
timization problem has been formulated, with objective to maximize the minimum
total Shannon capacity of any mobile user. The corresponding decision problems
were shown to be NP-hard, and for any constant ρ > 0, there exists a sufficiently
large number of channels, such that the joint channel assignment and power alloca-
tion optimization problem is not ρ-approximable, unless P is equal to NP.

As the joint channel and power allocation optimization problem is difficult, one
approach is to divide the problem into two separate parts, where one part concerns
the channel allocation and the other part solves the power allocation optimization
problem. These two parts can then be solved interchangeably.

The second part of this paper is focused on properties of the power allocation
optimization problem. This optimization problem is not convex in general, though
if each transmitter only is allowed to use one channel, then any KKT point ensures
global optimality. It was shown that for any constant ρ > 0, there exists a sufficiently
large number of channels, such that the power allocation optimization problem is
not ρ-approximable, unless P is equal to NP. Hence, the difficulties remain in the
power allocation optimization problem, even though the binary combinatorics, in
terms of the channel assignment, is assumed to be known.

A. A mathematical result

Lemma A.1. Let g̃ > 0, σ > 0 and N a positive integer. Then the optimization
problem

maximize
p∈IRN

∑N
k=1 log

(
1 + g̃pk

σ2

)
subject to

∑N
k=1 pk ≤ 1,

pk ≥ 0, k = 1, ..., N.

(A.1)

has a unique global optimal solution where pk = 1/N , k = 1, ..., N , and the optimal
value is N log(1 + g̃

Nσ2 ).

Proof. The Langrange function of this problem is given by

L(p, µ, λ) = −
N∑

k=1

log
(

1 +
g̃pk

σ2

)
− µ

(
1−

N∑
k=1

pk

)
−

N∑
k=1

pkλk,

where p ∈ IRN , µ ∈ IR and λ ∈ IRN . The derivative of the Lagrange function, with
respect to each pk, is given by

∂L
∂pk

= − g̃

σ2 + pkg̃
+ µ− λk = 0, k = 1, ..., N.
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Let pk = 1/N and λk = 0, k = 1, ..., N , then

µ =
g̃

σ2 + 1
N g̃

> 0,

and as (1−
∑

k pk) = 0, this point fulfils the first-order necessary optimality condi-
tions.

Linear constraints together with that the logarithmic function is strictly in-
creasing gives that it is a strict convex optimization problem (A.1), which gives the
lemma.
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