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Abstract—Autonomic computing is a paradigm that aims
at reducing administrative overhead by providing autonomic
managers to make applications self-managing. In order to better
deal with dynamic environments, for improved performance
and scalability, we advocate for distribution of management
functions among several cooperative managers that coordinate
their activities in order to achieve management objectives. We
present a methodology for designing the management part of
a distributed self-managing application in a distributed manner.
We define design steps, that includes partitioning of management
functions and orchestration of multiple autonomic managers. We
illustrate the proposed design methodology by applying it to
design and development of a distributed storage service as a
case study. The storage service prototype has been developed
using the distributing component management system Niche.
Distribution of autonomic managers allows distributing the
management overhead and increased management performance
due to concurrency and better locality.

Keywords-autonomic computing; control loops; self-
management; distributed systems;

I. INTRODUCTION

Autonomic computing [1] is an attractive paradigm

to tackle management overhead of complex applications

by making them self-managing. Self-management, namely

self-configuration, self-optimization, self-healing, and self-

protection (self-* thereafter), is achieved through autonomic

managers [2]. An autonomic manager continuously monitors

hardware and/or software resources and acts accordingly. Man-

aging applications in dynamic environments (like community

Grids and peer-to-peer applications) is specially challenging

due to high resource churn and lack of clear management

responsibility.

A distributed application requires multiple autonomic man-

agers rather than a single autonomic manager. Multiple man-

agers are needed for scalability, robustness, and performance

and also useful for reflecting separation of concerns. Engi-

neering of self-managing distributed applications executed in

a dynamic environment requires a methodology for building

robust cooperative autonomic managers. The methodology

should include methods for management decomposition, dis-

tribution, and orchestration. For example, management can be
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decomposed into a number of managers each responsible for a

specific self-* property or alternatively application subsystems.

These managers are not independent but need to cooperate and

coordinate their actions in order to achieve overall manage-

ment objectives.

The major contributions of the paper are as follows. We

propose a methodology for designing the management part

of a distributed self-managing application in a distributed

manner, i.e. with multiple interactive autonomic managers.

Decentralization of management and distribution of autonomic

managers allows distributing the management overhead, in-

creasing management performance due to concurrency and/or

better locality. Decentralization does avoid a single point of

failure however it does not necessarily improve robustness. We

define design steps, that includes partitioning of management,

assignment of management tasks to autonomic managers, and

orchestration of multiple autonomic managers. We describe a

set of patterns (paradigms) for manager interactions.

We illustrate the proposed design methodology including

paradigms of manager interactions by applying it to design and

development of a distributed storage service as a case study.

The storage service prototype has been developed using the

distributing component management system Niche1 [3]–[5].

The remainder of this paper is organized as follows. Sec-

tion II describes Niche and relate it to the autonomic comput-

ing architecture. Section III presents the steps for designing

distributed self-managing applications. Section IV focuses on

orchestrating multiple autonomic managers. In Section V we

apply the proposed methodology to a distributed file storage as

a case study. Related work is discussed in Section VI followed

by conclusions and future work in Section VII.

II. THE DISTRIBUTED COMPONENT MANAGEMENT

SYSTEM

The autonomic computing reference architecture proposed

by IBM [2] consists of the following five building blocks.

• Touchpoint: consists of a set of sensors and effectors

used by autonomic managers to interact with managed re-

sources (get status and perform operations). Touchpoints

are components in the system that implement a uniform

1In our previous work [3], [4] our distributing component management
system Niche was called DCMS



management interface that hides the heterogeneity of

managed resources. A managed resource must be exposed

through touchpoints to be manageable.

• Autonomic Manager: is the key building block in the

architecture. Autonomic managers are used to implement

the self-management behaviour of the system. This is

achieved through a control loop that consists of four main

stages: monitor, analyze, plan, and execute. The control

loop interacts with the managed resource through the

exposed touchpoints.

• Knowledge Source: is used to share knowledge (e.g.

architecture information and policies) between autonomic

managers.

• Enterprise Service Bus: provides connectivity of com-

ponents in the system.

• Manager Interface: provides an interface for administra-

tors to interact with the system. This includes the ability

to monitor/change the status of the system and to control

autonomic managers through policies.

The use-case presented in this paper has been devel-

oped using the distributed component management system

Niche [3], [4]. Niche implements the autonomic computing

architecture described above. Niche includes a distributed

component programming model, APIs, and a run-time system

including deployment service. The main objective of Niche is

to enable and to achieve self-management of component-based

applications deployed on dynamic distributed environments

such as community Grids. A self-managing application in

Niche consists of functional and management parts. Functional

components communicate via bindings, whereas management

components communicate mostly via a publish/subscribe event

notification mechanism.

The Niche run-time environment is a network of distributed

containers hosting functional and management components.

Niche uses a structured overlay network (Niche [4]) as the

enterprise service bus. Niche is self-organising on its own

and provides overlay services used by Niche such as name-

based communication, distributed hash table (DHT) and a

publish/subscribe mechanism for event dissemination. These

services are used by Niche to provide higher level commu-

nication abstractions such as name-based bindings to support

component mobility; dynamic component groups; one-to-any

and one-to-all bindings, and event based communication.

For implementing the touchpoints, Niche leverages the in-

trospection and dynamic reconfiguration features of the Fractal

component model [6] in order to provide sensors and actuation

API abstractions. Sensors are special components that can be

attached to the application’s functional components. There are

also built-in sensors in Niche that sense changes in the envi-

ronment such as resource failures, joins, and leaves, as well as

modifications in application architecture such as creation of a

group. The actuation API is used to modify the application’s

functional and management architecture by adding, removing

and reconfiguring components, groups, bindings.

The Autonomic Manager (a control loop) in Niche is orga-

nized as a network ofManagement Elements (MEs) interacting

through events, monitoring via sensors and acting using the

actuation API. This enables the construction of distributed

control loops. MEs are subdivided into watchers, aggregators,

and managers. Watchers are used for monitoring via sensors

and can be programmed to find symptoms to be reported to

aggregators or directly to managers. Aggregators are used to

aggregate and analyse symptoms and to issue change requests

to managers. Managers do planning and execute change re-

quests.

Knowledge in Niche is shared between MEs using two

mechanisms: first, using the publish/subscribe mechanism pro-

vided by Niche; second, using the Niche DHT to store/retrieve

information such as component group members, name-to-

location mappings.

III. STEPS IN DESIGNING DISTRIBUTED MANAGEMENT

A self-managing application can be decomposed into three

parts: the functional part, the touchpoints, and the management

part. The design process starts by specifying the functional and

management requirements for the functional and management

parts, respectively. In the case of Niche, the functional part of

the application is designed by defining interfaces, components,

component groups, and bindings. The management part is

designed based on management requirements, by defining

autonomic managers (management elements) and the required

touchpoints (sensors and effectors).

An Autonomic Manager is a control loop that senses and

affects the functional part of the application. For many ap-

plications and environments it is desirable to decompose the

autonomic manager into a number of cooperating autonomic

managers each performing a specific management function

or/and controlling a specific part of the application. Decom-

position of management can be motivated by different reasons

such as follows. It allows avoiding a single point of failure. It

may be required to distribute the management overhead among

participating resources. Self-managing a complex system may

require more than one autonomic manager to simplify design

by separation of concerns. Decomposition can also be used

to enhance the management performance by running different

management tasks concurrently and by placing the autonomic

managers closer to the resources they manage.

We define the following iterative steps to be performed

when designing and developing the management part of a self-

managing distributed application in a distributed manner.

Decomposition: The first step is to divide the

management into a number of management tasks.

Decomposition can be either functional (e.g. tasks

are defined based which self-* properties they im-

plement) or spacial (e.g. tasks are defined based

on the structure of the managed application). The

major design issue to be considered at this step is

granularity of tasks assuming that a task or a group of

related tasks can be performed by a single manager.

Assignment: The tasks are then assigned to auto-

nomic managers each of which becomes responsible

for one or more management tasks. Assignment can



be done based on self-* properties that a task belongs

to (according to the functional decomposition) or

based on which part of the application that task is

related to (according to the spatial decomposition).

Orchestration: Although autonomic managers can

be designed independently, multiple autonomic man-

agers, in the general case, are not independent since

they manage the same system and there exist depen-

dencies between management tasks. Therefore they

need to interact and coordinate their actions in order

to avoid conflicts and interference and to manage the

system properly.

Mapping: The set of autonomic managers are then

mapped to the resources, i.e. to nodes of the dis-

tributed environment. A major issue to be considered

at this step is optimized placement of managers and

possibly functional components on nodes in order to

improve management performance.

In this paper our major focus is on the orchestration of

autonomic managers as the most challenging and less studied

problem. The actions and objectives of the other stages are

more related to classical issues in distributed systems such as

partitioning and separation of concerns, and optimal placement

of modules in a distributed environment.

IV. ORCHESTRATING AUTONOMIC MANAGERS

Autonomic managers can interact and coordinate their op-

eration in the following four ways:

A. Stigmergy

Stigmergy is a way of indirect communication and coor-

dination between agents [7]. Agents make changes in their

environment, and these changes are sensed by other agents and

cause them to do more actions. Stigmergy was first observed

in social insects like ants. In our case agents are autonomic

managers and the environment is the managed application.

The stigmergy effect is, in general, unavoidable when

you have more than one autonomic manager and can cause

undesired behaviour at runtime. Hidden stigmergy makes it

challenging to design a self-managing system with multiple

autonomic managers. However stigmergy can be part of the

design and used as a way of orchestrating autonomic managers

(Fig. 1).

B. Hierarchical Management

By hierarchical management we mean that some autonomic

managers can monitor and control other autonomic managers

(Fig. 2). The lower level autonomic managers are considered

as a managed resource for the higher level autonomic manager.

Communication between levels take place using touchpoints.

Higher level managers can sense and affect lower level man-

agers.

Autonomic managers at different levels often operate at

different time scales. Lower level autonomic managers are

used to manage changes in the system that need immediate

actions. Higher level autonomic managers are often slower

Fig. 1. The stigmergy effect.

Fig. 2. Hierarchical management.

and used to regulate and orchestrate the system by monitoring

global properties and tuning lower level autonomic managers

accordingly.

C. Direct Interaction

Autonomic managers may interact directly with one an-

other. Technically this is achieved by binding the appropriate

management elements (typically managers) in the autonomic

managers together (Fig. 3). Cross autonomic manager bindings

can be used to coordinate autonomic managers and avoid

undesired behaviors such as race conditions or oscillations.

D. Shared Management Elements

Another way for autonomic managers to communicate and

coordinate their actions is by sharing management elements

(Fig. 4). This can be used to share state (knowledge) and to

synchronise their actions.

V. CASE STUDY: A DISTRIBUTED STORAGE SERVICE

In order to illustrate the design methodology, we have

developed a storage service called YASS (Yet Another Storage

Service) [3], using Niche. The case study illustrates how

to design a self-managing distributed system monitored and

controlled by multiple distributed autonomic managers.
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Fig. 4. Shared Management Elements.

A. YASS Specification

YASS is a storage service that allows users to store, read

and delete files on a set of distributed resources. The service

transparently replicates the stored files for robustness and

scalability.

Assuming that YASS is to be deployed and provided in a

dynamic distributed environment, the following management

functions are required in order to make the storage service

self-managing in the presence of dynamicity in resources

and load: the service should tolerate the resource churn

(joins/leaves/failures), optimize usage of resources, and re-

solve hot-spots. We define the following tasks based on the

functional decomposition of management according to self-*

properties (namely self-healing, self-configuration, and self-

optimization) to be achieved.

• Maintain the file replication degree by restoring the files

which were stored on a failed/leaving resource. This

function provides the self-healing property of the service

so that the service is available despite of the resource

churn;

• Maintain the total storage space and total free space to

meet QoS requirements by allocating additional resources

when needed. This function provides self-configuration of

the service;

• Increasing the availability of popular files. This and the

next two functions are related to the self-optimization of

the service.

• Release excess allocated storage when it is no longer

needed.

• Balance the stored files among the allocated resources.

B. YASS Functional Design

A YASS instance consists of front-end components and

storage components as shown in Fig. 5. The front-end com-

ponent provides a user interface that is used to interact with

the storage service. Storage components represent the storage

capacity available at the resource on which they are deployed.

The storage components are grouped together in a storage

group. A user issues commands (store, read, and delete) using

the front-end. A store request is sent to an arbitrary storage

component (using one-to-any binding between the front-end

and the storage group) which in turn will find some r different

storage components, where r is the file’s replication degree,

with enough free space to store a file replica. These replicas

together will form a file group containing the r storage

components that will host the file. The front-end will then

use a one-to-all binding to the file group to transfer the file in

parallel to the r replicas in the group. A read request is sent

to any of the r storage components in the group using the

one-to-any binding between the front-end and the file group.

A delete request is sent to the file group in parallel using a

one-to-all binding between the front-end and the file group.

C. Enabling Management of YASS

Given that the functional part of YASS has been developed,

to manage it we need to provide touchpoints. Niche provides

basic touchpoints for manipulating the system’s architecture

and resources, such as sensors of resource failures and com-

ponent group creation; and effectors for deploying and binding

components.

Beside the basic touchpoint the following additional, YASS

specific, sensors and effectors are required.

• A load sensor to measure the current free space on a

storage component;

• An access frequency sensor to detect popular files;

• A replicate file effector to add one extra replica of a

specified file;

• A move file effector to move files for load balancing.

D. Self-Managing YASS

The following autonomic managers are needed to manage

YASS in a dynamic environment. All four orchestration tech-

niques in Section IV are demonstrated.

1) Replica Autonomic Manager: The replica autonomic

manager is responsible for maintaining the desired replica-

tion degree for each stored file in spite of resources failing

and leaving. This autonomic manager adds the self-healing

property to YASS. The replica autonomic manager consists of

two management elements, the File-Replica-Aggregator and

the File-Replica-Manager as shown in Fig. 6.
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The File-Replica-Aggregator monitors a file group, contain-

ing the subset of storage components that host the file replicas,

by subscribing to resource fail or leave events caused by

any of the group members. These events are received when

a resource, on which a component member in the group is

deployed, is about to leave or has failed. The File-Replica-

Aggregator responds to these events by triggering a replica

change event to the File-Replica-Manager that will issue a

find and restore replica command.

2) Storage Autonomic Manager: The storage autonomic

manager is responsible for maintaining the total storage capac-

ity and the total free space in the storage group, in the presence

of dynamism, to meet QoS requirements. The dynamism

is due either to resources failing/leaving (affecting both the

total and free storage space) or file creation/addition/deletion

(affecting the free storage space only). The storage autonomic

manager reconfigures YASS to restore the total free space

and/or the total storage capacity to meet the requirements.

The reconfiguration is done by allocating free resources and

deploying additional storage components on them. This auto-

nomic manager adds the self-configuration property to YASS.

The storage autonomic manager consists of Component-Load-

Watcher, Storage-Aggregator, and Storage-Manager as shown

in Fig. 7.

The Component-Load-Watcher monitors the storage group,

containing all storage components, for changes in the total free

space available by subscribing to the load sensors events. The

Component-Load-Watcher will trigger a load change event

when the load is changed by a predefined delta. The Storage-

Aggregator is subscribed to the Component-Load-Watcher

load change event and the resource fail, leave, and join events

(note that the File-Replica-Aggregator also subscribes to the

resource failure and leave events). The Storage-Aggregator, by

analyzing these events, will be able to estimate the total storage

capacity and the total free space. The Storage-Aggregator

will trigger a storage availability change event when the total

and/or free storage space drops below a predefined thresholds.

The Storage-Manager responds to this event by trying to

allocate more resources and deploying storage components on

them.

3) Direct Interactions to Coordinate Autonomic Managers

: The two autonomic managers, replica autonomic manager

and storage autonomic manager, described above seem to be

independent. The first manager restores files and the other

manager restores storage. But as we will see in the following

example it is possible to have a race condition between the

two autonomic managers that will cause the replica autonomic

manager to fail. For example, when a resource fails the



storage autonomic manager may detect that more storage is

needed and start allocating resources and deploying storage

components. Meanwhile the replica autonomic manager will

be restoring the files that were on the failed resource. The

replica autonomic manager might fail to restore the files due

to space shortage if the storage autonomic manager is slower

and does not have time to finish. This may also prevent the

users, temporarily, from storing files.

If the replica autonomic manager would have waited for

the storage autonomic manager to finish, it would not fail to

recreate replicas. We used direct interaction to coordinate the

two autonomic managers by binding the File-Replica-Manager

to the Storage-Manager.

Before restoring files the File-Replica-Manager informs the

Storage-Manager about the amount of storage it needs to

restore files. The Storage-Manager checks available storage

and informs the File-Replica-Manager that it can proceed if

enough space is available or ask it to wait.

The direct coordination used here does not mean that one

manager controls the other. For example if there is only one

replica left of a file, the File-Replica-Manager may ignore the

request to wait from the Storage-Manager and proceed with

restoring the file anyway.

4) Optimising Allocated Storage : Systems should maintain

high resource utilization. The storage autonomic manager

allocates additional resources if needed to guarantee the ability

to store files. However, users might delete files later causing

the utilization of the storage space to drop. It is desirable

that YASS be able to self-optimize itself by releasing excess

resources to improve utilization.

It is possible to design an autonomic manager that will

detect low resource utilization, move file replicas stored on a

chosen lowly utilized resource, and finally release it. Since the

functionality required by this autonomic manager is partially

provided by the storage and replica autonomic managers we

will try to augment them instead of adding a new autonomic

manager, and use stigmergy to coordinate them.

It is easy to modify the storage autonomic manager to

detect low storage utilization. The replica manager knows

how to restore files. When the utilization of the storage

components drops, the storage autonomic manager will detect

it and will deallocate some resource. The deallocation of

resources will trigger, through stigmergy, another action at the

replica autonomic manager. The replica autonomic manager

will receive the corresponding resource leave events and will

move the files from the leaving resource to other resources.

We believe that this is better than adding another autonomic

manager for following two reasons: first, it allows avoiding

duplication of functionality; and second, it allows avoiding os-

cillation between allocation and releasing resources by keeping

the decision about the proper amount of storage at one place.

5) Improving file availability: Popular files should have

more replicas in order to increase their availability. A higher

level availability autonomic manager can be used to achieve

this through regulating the replica autonomic manager. The au-

tonomic manager consists of two management elements. The
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File-Access-Watcher and File-Availability-Manager shown in

Fig. 8 illustrate hierarchical management.

The File-Access-Watcher monitors the file access frequency.

If the popularity of a file changes dramatically it issues a

frequency change event. The File-Availability-Manager may

decide to change the replication degree of that file. This

is achieved by changing the value of the replication degree

parameter in the File-Replica-Manager.

6) Balancing File Storage: A load balancing autonomic

manager can be used for self-optimization by trying to

lazily balance the stored files among storage components.

Since knowledge of current load is available at the Storage-

Aggregator, we design the load balancing autonomic manager

by sharing the Storage-Aggregator as shown in Fig. 9.

All autonomic managers we discussed so far are reactive.

They receive events and act upon them. Sometimes proactive

managers might be also required, such as the one we are

discussing. Proactive managers are implemented in Niche

using a timer abstraction.

The load balancing autonomic manager is triggered, by a

timer, every x time units. The timer event will be received

by the shared Storage-Aggregator that will trigger an event

containing the most and least loaded storage components. This

event will be received by the Load-Balancing-Manager that

will move some files from the most to the least loaded storage

component.

VI. RELATED WORK

The vision of autonomic management as presented in [1]

has given rise to a number of proposed solutions to aspects of



the problem.

An attempt to analyze and understand how multiple in-

teracting loops can manage a single system has been done

in [8] by studying and analysing existing systems such as

biological and software systems. By this study the authors

try to understand the rules of a good control loop design. A

study how to compose multiple loops and ensure that they are

consistent and complementary is presented in [9]. The authors

presented an architecture that supports such compositions.

A reference architecture for autonomic computing is pre-

sented in [10]. The authors present patterns for applying

their proposed architecture to solve specific problems common

to self-managing applications. Behavioural Skeletons is a

technique presented in [11] that uses algorithmic skeletons

to encapsulate general control loop features that can later be

specialized to fit a specific application.

VII. CONCLUSIONS AND FUTURE WORK

We have presented the methodology of developing the

management part of a self-managing distributed application

in distributed dynamic environment. We advocate for multi-

ple managers rather than a single centralized manager that

can induce a single point of failure and a potential perfor-

mance bottleneck in a distributed environment. The proposed

methodology includes four major design steps: decomposition,

assignment, orchestration, and mapping (distribution). The

management part is constructed as a number of cooperative

autonomic managers each responsible either for a specific

management function (according to functional decomposition

of management) or for a part of the application (according to

a spatial decomposition). We have defined and described dif-

ferent paradigms (patterns) of manager interactions, including

indirect interaction by stigmergy, direct interaction, sharing

of management elements, and manager hierarchy. In order to

illustrate the design steps, we have developed and presented

in this paper a self-managing distributed storage service with

self-healing, self-configuration and self-optimizing properties

provided by corresponding autonomic managers, developed

using the distributed component management system Niche.

We have shown how the autonomic managers can coordinate

their actions, by the four described orchestration paradigms,

in order to achieve the overall management objectives.

Dealing with failure of autonomic managers (as opposed

to functional parts of the application) is out of the scope of

this paper. Clearly, by itself, decentralization of management,

might make the application more robust (as some aspects of

management continue working, while others stop), but also

more fragile due to increased risk of partial failure. In both

the centralized and decentralized case, techniques for fault

tolerance are needed to insure robustness. Many of these

techniques, while ensuring fault recovery do so with some

significant delay, in which case a decentralized management

architecture may prove advantageous as only some aspects of

management are disrupted at any one time.

Our future work includes refinement of the design method-

ology, further case studies with the focus on orchestration of

autonomic managers, investigating robustness of managers by

transparent replication of management elements.
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