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Abstract

A combination of multithreading with data prefetching allows increased efficiency of large-scale multiprocessors. In this
report, we evaluate two prefetching techniques in multi-threaded architectures: switch-on-prefetch and run-on-prefetch.
The switch-on-prefetch technique switch a thread context on each prefetch operation. The run-on-prefetch technique
overlaps prefetching with computation.

This report presents two basic analytical models of multithreading in combination with prefetching, which allow rough
performance prediction on the first stages of top-down system design. Both models are based on a few parameters of the
multi-threaded architecture and its workload. The first model is the first-order approximation for efficiency of multi-
threaded architectures with prefetching, executing a set of threads with fixed timing parameters. The second model is a
closed queuing network of the architecture, which is solved for exponentially distributed timing parameters to illustrate
its usage for evaluation of multi-threaded architectures with prefetching. The models are validated by comparision with
simulation results.
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1: Introduction

One of the main problems in large-scale multiprocessors is considerable memory latency, the time required to access data
located in remote memory. Long memory latencies decrease system efficiency. Three basic techniques have been pro-
posed to avoid or tolerate long memory latency: caching, prefetching and multithreading.

Data caching allows keeping copies of remote data in local memory and decreases remote access ratio. A number of
caching techniques, such as non-blocking and prefetching caches, have been developed to eliminate enough of the
remote memory accesses and to hide long memory latency [3, 4, 5, 6]. In spite of the memory consistency problem in
shared-memory multiprocessors which needs system resources to maintain cache coherency, caching continues to be a
subject of considerable interest.

Caching already includes data prefetching, even if a cache is not specially constructed to support prefetching explicitly

[4]. Prefetching is used to resolve one or more explicit remote references before the data is actually needed by the run-
ning process. Like caching, explicit prefetching provides local access to remote data, which have been requested by
prefetch operations executed in advance. Mainly, explicit prefetching is used by compilers as a techniques of code opti-
mization [3, 5, 9]. Its efficiency strongly depends on predictability of remote reference sequences.

Multithreading is a general solution to the latency problem. A number of threads is assigned to the same processing node

and shares its resources: processing time, memory, etc. When an active thread becomes suspended because of remot
memory access (cache miss or explicit remote reference), the processor performs a context switch, and another thread is
scheduled for execution. The suspended thread becomes ready and can be reactivated when requested remote dat:
arrives.

Different combinations of the above techniques are under investigation by various research groups [3, 4, 5, 7, 9, 10]. In
this paper, we focus on multi-threaded architectures, MTAs, and propose two basic analytical models for multithreading
with data prefetching: (i) first-order approximation for efficiency of prefetching MTAs and (ii) a queuing model of
prefetching MTAs. These models can be used to obtain rough results in MTA performance evaluation on the first stage of
a top-down system design. Both models are based on a few parameters of an MTA and its workload, and allow predicting
the efficiency of the MTA executing a set of statistically identical threads.

The remainder of this report is organized as follows: In section 2 an overview of related research in analytical models for
multithreading is given. Basic assumptions for the models are presented in Section 3. Section 4 describes studied
prefetching techniques. Section 5 introduces the first-order approximation for efficiency of prefetching MTAs. In Section
6, a queuing model of multi-threaded architecture with/without data prefetching is presented. Section 7 deals with valida-
tion of both analytical models by comparison with simulation results. Finally, conclusions are given in Section 8.

2: Related Work

A series of three analytical models of multithreading in a cache-based multiprocessor is reported by Saavedra-Barrera et
al. in [12] and [13]. MTA efficiency is specified as a ratio of total useful time to the full time including context switching
and idle time caused by communication latency:

E = Useful/(Useful + Switching + Idle) Q)

The top level model of this series is a first-order approximation for MTA efficiency, which is based on a small set of
parameters: a number of identical threagys ommunication latencyL}, context switch time®) and run lengthR)

which is the number of cycles between two consecutive remote references. All timing pardmBtarsjC, are con-

stant. As it was defined in [12], an MTA is saturated when increasing the number of threads does not affect the MTA effi-
ciency, i.e. there is always a thread ready to execute at each context switch. The minimum number oNghreads,
required to achieve saturation is called saturation point. This model predicts linear dependence of efficiency on the
number of threads until> Ng ; After the saturation point efficiency as a functioibetomes constant:

Efficiency of single-threaded architecture, STE; = R/(R+L)
min(E,, Eg)
Linear region of MTA-efficiency:E, = nR/(R+L +C)

Efficiency of multi-threaded architecture, MTAZ |

2
Saturation region of MTA-efficiencyEg = R/(R+C)

o o

Saturation point:Ng = L/(R+C) +1

In the second model presented in [12] and [13] the run leRyik,assumed to be a geometrically distributed random
variable. Timed Petri net notation is used to describe a behavior of multithreaded architecture executing a number of sta-



tistically identical threads. A reachability set of a Petri net is represented by a Markov chain, which is solved to derive
expressions for MTA efficiency and pseudo-saturation point. The third model takes into account a dependence of the
cache miss ratio on the number of running threads and the cache size. This dependence affects the run length distribution,
since thread context is assumed to be switched on cache misses. The model results in approximations for the miss ratio
and the mean run length represented as functions proportional to some power of

An analytical model of multithreaded processors with caches derived by Agarwal and presented in [1] aims at dependen-
ciesL(n) andR(n) = 1/m(n) , wheran(n) is the miss ratio. Agarwal assumes fixed timing parameters for each thread.
The processor-efficiency model is similar in form to (2). Expressions for communication latehcgalled network

model, and miss ratim(n), called cache model, were derived and used to predict MTA efficiency. As an alternative to the
deterministic model Agarwal proposes to model an MTA by a simple queuing system for finite number of customers
(threads). Section 6 of this paper contains a queuing model of MTA similar to the model proposed in [1], however our
model is stronger and is applied to data prefetching.

While previous studies ignore an interaction between threads located in different nodes of multiprocessor, the model pre-
sented by Nemawarkar et al. in [10] uses closed multi-chain queuing networks to evaluate efficiency of a multithreaded
multiprocessor with 2-dimensional mesh structure and distributed shared memory. An Approximate Mean Value Analy-
sis [11] (see also [8]) is used to analyse the closed queuing network and evaluate processor-efficiency.

A number of studies on data prefetching in multithreaded architectures has mainly focused on simulation of different
hardware- and software controlled prefetching techniques to explore benefits of data prefetching in shared memory
cache-based multiprocessors [3, 4, 5, 6, 9].

This paper proposes two basic analytical models of prefetching in combination with multithreading, which allow making
rough performance evaluation in top-down system design.

3: Basic Assumptions

Basic assumptions for analytical models of multithreading presented in this paper are inspired from the top-level model
of multithreaded architecture proposed in [12]. The multithreading policies mainly differ in events which cause context
switching:

* Cache miss, which causes a remote access.
* Explicit remote reference.
* Explicit context switch instructions.

In a multiple-level cache architecture normally a cache miss in the highest level cache causes context switching. Explicit
remote references mainly are issued in threads executed on a multithreaded architecture which supports the distributed
memory programming model based on massage passing. An explicit context switching is used in a multithreaded archi-
tecture with data prefetching.

Both analytical models presented in this paper, (i) first-order approximation for efficiency of prefetching MTAs and (ii)
gueuing model of multithreading, can be applied to MTAs with different multithreading policies. Nevertheless, for sim-
plicity, while not losing generality, we assume that the MTA is based on a distributed memory model and supports a strat-
egy of context switching on explicit remote references. An inter-node communication is represented by the value of
communication latency,. The interconnection network structure is ignored.
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Figure 1: Basic Execution Cycle of a Thread

The workload executed on the architecture is constructed as ansathtitically identical threads. The main parameter

of the set of threads is the run intervg}, which is the mean number of cycles between two consecutive memory
accesses, local or remote (Fig.1). We assume that an instruction with explicit remote reference occurs with the probabil-
ity Pra @nd causes a context switch, which taRegycles. The thread is suspended during timiee. until data arrives

from the remote memory. After that the thread becomes ready and can be reactivated. If the run interval ends by the local
access, the thread continues to run. The mean number of cycles between two consecutive remote references (context
switches in the MTA), which is calledin length, R, is R = R,/Pg, . If we consideR, = 1 , theRp, = 1/R is
interpreted as a remote reference ratio by analogy to cache miss ratio. The state transition diagram of a thread during run



length interval (Fig.1) may include additional states such as cache access and local memory access, according to some
programming model (message passing or shared memory). Markov chain analysis can be used to evaluate mean run
length in steady-state for different multithreaded architectures (Appendix A).

We assume that a thread may contain prefetch operations to request remote data in advance. A prefetch operation sends «
numberm>0 of prefetch requestsré¢fetch packe) to the network. We cath length of prefetch packet We assume

that prefetch requests from one prefetch packet are served in parallel. The probability of prefetching data identified by
remote reference By (prefetching probability ). It specifies the proportion of remote data which can be prefetched. We
investigate the efficiency of MTAs with different prefetching techniques, as a function of prefetching protiility (

and length of prefetch packets)( We consider the efficiency of an MTA in form of the ratio (1).

4: Data Prefetching in MTA

There are several techniques to exploit prefetching in a multithreading architecture. A good survey of different prefetch-
ing schemes can be found in [6]. In this paper we evaluate two prefetching techniques: (i) explicit context switching after
prefetch operationsyitch-on-prefetch); (ii) and overlapping of prefetching with computationsgon-prefetch).

The switch-on-prefetch technique switches on each prefetch operation. The running thread becomes suspended until all
requested data arrive. Being resumed the thread executes without suspension on remote references which were
prefetched until the next prefetch operation is issued. In caching this technique is called explicit-switch [3].

Overlapping of prefetching with computations in the run-on-prefetch technique allows hiding latency caused by
prefetching. An active thread continues to run after a prefetch operation and becomes suspended on a remote reference
which is prefetched but the requested data has not yet arrived. In caching this technique is called switch-on-use [3].

4.1: Switch-On-Prefetch Technique

The behavior of the switch-on-prefetch MTA is illustrated by a state transition diagram of a thread depicted on Fig.3.

Pp(Not Last)

reactivated

suspended

Figure 2: Switch-On-Prefetch: State Diagram for Execution of a Thread

Assume that the execution of a thread starts from prefetch operation marketh®rem >0 prefetch requests are sent

to the remote destinations. These prefetch requests are served in parallel. The thread is suspended until all requested datz
arrive (). After reactivation C) the thread is execute®)(until a remote reference occurs. If the remote reference was

not included in the prefetch packet (probability- P, ) then the MTA executes a remote fetch operation, causing the
running thread to be suspended and another thread scheduled for exé2utibth€ remote reference was included in

the prefetch packetPf) then the thread continues to run until it passesl remote references which have been
prefetchedNot Last). When the last prefetched reference is issuagt)(the thread repeats the prefetch operation (

4.2: Run-On-Prefetch Technique

There are two strategies of overlapping: synchronous and asynchronous. In the case of synchronous overlapping a thread
can be suspended when it needs the first prefetched data. The suspended thread becomes ready as soon as all remote de
requested by a prefetch packet arrives. Thus the thread waits for all requested data when it needs the first one. With asyn-
chronous overlapping the thread waits for only that prefetched data which is currently needed. Figure 3 shows a state
transition diagram of a thread executed with asynchronous overlapping of prefetching with computation.

The MTA sends a prefetch packet (thestate) and then executes an active thread d&®imgtil it needs data from the
network. If the remote reference was not included in the prefetch packet (probabilRy ), the thread initiates a
remote accesd ) and becomes suspended. If the remote reference was included in the prefetchPpackad (he
prefetched data has arriveir{ived andNot Last) the thread continues to ruR)( When the last requested data arrives
(Arrived andLast) the thread repeats the prefetch operatimon If requested data has not arrived ytt(Arrived), the
executed thread becomes suspended in the blocked state marked by observédaterityeither all prefetched data
(synchronous overlapping) or only requested data (asynchronous) arrive. In its turn the MTA schedules another thread.



Pp (Arrived & Last)

Figure 3: Run-On-Prefetch: Overlapping of Prefetching with Computation
5: First-Order Approximation for Efficiency of MTA

A first-order approximation for the efficiency of MTA without data prefetching as a functiorn(rmafmber of threads)
with constant timing parametdrsC andL, was derived in [12] (Equation (2)). This result can be used to predict the effi-
ciency of MTA by using mean values RfL andC. Figure 4 shows asymptotic bourfiisandEg for efficiency of MTA
executing statistically identical threads with exponential distributed timing pararReteesrdC (see 6).
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Figure 4: First-Order Approximation for MTA Efficiency

Attempt to define the first-order approximation for efficiency of MTA with data prefetching, considering a thread execu-
tion cycle between two prefetch operations.

5.1: Efficiency of Switch-On-Prefetch MTA

Figure 5 illustrates a state transitions diagram of a thread during its execution cycle between two consecutive prefetch
operations. The execution cycle starts from prefetch operation markacitvgr which the thread is suspendegyntil

requested data arrives. Then it is execuRdutil a remote reference occurs. The thread is suspended for alpdriod

this reference is not prefetchetl{P, ), otherwise the thread continues tegjuihen them-th prefetched remote
reference is issued the thread repeats the prefetch operafidrhé intervallp is the mean time between two consecu-

tive prefetched remote references:

_ R+ (L+C)(1-Pp)

p 3
Pp
The execution cycle includ@sintervalsTp, latencyL and a context switc@:
Full = mTp+L+C (4)

The useful time, the total latency and the switching time of a thread in the execution cycle can be obtained from (4) using

@3):

Useful;, = mR/Pp
Latency; = (m—mPp + Pp)L/Pp ®)
ESWitching1 = (m-mPp +Pp)C/Pp

g
d
g
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Figure 5: Thread Execution Cycle Between Prefetch Operations in the Switch-On-Prefetch Model

Note that the key assumption of the first-order approximation for efficiency of prefetching MTA is a linear dependence of
the efficiencyE,, on the number of threads, when the MTA is not saturated. This assumption ignores the probabilistic
nature of the run-length intervals caused by the probabilistic paraRgetes a result of the assumption we can define an
optimistic saturation pointig , from the inequality— 1) (Useful ; + Switching,) > Latency, , assuming that the total

useful and switching time af—1 threads executed when the given thread is suspended, exceeds latency (idle time) of
the thread during its execution cycle. However, since the minimum run length of a thRedldeiseliable value for the
saturation pointNg=ng , should be defined from the inequafity- 1)(R+C) > L , which is valid for non-prefetch-

ing MTA (see Equation (2)).

By analogy with (2) we can express the efficiency of the MTA in the following way:

EE _ Useful |
51 Useful, +Latency,
K. = min(E,, Eg)
St _n Useful
= —1
B Full (6)
o Useful
@ES ~ Useful, + Switching,
0 Latenc
[hg = L2 B
O Useful, + Switching,

By using (3)-(5) in (6) we obtain the first-order approximation for the efficiency of MTA with explicit context switching
after prefetch operatiofns

F1. = Re/(Re+L)
@EHC = mln(ELC, ESC)
= NR-/(Rc+L +C)

g ke

%sc = Re/(Rg +C)
O

Ensc = L/(Re+C)+1
ONg = L/(R+C)+1

where R- = acR

()

ac = m/(m-mPp + Pp)

* Index C in (7) denotes switch-on-prefetch model
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We call the coefficient - prefetching factor. It indirectly characterizes the effect of data prefetching on the efficiency of
MTA. The prefetching factam is an increasing factor for the run length (see 5.5).

5.2: Efficiency of Run-On-Prefetch MTA

Figure 6 illustrates an execution cycle of a thread with synchronous overlapping of prefetching with computations. Since
we have assumed that all prefetch requests from prefetch packet are served in parallel, then the asynchronous overlap-
ping behaves as synchronous for the constant communication latefhg PE sends a prefetch packa}l &and then

executes an active thread duriRgintil it needs the first remote data (Fig.6). If that data is prefetched but was has not
arrived Pp), the executed thread is suspended in a state marked by “observe ldtenRy” (we assBmd that ).
After reactivation C) the thread passes—1  prefetched remote references without suspension and repeats the prefetch
operation Kn). If the remote reference aftBris not prefetchedl(— P, ), the thread performs a remote fetch operation

(L).

PR
¢ m)
P

-

b
\®
S R

~ -~

. m)D

- g

Figure 6: Thread Execution Cycle Between Prefetch Operations in the Run-On-Prefetch Model

By using (3), the full amount of time (useful time, total latency and switching time) of a thread in the execution cycle can
be shown to be:

Full

0 R+(m-1)Tp+(1-Pp)Tp+(1-Pp)L +Pp(L-R) +C
E Useful; = mR/Pp
g _ 2 2 ®)
O Latency; = ((m—mPp +Pp)L—PpR)/Pp
]
[Bwitching, = (m—mPp +P3)C/Pp,
By replacing (3) and (8) into (6) we obtain expressions for the efficiency of run-on-prefetch MTA:
5E1R = Rp/(Rp*LR)
BE”R = min(E_, Eg)
éIELR = NRy/(Rg+ C +Lp)
5ESR = Ry/(Rg+C)
O, =
s, = Lr/(Rg+C)+1 ©)
ENS =L/(R+C)+1

where Rr=0agR
L = L-BR
m/ (m-mPp, + P3)

aRr

B = P2/(m-mPp + P3)
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Note, thatNg is reliable value for the saturation point, defined for minimum value of thread run length. By analogy with
the switch-on-prefetch technique, the coefficiegis called prefetching factor. By comparing (9) and (7) it is easy to see
that the prefetching factarg for the run-on-prefetch technique exceeds the faggdn switch-on-prefetch.

We call the coefficienB overlapping factor. It represents a portion of computation (run length) overlapped with the
latency caused by prefetching (see 5.6).

5.3: Limits of MTA Efficiency in Saturation

Note that the linear approximation for efficiency of non-saturated MTA Ng ) has increasing error after point
n>L/(mR+C)+1 obtained from (2) assuming that run length has the maximum mitu&fficiency functions (7)

and (9) can be used only as bounds of real MTA efficiency to make rough preliminary decisions. More detailed investiga-
tion of the first-order approximation for efficiency is given in Appendix B. Nevertheless, the first-order approximation
allows to predict STA-efficiency and MTA-efficiency in saturation more precisely than in the linear region. The effi-
ciency of prefetching MTA in saturation, whare Ng , can be improved by increasing the length of prefetch packets and
the proportion of data being prefetched data. Limits of some functions (7) and (9) are:

lim E; mR/(mR+L) 0
imE, = ImE, =—HR O Pp -1 7€ 0
1 " 1 =
mow ¢ m-w ® R+L(1-Pp) [ lim E, = mR/((m-1)R+L) .
im E im E R O Pt °F 0
im = lim = — ; = i = g
mom % mow R R+ CL-Pe) (P <1) o Es = oM Es, mR/‘”‘R“)%(mioo) (10)
lim Re = lim Rg = R/(1-Pp) lim R. = lim Ry = mR O
- - E Pp - 1 Pp -1 %
n]llinmuc - nqllinwaR =(A-Pe) lim ac = lim ag =m O
Pp -1 Pp -1 O

It is interesting to note that the run-on-prefetch technique has the same limits of efficiency in saturation as switch-on-
prefetch. The above expressions can be used to define minimum values of the prefetch pangroeRyy (equired to

achieve some percentage, 1100%, of the efficiency limit. To obtain a solution it is necessary to solve one of the follow-

ing two equations:

Es(my) =y[R/(R+C(1-Pp)), when Py is given
ES(PPV) =y IMR/(mR+ C), when mis given
Above equations are by substitution an expressiokddrom (7) reduced to

_ y[c

am) = RA=yy+ ci=Py
_ __ yUmiC

aPry) = FRA-y) 7 C

(11)

o o

For example, assume that prefetching MTA executes a set of thread (vith parameters = 128,C = 2 andR = 16

cycles. The portion of remote references which can be prefetched isPg5%00(65). According to (2) the saturation

point isNg = [8.11] i.e. the MTA is saturated even its workload does not use prefetching. According to (10) the effi-
ciency limit is 0.9581 asn - « . For the switch-on-prefetch technique the length of prefetch packetsired to
achieve 99% of efficiency limit can be obtain from (11) using expressiomdopresented in (7). The root is
My.gg = [ 7.7066] = 8. The length of prefetch packets required to achieve the same efficiency in the run-on-prefetch
technique ign, o9 = [5.0093] = 6 (obtained from (11) using (9)).

5.4: Efficiency Curves. Comparison of Prefeetching with Non-Prefetching MTA

Figure 7.a,b depicts dependencies of prefetching MTA efficienay, onandPp PlotsE(m, n) andE(Pp, n) show that

both the derivative of efficiency in the linear region and the value of efficiency in saturation region increase with increas-
ing prefetching factor. The cause of such trends is increasing the mean value of thread run length due to data prefetching.
However the mean run length is a bounded function of prefetch parameters. This is quite obvious, because even if
m - o (Pp<1), execution of a thread is interrupted by remote references which are not prefetched. In the case
Pp — 1 (m# ) all data are prefetched thread contexts are switched on prefetch operations.

Let us compare prefetching MTA, (7) and (9), with non-prefetching MTA (2), assuming that both execute | set of
threads with parameteks= 128 cyclesC = 2 cycles an®R = 16 cycles. Expected relative increagan the efficiency of
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the prefetching MTA against non-prefetching MTA can be calculated as (for
run-on-prefetch MTA analogically). Ploggm, n) andg(Pp, n) in Fig.7.c,d demonstrates the relative efficiency increase

as a function of the number of threadsfor different fixed values of prefetch packet lengthand prefetching probabil-

ity, Pp. The functiong initially is a constant, untih reaches an optimistic saturation paigffor the prefetching MTA.

After this point, the relative increase graph falls off, because the non-prefetching MTA is not saturated yet, and its effi-
ciency continues to grow in the linear region (Fig.4). After the saturation point of non-prefetchindNyFA8.110) the

relative increase graph stabilizes again at values not more than 10%.

Curves of the run-on-prefetch MTA efficiency are similar to switch-on-prefetch. The comparison of the run-on-prefetch
MTA efficiency, EnR , with the efficiency of the switch-on-prefetch MT4, , is depicted in Fig.8. Plots were obtained
according to expressiog(E,, , E,) = ((EnR— E, )/E, ) 00%. For the studied set of parametd®s=(16,L = 128,C

= 2 cycles and assumirig, = 0.5° ), the run-on-prefétch technique provides higher efficiency comparing with switch-on-
prefetch, when both MTAs are not saturated and the number of threads is less than the optimistic saturation point
(n<5). In this case the relative increase in efficiency of the run-on-prefetch MTA is about 10-20% vs. switch-on-
prefetch MTA. When both MTAs are saturated>8 ), the relative increase is between 0.25 and 2.5%.

5.5: Mean Run Length in Prefetching MTA

Both prefetching techniques, switch-on-prefetch and run-on-prefetch, allow increasing the mean value of run length, i.e.
number of cycles between two consecutive remote references which cause context switching. Assume that a thread is
executed forever and specified by run lerfigi{fmean number of cycles between two consecutive remote references in a
thread), prefetch probabilifyp (portion of data which can be prefetched) an@ean number of prefetch requests gen-

erated by each prefetch operation).

First consider the switch-on-prefetch technique. Execution of a thread with context switching after prefetch operation
can be represented by a Markov chain with dummy state IahmnE'ugB.aj. Being reactivated after suspensi@) the
thread is executed’] until a remote reference is issued. Note that the mean number of remote references between two

consecutive prefetch operationsmg P, , therefore the probability of execution of a prefetch opeRtiomis . If the
reference is not prefetched (probabil{ty—Pp) ) the thread initiates a remote access and becomes s@pehded (
prefetch was initiated the thread either continues to run (probaBiitl — 1/ m) ) or repeats the prefetch amperation

(probability P/ m ).

By analogy, execution of a thread with synchronous overlapping of prefetching with computations (run-on-prefetch) can
be represented by a Markov chain, depicted in Fig.9.b. We analyse only the synchronous overlapping technique assuming
that the asynchronous model behaves as the synchronous for constant communication latency. Since the probability of a
rezmote reference between two consecutive prefetch operatiyyis , then the probability of prefetched reference is
Pp/m. Thus, execution of threa®)is interrupted either by remote references which are not prefetched (probability
(1- PP)Z) or by a remote reference which is prefetched but the corresponding prefetch request is not yet satisfied (prob-
ability Pp/m).

The mean run length in prefetching MTAs can be determined by considering both Markov chains as closed chains with a
dummy state labelled O (Fig.9). The steady-state probability of being iatftistate of the Markov chain B = n;/N

wheren; is the mean number of repetitions of a state during one loopRrtorthe dummy state, @GndN is the total

number of repetitions of all states in the chain. To define the mean run length the following systems of equations must be
solved independently with an assumptign= 1

switch-on-prefetch (Fig.5.a): run-on-prefetch (Fig.5.b):
Mg = Ng+ NgPp(1-1/m) Mr = Nt NgPp(1—Pp/m)
B = nePy/ d 2
Om = NRFp/M Ong = ng(1—Pp) + NgPp/m
O O

%”o = ng(1-Pp) +np, [R; = ngR

[Rc = ngR

The solutions are

switch-on-prefetch: run-on-prefetch: 0

- - O
Re = dcR Re = OR 0 (12)
where o = m/(m-Ppm+Pp) where ag = m/(m-Ppm+ pg)%

* We assume that the time of prefetch operation is includedRnto
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Figure 9: Markov Chains of Run Length in Prefetching MTA

The prefetching factax is an increasing factor for the run length (Fig.10.a). Compasinandac (12) it can be shown

that the prefetching factarg in the run-on-prefetch technique exceeds the facgon switch-on-prefetch. Figure 10.b

depicts the relative increase in the mean of the run length in the run-on-prefetch technique compared to switch-on-
prefetch,g(Rg, Rp) = ((ag—0ac)/ac) [100% . Itis easy to see that with lower prefetch packet lemgthge relative

increase is larger. The functigrinitially improves, reaches a maximum, and then falls off. It can be shown that the rela-
tive increase functiorg, achieves its extremum when prefetching probabMgyis (m+ Jmy/(m=1)<1 .
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of the prefetch-packet-length and prefetching probability in run length vs. switch-on-prefetch MTA

Figure 10: Run Length in Prefetching MTA
5.6: Mean Thread-ldle-Time in Run-On-Prefetch MTA

The run-on-prefetch technique overlaps prefetching with computations and decreases the average value of idle time of a
thread (virtual latency). Consider the synchronous overlapping technique. The suspension time interval of a thread can
represented by a Markov chain depicted in Fig.11.

The thread becomes idle ezither for a mean pdrieRy (observed latency) with the proﬁébﬁmy (see 5.5) or for
a periodL (probability 1 —Pp/m ). Analysis of the closed Markov chain in Fig.11 gives us an expression for the mean
idle time (virtual latency) of a thread for the run-on-prefetch technique:
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Lg = L—BR, where B = P3/(m—mPp + P3) (13)

We call the coefficierft theoverlapping factor which represents a portion of computation (run length) overlapping with
latency caused by prefetching.

Figure 11: Markov Chain of Thread Idle Time in the Run-On-Prefetch MTA
6: Queuing Model of a Multi-Threaded Architecture

A multi-threaded architecture executingstatistically identical threads can be represented as a closed queuing network
(Fig.12) withn circulating customers (threads). It consists of a queut/@, 14Rd servers, and a queuing system
with n serversl/L . The latter assumption means that all remote references from different threads are served in parallel.

o uerR N D J
kGO D

Figure 12: The Closed Queuing Network of MTA

Assume that all timing parametets, R andC, have exponential distributions. It is difficult to analyse this network
becausel/R and/C servers can not serve more than one customer simultaneously i.e. not more than one thread can
be active at any time. The behavior of the network with the above restriction can be described by the continuous-time
Markov chain in Fig.13. States of the chain are marked by triple indéxes, 1); c+r +1 =n} , Which are:

* ¢ - number of customers in Q and théC sereen {0, 1, 2 ...,n}
* r - number of customers inte’ R servef;] { 1, 0}
* | - the number of customersi¥L  servdr§ {0, 1, 2 ...,n}

The chain (Fig.13.a) contairdh + 1 states and can be analysed computationally using Matlab environment [].

(n-3)/ L (n-3)/ L

(n-i+1)/ L | (n-i+1)/ L

Figure 13: Markov Chain of the MTA Queuing Network
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The chain (Fig.13) contaidn+1  states and can be analysed computationally.

To simplify the analytical solution considér¥C  afdR servers (Fig.12), as a closed queuing network consisting of
two M/M/1 queuing systems, the first witty C server and the second ik server. Assume that this network
serves one circulating thread. The probability of having the thread ibvtRe server is the efficiency of the MTA in sat-
uration § = « ):Eg = R/(C+R) .

niL (n-1)L 2IL UL
U{C+R) 1(C*R) U(C+R)  1I(C*R)

Figure 14: Simplified Markov Chain of the MTA Queuing Network

Next assume that the network (Fig.12) consists of a M/M/1 queuing system with one server (senli¢éCattdR) )
and a M/M/n queuing system withserversl/L . The behavior of this queuing network is represented by the Markov
chain (birth-death process) in Fig.14. Each state is marked by a \(@gtar,) npiseaerumber of threads in the
th system. The chain containst 1 states. According the product form analysis the probability ohhaviegds in
the first system and, = n—n, threads in the second system is:

i —1

L

L?(c+R™ Z LR

P(ng, ny) = !

D

The probability of having at least one thread in the first system, i.e. one thread in the BbéfGer R) , is
(1-P(0,n)) . Thus the producfl—P(0, n))Eg is interpreted as the efficiency of the MTA. Queuing theory allows
also the derivation of a nhumber of other results for the studied queuing network, such as the mean number of ready
threadsny, (mean number of customers in the queue), the mean number of activated and runninghghyr éaesin

number of customers in the first system), the mean number of suspendedrnfi@aeisn number of customers in the
second system) and the mean waiting time of ready thtga@isean waiting time in the queue).

The queuing model of the MTA can be summarized in form of the following expressions:
Efficiency of the MTAIE,, = (1-P(n))Eg
Efficiency limit (saturation)Eg = R/(C+R) = lim E

n - o

n

n
Mean number of ready threadgy, = 5 (i—1)P(n—i)
i=2
Mean number of active threadg;g = 1—P(n)

n

o o

Mean number of suspended threaus:= Y iP(>i) (14)
i=1
Mean waiting time of ready threadgy, = C_T:(I?,)nw
x on i|j1
whereP(x) = 0 Z D,—D
s LN
= L/(C+ R)

An efficiency curve for exponentially distributed timing parameters (14) is bounded by the curve of first-order approxi-
mation of the MTA efficiency (2), as it is depicted in Fig.4 (see 5). The curve obtained with the queuing model allows us
to conclude that MTA efficiency is almost stabilized when the number of threads increases. It is easy to prove that
(E, - Eg) as(n - «) . The number of threa , required to achieve MTA efficiency corresponding to some per-
centage,y ({100%) , of its limit, can be obtained by repetitive computations of the effici&qdpr n = 1, 2,..., until

2y [Eg.

For example, with mean latenty= 128 cycles, a context switch overhé&ad 2 cycles, and mean run lendg®= 16

cycles, the deterministic model gives us the saturation pijrt 8 threads, where MTA efficiency is predicted to be
0.8889. The queuing model predicts an efficiency value of 0.7243 (82% of its limit) for 8 threads; value of 0.8748 (98%)
for 13 threads, and 0.8818 (99%) for 14 threads. These results are close to those predicted in [12].
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A pseudo-saturation pointg, can be defined with required accuradyy repetitive computations of efficiency with=
1, 2,..., until the difference between current and previous values besam€ke saturation poiritis from the determin-
istic model (see Eq.(2)) can be used as a starting point for iterations.

We have demonstrated a possible queuing model of a multi-threaded architecture and its analysis. The hdimber of
servers i) can be limited and independent of the number of thre@&iig.15(a)). An open queuing network (Fig.15(b))

can be used to model an MTA executing a load where the number of threads can be changed by terminating and creating
of contexts. For simplicity, streams of newly created threads can be assumed as Poisson arrivals withXix€derate
probability of thread terminatiof®y, can be specified & = R/T , whérés the mean life-time of a thread.

e
Lm0 e

Pr
(a) closed queueing networks of MTA (b) open queueing network of MTA
(number of threads, n, is fixed) (number of threads is changeable)
Figure 15: Queuing Networks of MTA
Both closed and open networks (Fig.15) contiaiih servers modelling remote reference service. These servers may be

composed in a different way depending on communication network structure. The simplest service disciplines are FIFO,
however, one can assume priorities associated to threads. Distribution parameters of serviceRiarekC, may also

depend on a thread priority. The efficiency of the MTA in steady state is the probability of having at least one thread in
the 1/(C + R) server multiplied by the ratie/(C + R) . This multiplication should be done to exclude switching time
from useful time. Experts in queuing theory have developed a number of methods (see for example [2, 8, 11]) to analyse
such queuing networks, which are similar to the central server model of a time-sharing system [2, 8].

6.1: Usage of the Queuing Model for Evaluation of Efficiency of Prefetching MTA

The expressions (14) obtained with the queuing model can be used for evaluation of efficiency of MTAs with data
prefetching. For the switch-on-prefetch MTA the paramBt@un length) in expressions (14) can be simply replaced by

the mean run lengtR- from equation (12) (see 5.5). Figure 16.a depicts dependencies of the switch-on-prefetch MTA
efficiency on workload parameters, such as number of threadisngth of prefetch packets), and proportion of
prefetched dat&p

For the run-on-prefetch MTA the paramele(run length) in expressions (14) must be replaced by the mean run length
Rr from equation (12) (see 5.5). The paramdtemust be replaced by the mean latethgyfrom (13) (see 5.6).
Figure 16.b depicts efficiency of the run-on-prefetch MTA as functions of workload parameteendPp.

A pseudo-saturation poimg, where efficiency is closed to saturation with required exroan be found by repetitive
computations of efficiency with = 1, 2,..., until the difference between current and previous values bes@ang&he
saturation pointNg = L/(C+R) +1 from the deterministic model can be used as a starting point for iterations.

PlotsE(n, m) andE(n, Pp) in Fig.16.a and Fig.16.b show that efficiency of prefetching MTA executing a fixed number of
threads can be improved by increasing the prefetching factor (length of prefetch packets or/and proportion of prefetched
data) for its workload. However, the efficiency is almost stabilized when the length of prefetch packathes some

value called herpseudo-stability point mg This point can be defined with required accumaby repetitive computa-

tions of efficiency wittm= 1, 2,..., until the difference between current and previous values besames

A limit of the functionE, asm - o is (using equations (10) and (14)):

im E, = 0 H%n']jm
im £y = -1 s 00
L(1-Pp) (15)
Where%‘l—mm

N ek
ST R+C(1-Pp)U

* In the presented analysis we actually assumed that the numbérsartérs is equal to the number of threads
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corresponds to some perceptad®0%) , of its limit,
nfier 1, 2,..., until it becomes not less than desired value.

For example, assume that a switch-on-prefetch MTA with mean latend28 cycles, and a context switch overh€ad
= 2 cycles, executes 8 threads with data prefetching. Each thread has mean rid3et®ythetween consecutive remote
references, 65% of which are prefetchd £ 0.65). For the studied parameters, according to (15) the efficiency limit is
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0.9537 agn - o . Calculating the mean run lengh(12), with different values ah and using it in (14) instead B8

we can see that fromm = 8 (pseudo-stability point) the efficiency of switch-on-prefetch MTA is almost stabilised at the
value 0.94 (98.6% of the limit) with an error less than 0.002. For the same set of parameters, the efficiency of run-on-
prefetch MTA has the same limit 0.9537 when- oo . However, a pseudo-stability point for run-on-prefetch MTA
equals 6 requests per prefetch packet.

6.1.1: Prefetching MTA vs. Non-Prefetching MTA

Figure 17.a depicts the relative increase in efficiency of prefetching MTA compared with non-prefetching MTA. Curves
of the run-on-prefetch MTA efficiency are similar to switch-on-prefetch. As in the first-order approximation for MTA
efficiency, presented in 85, plaiém, n) andg(Pp, n) show that the advantage of prefetching MTA over non-prefetching
MTA degrades when the number of threadsncreases (compare Fig.7.b with Fig.17.a). This is because both prefetch-
ing and non-prefetching MTAs reach their pseudo-saturation points, and their efficiencies are almost stabilized.

Plot g(n, m) in Fig.17.a illustrate the dependence of the relative increase function on length of prefetch padtets,
different fixed numbers of threads, These plots show that he relative increase in efficiency of prefetching MTA vs. non-
prefetching MTA initially grows, if the length of prefetch packets,increases, but when prefetching MTA reaches its
pseudo-stability point, the relative increase is almost stabilized.

The advantage of prefetching MTA against non-prefetching MTA is more sensitive to the value of prefetching probabil-
ity, Pp (see plotg(n, Pp) in Fig.17.a). The relative increase in efficiency grows when the proportion of prefetched data
increases. However, when the number of executed threads increases this dependence becomes weaker.

6.1.2: Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA

By analogy, we compare the efficiency of MTAs with different prefetching techniques. Figure 17.b depicts the relative
increase in the efficiency of the run-on-prefetch MTA compared with switch-on-prefetch MTA.

For the studied set of parametelRs~(16,L = 128,C = 2 cycles and assumirig; > 0.5 ), plg(en, n) andg(Pp, n) dem-

onstrate that the run-on-prefetch technique provides higher efficiency than switch-on-prefetch, when both MTAs are
loaded by a number of threads less than the saturation point, as predicted by first-order approximation for efficiency (9
threads in this case). After this point the relative increase in efficiency of the run-on-prefetch MTA is 0.25 and 2.5%.

We can conclude also that the advantage of the run-on-prefetch technique over switch-on-prefetch degrades when the
length of prefetch packets), increases (see plagén, m) in Fig.17.b). After pseudo-stability points the relative increase

is almost stabilized at 1-6%. On the other hand, the advantage of the run-on-prefetch technique initially grows when the
proportion of prefetched datBp, increases (see plagén, Pp) in Fig.17.b).

7: Validation of the Models

The first-order approximation for efficiency of prefetching MTA is represented by the equations (7) and (9) in 5. The
simple solution for the queuing model of multithreading with (without) prefetching is represented by the basic expres-
sions (14) in 6. These expressions can be used to evaluate prefetching MTA using (12) and (13), as described in 6.1. Both
models were validated using an MTA simulator presented in [14]. The simulator is based on a Finite State Machine
model and generates execution traces of synthetic threads in form of sequences of thread timed states such as running,
switching, suspended. While executing, the MTA simulator collects relevant statistics which are used by a plotter to dis-
play results of experiments. Model validation compares predicted MTA efficiency, mean run length and mean idle time

of threads with results obtained from simulation.

For the first model we report results of validation with the following fixed timing parameter$28,R = 16 andC = 2.

Figure 19 shows both analytical and experimental curves of efficiency for prefetching MTAs. It is easy to see that theo-
retical lines on linear and saturation regions bound the experimental curves. Simulation proves that prefetching MTAs are
saturated by the same number of threads as those without prefetching. In all presented results the saturation point equals
9 threads, which corresponds to the saturation point of non-prefetching MTA executing threads with the same parame-
ters.

The queuing model was validated by simulation with the following timing parameterd:28 (exponential)R = 16
(exponential) andC = 2. In the presented experiments we do not evaluate efficiency of run-on-prefetch MTA based on
asynchronous overlapping of prefetching with computation, because the expressions for mean run length (12) and mean
idle time of a thread (13) are valid for asynchronous overlapping oRlgiifdL are fixed. Figure 16 depicts results of the
validation which show a good coincidence of analytical and experimental curves.
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Figure

Figure 19: Validation of the First-Order Approximation for MTA Efficiency (
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8: Conclusions

We presented two analytical models of multithreaded architectures with data prefetching. We evaluated two prefetching
technigues: switch-on-prefetch, and run-on-prefetch (mainly synchronous overlapping of prefetching with computation).
Both presented models can be used to predict the efficiency of a prefetching MTA assuming execution of a fixed number
of statistically identical threads. The architecture and its workload are specified in terms of communicationLgtency (
context switching overhea@), number of threads, number of cycles between two consecutive remote referarges (
proportion of data which can be prefetchBg)( and number of prefetch requests per prefetch operaton (

The first model is the first-order approximation for MTA efficiency which is based on assumptions that all timing param-
eters [, C, R) are constant, the length of prefetch packeisi¢ fixed, and prefetched remote references are uniformly
distributed in a sequence of remote references within a thread. This model predicts the efficiency of MTA in saturation
and efficiency of STA more precisely than the efficiency of non-saturated MTA. It allows predicting a mean run length of

a thread with data prefetching and mean idle time of a thread in a run-on-prefetch MTA. The model predicts an optimistic
saturation point based on the assumption of linear dependence of efficiency on number of threads in a non-saturated
MTA. However, we have demonstrated by simulation that for both prefetching techniques, switch-on-prefetch and run-
on-prefetch, a more reliable saturation point is the same as for a non-prefetching MTA executing the same load.

The second model is a queuing network of an MTA with (without) prefetching. To demonstrate the usage of this model,
the closed queuing network of the MTA was solved for the case of exponentially distributed timing parameters and a
fixed number of statistically identical threads. An open queuing network of the MTA can be used for the case when the
number of threads is dynamically changeable.

We proved that the mean run length of a thread in prefetching MTAs grows when one or both prefetching paPameters (
andm) increase. We have derived expressions for how much the run-length increases (called here prefetching factor) for
both prefetching techniques. The run-on-prefetch technique allows overlapping prefetching with computation, and
results in decreasing the mean idle time of a thread. The overlapping is characterized by an overlapping factor. The effi-
ciency of MTA can be improved by increasing prefetching and overlapping factors of its workload. However MTA-effi-
ciency is a bounded function of both parameters and almost stabilized when the length of prefetchanketsiges

over a finite point (called here pseudo-stability point). We have derived equations (first/second order) to define values of
prefetch parameters required to achieve a desired efficiency close to the limit.
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Appendix A:Markov Models of Run Length

This Appendix presents a technigue which can be used for evaluation of the runRehgidifferent context switching

strategies, depending on the programming model (massage passing or shared memory). We assume that the PE execute
a thread during = « . To evaluate the mé&aim steady-state we introduce a set of Markov chains each of which repre-
sents state transitions of a thread during a run length on a particular architecture. The behavior of a Markov chain
depends on architectural parameters, such as context switching and data prefetching strategies, cachg)ldteaty (

memory latencyl(y,). Note that Markov chains presented in this report are basic patterns and can be changed for other
architectures.

A.l: The Simplest Markov Chain of Run Length

The simplest Markov chain & is depicted in Fig.A.1. A thread is specified by a mean value of run int&rvelhich is

the number of cycles between two consecutive memory accesses, local or remote. Remote access occurs with the proba-
bility P-g# 0 (called context switch probability) and can be caused by an explicit remote reference or a local memory
miss. In its turn remote access causes a context swjch (

(1-Pcs)

P Pcs
— - /
~s0 Y-~

<>

-

Figure A.1: The simplest Markov Chain of Ry,

Assume that the Markov chain is closed with dummy state marked O (Fig.A.1). The steady-state probability of being at
thei-th state of the Markov chain B, = n,/N  whatgis the mean number of repetitions of a state during one loop
from stateR to state 0, andll is the total number of repetitions of all states in the chain. The mean run Rerogth be

derived from the following system of equations with assumptjpr 1

0 ng = anPCS =1

O
Ung = ng+ng (1-Pcg)

0
B?(l) = MR R

Thus the mean run length as a function of context switch probability is:

R = R/Pcs (A1)

A.2: Run Length in a Message Passing Architecture without Data Prefetching

Consider a strategy of context switching on explicit remote references without data prefetching (message passing archi-
tecture). A thread is specified by the mean value of run intéyvathich is the number of cycles between two consecu-

tive memory accesses, local or remote. The probability of explicit remote referdpigécisntext switch probability).

The time required to generate a remote access requeshis time needed for a load operatioh iBhe probability of a

cache accesB, the probability of cache miss i, We assume that the thread reactivated after suspension passes
through a number of timed states (timing intervals) until a context swiicis (nitiated as a result of an explicit remote
reference. Thread state transitions are represented by the Markov chain depicted in Fig.A.2.

Figure A.2: Markov Chain of ~ R(7). Message Passing Architecture without Prefetching

Execution of the activated thread resumes from the Istateere it loads the arrived data to a register. Then the thread is
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executed during a run intervg|. If the run interval ends by the local access with the probalfility Py) , the thread
either performs a cache accelsg)(with probabilityPc or returns back t& (probability (1-P) ). In case of a cache

hit (probability (1-P,;,) ) the thread continues to ruR)( On a cache miss with probabiliB, the thread performs a
local memory access;), returning back to thB, state. An instruction with remote referencedccurs with the proba-
bility P and causes a context switdb)(

Assume that the Markov chain is closed (stati@ectly connected to stake To define the run lengtR, the following
system of equations must be solved with assumptjon 1

[ =n =1
%RI =nm+ng nLC(l—Pm) +an(1—PR)(1—PC)
EPLM =N P
M = Nr(1-Pr)Pc

r = "R PR

q?(z) = R,nRI + LcnLC + LMnLM +In +rn,

Thus the mean run length of a thread executed on a message passing architecture without data prefetching is:

R +(Lc+LyP)(1-Pg)Pc
Ry = S +r
R

+1 (A2)

wherePg is a context switch probability.
A.3: Run Length in a Message Passing Architecture with Data Prefetching

Consider a switch-on-prefetch multi-threaded processor with strategy of context switching on explicit remote references
(message passing architecture) with explicit data prefetching. The processors switches a context after each prefetch oper-
ation. A thread is specified &, Pg, Pc, P, r andl. The mean number of remote data requested by a prefetch operation

is m. The portion of remote data which can be prefetched is specified by a prefetch praBability

Figure A.3(a) illustrates the Markov chain representing state transitions of the thread during a run length interval. The
statemr represents a prefetch operation, where 1 prefetch requests are sent to the network. We assume that the PE
performs an explicit context switch after prefetch operation, and a thread becomes suspended until all requested data
arrives. The next prefetch operation is issued when the thread passaste references which was prefetched by previ-

ous prefetch operations. We assume that the probability of executing a prefetch operation after prefetched remote refer-
encesisl/m .

Being reactivated after suspensi@) the thread is execute®( Lc, Ly;) until it needs remote dat&g). If data is not
prefetched (probability1 —Pp) ) the thread initiates a remote acceasd becomes suspended. If a prefetch was initi-
ated the thread either continues to run (probabifty(1—1/m) ) or repeats the prefetch operafmmobability
Pp/dm()j. If data was not prefetched (probabili¢t —Pp) ) then the thread initiates a remote ayeeski{ecomes sus-
pended.

PRrPp(1-1/m)

Pp(1-1/m)
y®\

4 Potim) L
\ Vi

@) (b)
Figure A.3: Markov Chains of R(3). Message Passing Architecture with Prefetching

The closed Markov chain in Fig.A.3(a) can be transformed into the chain depicted in Fig.A.3(b)Rwjisraefined as
(A2) and the state marked 0 is a dummy state. An expression for the mean run length of a thread executed on a message
passing architecture with data prefetching can be derived using the same approach as in Section 1.2; the solution is:
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Ry = — @) (A3)
) " m-Pp(m-1)

where Pg(1-Pp(1-1/m)) is a context switch probability. Notepif= 1 B = 0 tha'(\g) = R(2)
A.4: Run Length in a Shared Memory Architecture

Consider a switch-on-miss multi-threaded processor with context switching on a local memory miss (shared memory
architecture). A thread is specified Ry |, probability of a cache acceBg. In this case a run intervg| is the number

of cycles between two consecutive memory accesses, cache (profidilityregisters {— P ). The probability of a

cache miss i®,, and the probability of a local memory mis®jg. T is the duration of a locality test which is performed

to check if a data resides in local or remote memory.

A Markov chain representing thread execution during a run length interval is depicted in Fig.A.4. On a cache miss with

probability P, the thread checks local memory (locality #§sand in the case of a local memory miss with probability
Py it becomes suspended.

Figure A.4: Markov Chain of ~ R4). Shared Memory Architecture

The mean run length of a thread with context switching on a local memory miss (shared memory architecture) is:

R +(Lo+(T+Ly(1-Py,))P.)P
Ry = |+ (Le+( m(1—=P\))Pr) Cy (A
PcPmPm
where the produd®-P,P,, is the context switch probability.
A.5: Run Length in a Message Passing / Shared Memory Architecture
Assume that a multithreaded processor supports both shared memory and message passing programming models. A con-
text switching policy aims to hide communication latency caused by explicit remote references in threads and local mem-

ory (cache) misses. The mean run length (A5) of a thread executed in an architecture with combination of shared
memory and message passing mechanisms is derived from a Markov chain illustrated in Fig.A.5.

-Pr)(1 - P¢)

/ 1
A 7w

\K 1-Py
ARG

Figure A.5: Markov Chain of  R(5). Message Passing / Shared Memory Architecture

R +(Lc+(T+Ly(1-Py))P)(L-Pg)Pc +rPg
PcPPm(1—Pg) +Pg

Ry = 1+ (A5)

where the producP-PP\,(1-Pg) + Pz is the context switch probability.
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Appendix B:First-Order Approximation for MTA Efficiency

This Appendix summarizes results for the first-order approximation for efficiency of multi-threaded architecture (MTA).
This approximation is valid for constant values of timing parameters. The basic assumptions are:

* An MTA executes a set ofidentical threads (regularity).
* When a thread is suspended, all otlmer 1) threads pass through processor (linearity).

Expressions include the following parameters:

L = communication latency

C = context switch overhead

R = run length (a number of cycles between two consecutive remote references)

m = prefetch packet length (a number of prefetch requests generated by one prefetch operation)
Pp = prefetching probability (a portion of data which can be prefetched).

The MTA efficiency is denoted by the following variables:

E, is the efficiency of a single-threaded architecture.

E, is the efficiency of an multi-threaded architecture.

E, is the efficiency of the MTA on the linear region of efficiency curve, when number of threads is less then saturation
point.

Esis the efficiency of the MTA in saturation.

Ng is the saturation point of non-prefetching MTA and the reliable saturation point of prefetching MTA (minimum
number of threads required to achieve saturation).

Ngis an optimistic saturation point of prefetching MTA.

The efficiency of non-prefetching MTA [12]:

E, = R/(R+L)

E, = min(E, Eg)

E, = nR/(R+L+C) (B1)
Es = R/(R+C)

Ng = L/(R+C)+1

The efficiency of prefetching MTA based on switch-on-prefetch model:

Prefetching factor:a s = m/ (m-mPp + Pp)
Mean run length: R~ = a R
E; = R/(R:+L)

EnC = m|n(E|_C, ESc) @
E,_ = NRe/(Rg+L+C)
Es. = Re/(Rc+C)

Ns. = L/(Re+C)+1
Ng=L/(R+C)+1




The efficiency of prefetching MTA based on run-on-prefetch model:

Prefetching factor: ap = m/ (m-mPp + PIZD)

Overlapping factor: 3 = P,ZD/(m—mPP + Pﬁ)
Mean run length: Ry = agR

Mean latency (thread idle time)L; = L —BR
ElR = Ry/(Rg*+ LR)

o (B3)
EnR = m|n(ELR, ESR)
El_R = NRy/(Rg+C+Lg)
ESR = Ry/(Rg+C)

N = Lg/(Rg+C) +1
Ng = L/(R+C)+1

Figure B.2 - Figure B.6 depict different dependencies and comparisons of the first-order approximation for efficiency of
prefetching and non-prefetching MTAs for the following set of parameters28,C = 2,R = 16.

B.1: Saturation of Prefetching MTA by Increasing Prefetching Factor of Its Work-Load

The optimistic saturation poimtg, and the reliable saturation poiNk, of prefetching MTA is defined by (B2) or (B3).

PlotsE(n, m) in Fig.B.2.b and Fig.B.3.b, as well as pl&(®, Pp) in Fig.B.2.d and Fig.B.3.d show that in some cases the
non-saturated MTA can be saturated by increasing prefetching factor in executed threads (i.e., the length of prefetch
packetsm or/and the portion of prefetched de®a). The minimum value of the prefetch packet lengig(or prefetch-

ing probability), required to achieve MTA saturation is defined from:

5EL(ms> = Edmy (F (P9 = E«PY 4)
mg>0 M<Pgs1
In particular, for switch-on-prefetch model the minimum value of prefetching fa]:g:)r, , required to achieve saturation
is derived frorTELC(orsc) = ESC(O(SC) :
o P
__ 9P O
Mg = 1-0g (1-Pp) >OE
a - L—C(n—l) 0 (BS)
* TR(n-1) m(ag_—1) 0
= —% < 0
S (m—l)asc O

If o can not be found as (B4), it means that the MTA can not be saturated by incogadimghe latter case satura-
tion can be achieved by loading more number of threads.

For example, plot&(n, m) in Fig.B.2.b and Table 2 demonstrate that an MTA executimg (5, 8) threads is saturated
when the length of prefetch packets achieves the vajue [14.9600(mg = [B.550 mg = [1.030) respectively. Thus, the
larger the number of threads is , the smaller the length of prefetch packet is required to saturate the MTA=IR case
n = 3 the MTA can not be saturated by increasmg

PlotsE(n, Pp) in Fig.B.2.d and Table 4 demonstrates that an MTA executirg3(4, 5, ) threads is saturated when
the portion of prefetched data (prefetching probabHp), achieves a value; = 0.9892 P, = 0.8087Pg = 0.6222Pg =

0.0234), respectively. The larger the number of threads is, the smaller portion of prefetched data is required to saturate
the MTA. In the case = 2 the MTA can not be saturated by increasipg

PlotsE(n, m) in Fig.B.3.b and Table 6 demonstrate that an MTA executingd (5, 8) threads is saturated when the
length of prefetch packets achieves the vahje= [8.450(mg = 2, mg = [0.570) respectively. In case = 2 orn = 3 the
MTA can not be saturated by increasing



PlotsYen, Pp) in Fig.B.3.d and Table 8 demonstrate that an MTA executirg3(4, 5, )
portion of prefetched data (prefetching probabifty) achieves a value 0.9304 (0.7188, 0.5268, 0.0176), respectively. In
the casen = 2 the MTA can not be saturated by increa$ipg

B.2: Limits of the MTA Efficiency

Limits of efficiency (B2) of switch-on-prefetch MTA:

I

gwhen (Pp - 1) and (m# )

o o

im a- =m
Pp—1 ¢
lim R- = mR
Pp-1 ¢
lim E; = mR/(mR+L)
Pp>1 °C
im E, =min(lim E, , Im E
P,1 'C (Ppal"cppﬂl )
lim E_ = nmR/(mR+L+C)
Pp—1 C
lim ESC = mR/(mR+C)
Pp—1
im ne = L/(MR+C)+1
Pp.1 X
P
lim ac = 1/(1-Pp)
m - o
lim R, = R/(1-Pp)
m - o
. R
lim E;, = ——
me e T RTL(1-Pp)
im E, =min(lim E, , lim E
PP—»lnC (m—>°° LCm—woosc)
. nR
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. R
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| o

Limits of efficiency (B3) of run-on-prefetch MTA:
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threads is saturated when the
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(B7)

(B8)
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Limits of efficiency (B3) of run-on-prefetch MTA whefm - «)  arf@, <1) are the same as for switch-on-prefetch
MTA (B6).

The length of prefetch packets required to achieve [{100%)  of efficiency limit can be obtain from the following set
of equations:

Eumy) = E
Fdm) = E,
O
, if min{E,, E =E,
0 my ifmin{E, Em,)} (B9)

=0 . .
0" m, ifmin{E (M) E} =E,
where E, =y Omin( lim E (m), lim Egm))
m - oo m - oo

For example, assume that switch-on-prefetch MTA executes a set of threalswith parameters = 128,C = 2 andR
= 16. A portion of remote references which can be prefetched isB5%.65). Define a length of prefetch packets

required to achieve 99% of efficiency limit € 0.99 ). The efficiency limit when, « is 0.9581 (see (B7)) and 99%
of efficiency limit is 0.9495.

The solution of (B9) isn, = [7.7066] = 8nf; = 3.6991;m, = 7.7066). Figure B.1 illustrate obtained solution. The
curveE; (m) crosses the lig whenm = m, , however the MTA efficiency at this poinE§C(m1) <E, (MTA is sat-
urated).ﬁ'he curvESC(m) crossEswhenm = m, and the MTA efficiency Esc(mz) = E, .Thus = |’m2"|

1.15

11 ¢

Efficiency of MTA, E(m)

0.85

0.8

2 3 4 5 6 7 8 9
Length of prefetch packets, m

Figure B.1: Length of Prefetch Packet Required To Achieve 99% of Efficiency Limit

This example demonstrates that if even prefetching MTA is saturated, its efficiency can be improved by increasing the
prefetching factor of its load.
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TABLE 1. Saturation Points, ng, and Efficiency in Saturation (Fig.B.2.a)

m 0 2 4 8 bb
Oc - 1.48 1.95 2.32 2.86
ng | 8.11 5.98 4.85 4.27 3.68

Es | 0.8889| 0.9222 0.9398 0.9489 0.9581
* Non-prefeiching MTA

TABLE 2. Saturation Points, mg (Fig.B.2.b)
n 2 3 4 5 8

* *

ms| - - 1498 | 355 | 1.03
* The MTA can not be saturated by increasimg

Figure B.3: Run-On-Prefetch: MTA Efficiency (

TABLE 3. Saturation Points, ng, and Efficiency in
Saturation (Fig.B.2.c)

Pp 0 0.1 0.5 0.75 1

Oc - 1.08 1.6 2.29 4

ns | 8.11 7.63 5.64 4.32 2.94

Es | 0.8889| 0.8964) 0.9275 0.9481 0.9697
* Non-prefeiching MTA

TABLE 4. Saturation Points, Pg (Fig.B.2.d)

n 2 3 4 5 8

Pg By 0.9892| 0.8087 0.6222 0.0234
*The MTA can not be saturated by incread
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16, L =128, C=2)

TABLE 5. Saturation Points, ng, and Efficiency in

Saturation (Fig.B.3.a)

*

m 0 2 4 8 bb

Oc - 1.78 2.205 2.48 2.86
Bc - 0.38 0.23 0.13 0

ng | 8.11 5.00 4.35 4.02 3.68
Es | 0.8889| 0.9344 0.9461 0.9521 0.9581

* Non-prefefching MTA

TABLE 6. Saturation Points, mg (Fig.B.3.b)

n

2 3 4 5 8

ms

*

- - 8.45 2.00 0.57

*

he MTA can not be safurated by increasimg

TABLE 7. Saturation Points,

Saturation (Fig.B.3.c)

1.0

ng, and Efficiency in

Po| O 0.1 05 | 075 1
ac | - 111 | 1.78 | 256 4
B | - 0.003 | 011 | 036 1
ng | 811 | 7.49 | 520| 398 294
Eg | 0.8889| 0.8986] 0.9343 0.9534 0.96

D7

* Non-prefetching MTA

TABLE 8. Saturation Points, Pg (Fig.B.3.d)
n 2 3 4 5 8
Pg - 0.9304| 0.7188 0.5268 0.0176

£

he MTA can not be saturated by incread
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Figure B.4: Relative Increase in Efficiency of Switch-On-Prefetch MTA vs. Non-Prefetching MTA
(R=16,L=128,C=2)

TABLE 9. Saturation Points, ng (Fig.B.4.a) TABLE 11. Saturation Points, ng (Fig.B.4.c)

m | ng | Ng (%) at Ns. g(%) at ng Pp Ns. | Ns (%) at Ns. 9(%) at ng

2 | 5.98 40.72 3.75 0.1 | 7.63 7.16 0.84

4 | 485] 8.11 76.70 5.72 0.5 | 5.64| 8.11 50.13 4.35

8 | 4.27 102.60 6.75 0.75| 4.32 100.34 6.67

o | 3.68 137.40 7.78 1 | 294 201.03 9.09
TABLE 10. Saturation Points, mg (Fig.B.4.b) TABLE 12. Saturation Points, Pg (Fig.B.4.d)
n Mg 9(%) at mg 0(%) atm = o n Pg g(%) at Pg g9(%) atPp =1
2 - 76.70 137.40 2 - 71.09 201.03
5 3.55 71.09 74.85 5 0.62 71.09 76.97
6 1.98 40.20 45.71 6 0.43 40.20 47.48
8 1.03 1.59 9.28 8 0.02 1.59 10.61
*The prefetching MTA can not be saturated by increasing  *~ The prefetching MTA can not be saturated by increaB

t

T Atthe pointn=4

At the pointPp = 0.62

g
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Figure B.5: Relative Increase in Efficiency of Run-On-Prefetch MTA vs. Non-Prefetching MTA
(R=16,L=128,C=2)
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TABLE 13. Saturation Points, ng (Fig.B.5.a) TABLE 15. Saturation Points, ng (Fig.B.5.c)
m | ng | ng 0(%) at Ns. g(%) atng Pp Ns. | Ns 9(%) at Ns. g(%) at ng
2 | 5.00 70.60 5.13 0.1 | 7.49 9.54 1.10
4 | 435]| 8.11 98.53 6.44 0.5 | 5.15| 8.11 65.67 5.11
8 | 4.02 116.23 7.10 0.75| 3.85 126.24 7.26
o | 3.68 137.40 7.78 1 2.70 228.09 9.09
TABLE 14. Saturation Points, mg (Fig.B.5.b) TABLE 16. Saturation Points, Pg (Fig.B.5.d)
n Mg g(%) at mg 0(%) atm = o n Pg g(%) atPg g(%) atPp =1
2 - 98.53 137.40 2 - 70.91 228.09
5 2.00 70.53 74.85 5 0.53 70.91 76.97
6 111 39.38 45.71 6 0.35 40.14 47.48
8 0.57 4.02 9.28 8 0.02 1.59 10.61
*The prefetching MTA can not be saturated by increasing  * The prefeiching MTA can not be saturated by increaBmg
T

T At the pointmn=4
1 Atthe pointn=1

At the pointPp = 0.53
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Figure B.6: Relative Increase in Efficiency of Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA
(R=16,L=128,C=2)

TABLE 17. Saturation Points, ng (Fig.B.6.a)
0, 0,
m | ng | Ng (%) at Ns. g(%) at Ns.
2 | 5.00| 5.98 21.23 1.33
4 | 435| 4.85 12.35 0.67
8 | 4.02| 4.27 6.73 0.34
TABLE 18. Saturation Points, mg (Fig.B.6.b)
0, 0
n | mg | Mg 9(%) at ms. 9(%) at Mg
2 - - 12.35 6.73
5] 2.00| 355 21.25 0.76
6 | 1.11| 1.98 31.15 1.34
8 | 0.57| 1.03 4.02 2.53
*The MTA can not be saturated by increasimg

t At the pointmn=4
¥ Atthe poinim=8
** At the pointm=1



TABLE 19. Saturation Points, ng (Fig.B.6.c)
Pp Ns. | Ns. (%) at Ns. (%) at Ns.
0.1 ]| 749, 7.63 2.23 0.25
0.5 | 5.15| 5.64 10.36 0.73
0.75| 3.85| 4.32 12.93 0.56

1 270 2.94 8.99 0
TABLE 20. Saturation Points, Pg (Fig.B.6.d)

0, [

n | Ps | Ps g(%) at Ps, 0(%) at Ps.
2 - By 10.78 12.07

5 | 0.53| 0.62 10.78 0.69

6 | 0.35]| 0.43 7.55 0.71

8 | 0.02| 0.02 0.39 0.06

*The MTA can not be saturated by increasig

T Atthe pointPp = 0.53
1 At the pointPp = 0.62

37
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