
Department of Teleinformatics

Performance Evaluation
of Multithreaded Architectures
with Data Prefetching

Vladimir Vlassov

Department of Teleinformatics

Performance Evaluation
of Multithreaded Architectures
with Data Prefetching

Vladimir Vlassov

The research was partially supported by the Swedish National Board for
Industrial Development, NUTEK.

The author is supported by a scholarship from the Wenner-Gren Center
Foundation for Scientific Research.

TRITA–IT-R 96:05
ISSN 1103–534X
ISRN KTH/IT/R—06/05—SE

February 1996

 3

Abstract

A combination of multithreading with data prefetching allows increased efficiency of large-scale multiprocessors. In this
report, we evaluate two prefetching techniques in multi-threaded architectures: switch-on-prefetch and run-on-prefetch.
The switch-on-prefetch technique switch a thread context on each prefetch operation. The run-on-prefetch technique
overlaps prefetching with computation.

This report presents two basic analytical models of multithreading in combination with prefetching, which allow rough
performance prediction on the first stages of top-down system design. Both models are based on a few parameters of the
multi-threaded architecture and its workload. The first model is the first-order approximation for efficiency of multi-
threaded architectures with prefetching, executing a set of threads with fixed timing parameters. The second model is a
closed queuing network of the architecture, which is solved for exponentially distributed timing parameters to illustrate
its usage for evaluation of multi-threaded architectures with prefetching. The models are validated by comparision with
simulation results.

 4

Contents

List of Figures .5

1: Introduction .6

2: Related Work .6

3: Basic Assumptions. .7

4: Data Prefetching in MTA .8

4.1: Switch-On-Prefetch Technique .8

4.2: Run-On-Prefetch Technique .8

5: First-Order Approximation for Efficiency of MTA .9

5.1: Efficiency of Switch-On-Prefetch MTA .9

5.2: Efficiency of Run-On-Prefetch MTA. .11

5.3: Limits of MTA Efficiency in Saturation .12

5.4: Efficiency Curves. Comparison of Prefeetching with Non-Prefetching MTA .12

5.5: Mean Run Length in Prefetching MTA .13

5.6: Mean Thread-Idle-Time in Run-On-Prefetch MTA. .15

6: Queuing Model of a Multi-Threaded Architecture .16

6.1: Usage of the Queuing Model for Evaluation of Efficiency of Prefetching MTA .18

6.1.1: Prefetching MTA vs. Non-Prefetching MTA .20

6.1.2: Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA. .20

7: Validation of the Models .20

8: Conclusions .23

Acknowledgments. .23

Appendix A: Markov Models of Run Length .24

A.1: The Simplest Markov Chain of Run Length. .24

A.2: Run Length in a Message Passing Architecture without Data Prefetching .24

A.3: Run Length in a Message Passing Architecture with Data Prefetching .25

A.4: Run Length in a Shared Memory Architecture. .26

A.5: Run Length in a Message Passing / Shared Memory Architecture .26

Appendix B: First-Order Approximation for MTA Efficiency .27

B.1: Saturation of Prefetching MTA by Increasing Prefetching Factor of Its Work-Load28

B.2: Limits of the MTA Efficiency .29

References .38

 5

List of Figures

Figure 1: Basic Execution Cycle of a Thread .7

Figure 2: Switch-On-Prefetch: State Diagram for Execution of a Thread. .8

Figure 3: Run-On-Prefetch: Overlapping of Prefetching with Computation. .9

Figure 4: First-Order Approximation for MTA Efficiency .9

Figure 5: Thread Execution Cycle Between Prefetch Operations in the Switch-On-Prefetch Model10

Figure 6: Thread Execution Cycle Between Prefetch Operations in the Run-On-Prefetch Model11

Figure 7: First-Order Approximation for Efficiency of Prefetching MTA (R = 16, L = 128, C = 2) 14

Figure 8: Rrelative Increase in Efficiency of Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA15

Figure 9: Markov Chains of Run Length in Prefetching MTA .15

Figure 10: Run Length in Prefetching MTA .15

Figure 11: Markov Chain of Thread Idle Time in the Run-On-Prefetch MTA .16

Figure 12: The Closed Queuing Network of MTA .16

Figure 13: Markov Chain of the MTA Queuing Network .16

Figure 14: Simplified Markov Chain of the MTA Queuing Network .17

Figure 15: Queuing Networks of MTA .18

Figure 16: Queuing Model: Efficiency of Prefetching MTA (R = 16, L = 128, C = 2). .19

Figure 17: Queuing Model: Relative Increase in Efficiency of Prefetching MTA vs. Non-Prefetching21

Figure 18: Queuing Model: Relative Increase in Efficiency of Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA (R =
16, L = 128, C = 2). .22

Figure 19: Validation of the First-Order Approximation for MTA Efficiency (R = 16, L = 128, C = 2) 22

Figure A.1: The simplest Markov Chain of R(1) .24

Figure A.2: Markov Chain of R(2). Message Passing Architecture without Prefetching .24

Figure A.3: Markov Chains of R(3). Message Passing Architecture with Prefetching .25

Figure A.4: Markov Chain of R(4). Shared Memory Architecture .26

Figure A.5: Markov Chain of R(5). Message Passing / Shared Memory Architecture .26

Figure B.1: Length of Prefetch Packet Required To Achieve 99% of Efficiency Limit .30

Figure B.2: Switch-On-Prefetch: MTA Efficiency (R = 16, L = 128, C = 2) .31

Figure B.3: Run-On-Prefetch: MTA Efficiency (R = 16, L = 128, C = 2) .32

Figure B.4: Relative Increase in Efficiency of Switch-On-Prefetch MTA vs. Non-Prefetching MTA 34

Figure B.5: Relative Increase in Efficiency of Run-On-Prefetch MTA vs. Non-Prefetching MTA.35

Figure B.6: Relative Increase in Efficiency of Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA36

 6

1: Introduction

One of the main problems in large-scale multiprocessors is considerable memory latency, the time required to access data
located in remote memory. Long memory latencies decrease system efficiency. Three basic techniques have been pro-
posed to avoid or tolerate long memory latency: caching, prefetching and multithreading.

Data caching allows keeping copies of remote data in local memory and decreases remote access ratio. A number of
caching techniques, such as non-blocking and prefetching caches, have been developed to eliminate enough of the
remote memory accesses and to hide long memory latency [3, 4, 5, 6]. In spite of the memory consistency problem in
shared-memory multiprocessors which needs system resources to maintain cache coherency, caching continues to be a
subject of considerable interest.

Caching already includes data prefetching, even if a cache is not specially constructed to support prefetching explicitly
[4]. Prefetching is used to resolve one or more explicit remote references before the data is actually needed by the run-
ning process. Like caching, explicit prefetching provides local access to remote data, which have been requested by
prefetch operations executed in advance. Mainly, explicit prefetching is used by compilers as a techniques of code opti-
mization [3, 5, 9]. Its efficiency strongly depends on predictability of remote reference sequences.

Multithreading is a general solution to the latency problem. A number of threads is assigned to the same processing node
and shares its resources: processing time, memory, etc. When an active thread becomes suspended because of remote
memory access (cache miss or explicit remote reference), the processor performs a context switch, and another thread is
scheduled for execution. The suspended thread becomes ready and can be reactivated when requested remote data
arrives.

Different combinations of the above techniques are under investigation by various research groups [3, 4, 5, 7, 9, 10]. In
this paper, we focus on multi-threaded architectures, MTAs, and propose two basic analytical models for multithreading
with data prefetching: (i) first-order approximation for efficiency of prefetching MTAs and (ii) a queuing model of
prefetching MTAs. These models can be used to obtain rough results in MTA performance evaluation on the first stage of
a top-down system design. Both models are based on a few parameters of an MTA and its workload, and allow predicting
the efficiency of the MTA executing a set of statistically identical threads.

The remainder of this report is organized as follows: In section 2 an overview of related research in analytical models for
multithreading is given. Basic assumptions for the models are presented in Section 3. Section 4 describes studied
prefetching techniques. Section 5 introduces the first-order approximation for efficiency of prefetching MTAs. In Section
6, a queuing model of multi-threaded architecture with/without data prefetching is presented. Section 7 deals with valida-
tion of both analytical models by comparison with simulation results. Finally, conclusions are given in Section 8.

2: Related Work

A series of three analytical models of multithreading in a cache-based multiprocessor is reported by Saavedra-Barrera et
al. in [12] and [13]. MTA efficiency is specified as a ratio of total useful time to the full time including context switching
and idle time caused by communication latency:

(1)

The top level model of this series is a first-order approximation for MTA efficiency, which is based on a small set of
parameters: a number of identical threads (n), communication latency (L), context switch time (C) and run length (R)
which is the number of cycles between two consecutive remote references. All timing parameters,L, R andC, are con-
stant. As it was defined in [12], an MTA is saturated when increasing the number of threads does not affect the MTA effi-
ciency, i.e. there is always a thread ready to execute at each context switch. The minimum number of threads,Ns,
required to achieve saturation is called saturation point. This model predicts linear dependence of efficiency on the
number of threads until ; After the saturation point efficiency as a function ofn becomes constant:

(2)

In the second model presented in [12] and [13] the run length,R, is assumed to be a geometrically distributed random
variable. Timed Petri net notation is used to describe a behavior of multithreaded architecture executing a number of sta-

E Useful Useful Switching Idle+ +()⁄=

n NS≥

Efficiency of single-threaded architecture, STA:E1 R R L+()⁄=

Efficiency of multi-threaded architecture, MTA:En min EL ES,()=

Linear region of MTA-efficiency:EL nR R L C++()⁄=

Saturation region of MTA-efficiency:ES R R C+()⁄=

Saturation point:NS L R C+()⁄ 1+= 









 7

tistically identical threads. A reachability set of a Petri net is represented by a Markov chain, which is solved to derive
expressions for MTA efficiency and pseudo-saturation point. The third model takes into account a dependence of the
cache miss ratio on the number of running threads and the cache size. This dependence affects the run length distribution,
since thread context is assumed to be switched on cache misses. The model results in approximations for the miss ratio
and the mean run length represented as functions proportional to some power ofn.

An analytical model of multithreaded processors with caches derived by Agarwal and presented in [1] aims at dependen-
ciesL(n) and , wherem(n) is the miss ratio. Agarwal assumes fixed timing parameters for each thread.
The processor-efficiency model is similar in form to (2). Expressions for communication latencyL(n), called network
model, and miss ratiom(n), called cache model, were derived and used to predict MTA efficiency. As an alternative to the
deterministic model Agarwal proposes to model an MTA by a simple queuing system for finite number of customers
(threads). Section 6 of this paper contains a queuing model of MTA similar to the model proposed in [1], however our
model is stronger and is applied to data prefetching.

While previous studies ignore an interaction between threads located in different nodes of multiprocessor, the model pre-
sented by Nemawarkar et al. in [10] uses closed multi-chain queuing networks to evaluate efficiency of a multithreaded
multiprocessor with 2-dimensional mesh structure and distributed shared memory. An Approximate Mean Value Analy-
sis [11] (see also [8]) is used to analyse the closed queuing network and evaluate processor-efficiency.

A number of studies on data prefetching in multithreaded architectures has mainly focused on simulation of different
hardware- and software controlled prefetching techniques to explore benefits of data prefetching in shared memory
cache-based multiprocessors [3, 4, 5, 6, 9].

This paper proposes two basic analytical models of prefetching in combination with multithreading, which allow making
rough performance evaluation in top-down system design.

3: Basic Assumptions

Basic assumptions for analytical models of multithreading presented in this paper are inspired from the top-level model
of multithreaded architecture proposed in [12]. The multithreading policies mainly differ in events which cause context
switching:

• Cache miss, which causes a remote access.
• Explicit remote reference.
• Explicit context switch instructions.

In a multiple-level cache architecture normally a cache miss in the highest level cache causes context switching. Explicit
remote references mainly are issued in threads executed on a multithreaded architecture which supports the distributed
memory programming model based on massage passing. An explicit context switching is used in a multithreaded archi-
tecture with data prefetching.

Both analytical models presented in this paper, (i) first-order approximation for efficiency of prefetching MTAs and (ii)
queuing model of multithreading, can be applied to MTAs with different multithreading policies. Nevertheless, for sim-
plicity, while not losing generality, we assume that the MTA is based on a distributed memory model and supports a strat-
egy of context switching on explicit remote references. An inter-node communication is represented by the value of
communication latency,L. The interconnection network structure is ignored.

Figure 1: Basic Execution Cycle of a Thread

The workload executed on the architecture is constructed as a set ofn statistically identical threads. The main parameter
of the set of threads is the run interval,RI, which is the mean number of cycles between two consecutive memory
accesses, local or remote (Fig.1). We assume that an instruction with explicit remote reference occurs with the probabil-
ity PRA and causes a context switch, which takesC cycles. The thread is suspended during timeL, i.e. until data arrives
from the remote memory. After that the thread becomes ready and can be reactivated. If the run interval ends by the local
access, the thread continues to run. The mean number of cycles between two consecutive remote references (context
switches in the MTA), which is calledrun length, R, is . If we consider , then is
interpreted as a remote reference ratio by analogy to cache miss ratio. The state transition diagram of a thread during run

R n() 1 m n()⁄=

C RI L

READY

PRA

1 - PRA
reactivated

suspended
R (Run Length)

R RI PRA⁄= RI 1= PRA 1 R⁄=

 8

length interval (Fig.1) may include additional states such as cache access and local memory access, according to some
programming model (message passing or shared memory). Markov chain analysis can be used to evaluate mean run
length in steady-state for different multithreaded architectures (Appendix A).

We assume that a thread may contain prefetch operations to request remote data in advance. A prefetch operation sends a
number of prefetch requests (prefetch packet) to the network. We callm length of prefetch packet. We assume
that prefetch requests from one prefetch packet are served in parallel. The probability of prefetching data identified by
remote reference isPP (prefetching probability). It specifies the proportion of remote data which can be prefetched. We
investigate the efficiency of MTAs with different prefetching techniques, as a function of prefetching probability (PP)
and length of prefetch packets (m). We consider the efficiency of an MTA in form of the ratio (1).

4: Data Prefetching in MTA

There are several techniques to exploit prefetching in a multithreading architecture. A good survey of different prefetch-
ing schemes can be found in [6]. In this paper we evaluate two prefetching techniques: (i) explicit context switching after
prefetch operations (switch-on-prefetch); (ii) and overlapping of prefetching with computations (run-on-prefetch).

The switch-on-prefetch technique switches on each prefetch operation. The running thread becomes suspended until all
requested data arrive. Being resumed the thread executes without suspension on remote references which were
prefetched until the next prefetch operation is issued. In caching this technique is called explicit-switch [3].

Overlapping of prefetching with computations in the run-on-prefetch technique allows hiding latency caused by
prefetching. An active thread continues to run after a prefetch operation and becomes suspended on a remote reference
which is prefetched but the requested data has not yet arrived. In caching this technique is called switch-on-use [3].

4.1: Switch-On-Prefetch Technique

The behavior of the switch-on-prefetch MTA is illustrated by a state transition diagram of a thread depicted on Fig.3.

Figure 2: Switch-On-Prefetch: State Diagram for Execution of a Thread

Assume that the execution of a thread starts from prefetch operation marked bym where prefetch requests are sent
to the remote destinations. These prefetch requests are served in parallel. The thread is suspended until all requested data
arrive (L). After reactivation (C) the thread is executed (R) until a remote reference occurs. If the remote reference was
not included in the prefetch packet (probability) then the MTA executes a remote fetch operation, causing the
running thread to be suspended and another thread scheduled for execution (C). If the remote reference was included in
the prefetch packet (PP) then the thread continues to run until it passes remote references which have been
prefetched (Not Last). When the last prefetched reference is issued (Last) the thread repeats the prefetch operation (m).

4.2: Run-On-Prefetch Technique

There are two strategies of overlapping: synchronous and asynchronous. In the case of synchronous overlapping a thread
can be suspended when it needs the first prefetched data. The suspended thread becomes ready as soon as all remote data
requested by a prefetch packet arrives. Thus the thread waits for all requested data when it needs the first one. With asyn-
chronous overlapping the thread waits for only that prefetched data which is currently needed. Figure 3 shows a state
transition diagram of a thread executed with asynchronous overlapping of prefetching with computation.

The MTA sends a prefetch packet (them state) and then executes an active thread duringR until it needs data from the
network. If the remote reference was not included in the prefetch packet (probability), the thread initiates a
remote access (L) and becomes suspended. If the remote reference was included in the prefetch packet (PP) and the
prefetched data has arrived (Arrived andNot Last) the thread continues to run (R). When the last requested data arrives
(Arrived andLast) the thread repeats the prefetch operation (m). If requested data has not arrived yet (Not Arrived), the
executed thread becomes suspended in the blocked state marked by observe latencyLO until either all prefetched data
(synchronous overlapping) or only requested data (asynchronous) arrive. In its turn the MTA schedules another thread.

m 0>

L
PP(Last)

PP(Not Last)

R m
suspended

C
reactivated

1 - PP

READY

m 0>

1 PP–

m 1–

1 PP–

 9

Figure 3: Run-On-Prefetch: Overlapping of Prefetching with Computation

5: First-Order Approximation for Efficiency of MTA

A first-order approximation for the efficiency of MTA without data prefetching as a function ofn (number of threads)
with constant timing parametersR, C andL, was derived in [12] (Equation (2)). This result can be used to predict the effi-
ciency of MTA by using mean values ofR, L andC. Figure 4 shows asymptotic boundsEL andES for efficiency of MTA
executing statistically identical threads with exponential distributed timing parametersR, L andC (see 6).

Figure 4: First-Order Approximation for MTA Efficiency

Attempt to define the first-order approximation for efficiency of MTA with data prefetching, considering a thread execu-
tion cycle between two prefetch operations.

5.1: Efficiency of Switch-On-Prefetch MTA

Figure 5 illustrates a state transitions diagram of a thread during its execution cycle between two consecutive prefetch
operations. The execution cycle starts from prefetch operation marked bym after which the thread is suspended (L) until
requested data arrives. Then it is executed (R) until a remote reference occurs. The thread is suspended for a periodL if
this reference is not prefetched (), otherwise the thread continues to run (PP). When them-th prefetched remote
reference is issued the thread repeats the prefetch operation (m). The intervalTP is the mean time between two consecu-
tive prefetched remote references:

(3)

The execution cycle includesm intervalsTP, latencyL and a context switchC:

(4)

The useful time, the total latency and the switching time of a thread in the execution cycle can be obtained from (4) using
(3):

(5)

C

PP (Arrived & Last)

LO

1 - PP

m

PP (Not Arrived & Last)
R

PP
(Arrived & Not Last)

PP (Not Arrived & Not Last)

READY

m

L

Number of threads, n

E
ffi

ci
en

cy
 o

f M
TA

,E
n

EL

NS

ES

Bounds

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
2 4 6 10 12 14 16

L = 128
R = 16

C = 2

1 PP–

T P

R L C+() 1 PP–()+

PP
---=

Full mT P L C+ +=

Useful1 mR PP⁄=

Latency1 m mPP PP+–()L PP⁄=

Switching1 m mPP PP+–()C PP⁄=





 10

Figure 5: Thread Execution Cycle Between Prefetch Operations in the Switch-On-Prefetch Model

Note that the key assumption of the first-order approximation for efficiency of prefetching MTA is a linear dependence of
the efficiency,EL, on the number of threads, when the MTA is not saturated. This assumption ignores the probabilistic
nature of the run-length intervals caused by the probabilistic parameterPP. As a result of the assumption we can define an
optimistic saturation point, , from the inequality , assuming that the total
useful and switching time of threads executed when the given thread is suspended, exceeds latency (idle time) of
the thread during its execution cycle. However, since the minimum run length of a thread isR, the reliable value for the
saturation point, , should be defined from the inequality , which is valid for non-prefetch-
ing MTA (see Equation (2)).

By analogy with (2) we can express the efficiency of the MTA in the following way:

(6)

By using (3)-(5) in (6) we obtain the first-order approximation for the efficiency of MTA with explicit context switching
after prefetch operations* :

(7)

* Index C in (7) denotes switch-on-prefetch model

PP

L

C

L
1 - PP

C

m
TP

TP

TP

. . .

m

R

m

nS n 1–() Useful1 Switching1+() Latency1>
n 1–

NS nS≥ n 1–() R C+() L>

E1

Useful1
Useful1 Latency1+
--=

En min EL ES,()=

EL

n Useful1⋅
Full

---------------------------=

ES

Useful1
Useful1 Switching1+
---=

nS

Latency1

Useful1 Switching1+
--- 1+=


















E1C
RC RC L+()⁄=

EnC
min ELC

ESC
,()=

ELC
nRC RC L C++()⁄=

ESC
RC RC C+()⁄=

nSC
L RC C+()⁄ 1+=

NS L R C+()⁄ 1+=












where RC αCR=

αC m m mPP– PP+()⁄=

 11

We call the coefficientαC prefetching factor. It indirectly characterizes the effect of data prefetching on the efficiency of
MTA. Τhe prefetching factorα is an increasing factor for the run length (see 5.5).

5.2: Efficiency of Run-On-Prefetch MTA

Figure 6 illustrates an execution cycle of a thread with synchronous overlapping of prefetching with computations. Since
we have assumed that all prefetch requests from prefetch packet are served in parallel, then the asynchronous overlap-
ping behaves as synchronous for the constant communication latencyL. The PE sends a prefetch packet (m) and then
executes an active thread duringR until it needs the first remote data (Fig.6). If that data is prefetched but was has not
arrived (PP), the executed thread is suspended in a state marked by “observe latency” (we assume that).
After reactivation (C) the thread passes prefetched remote references without suspension and repeats the prefetch
operation (m). If the remote reference afterR is not prefetched (), the thread performs a remote fetch operation
(L).

Figure 6: Thread Execution Cycle Between Prefetch Operations in the Run-On-Prefetch Model

By using (3), the full amount of time (useful time, total latency and switching time) of a thread in the execution cycle can
be shown to be:

(8)

By replacing (3) and (8) into (6) we obtain expressions for the efficiency of run-on-prefetch MTA:

(9)

L R– R L<
m 1–

1 PP–

PP
R

C

L

1 - PP

m-1

RP

RP

. . .

m

m

C

RP

L - R

Full R m 1–()T P 1 PP–()T P 1 PP–()L PP L R–() C+ + + + +=

Useful1 mR PP⁄=

Latency1 m mPP PP
2

+–()L PP
2

R–() PP⁄=

Switching1 m mPP PP
2

+–()C PP⁄=







E1R
RR RR LR+()⁄=

EnR
min ELR

ESR
,()=

ELR
nRR RR C LR+ +()⁄=

ESR
RR RR C+()⁄=

nSR
LR RR C+()⁄ 1+=

NS L R C+()⁄ 1+=













where RR αRR=

LR L βR–=

αR m m mPP– PP
2

+()⁄=

β PP
2

m mPP– PP
2

+()⁄=

 12

Note, that is reliable value for the saturation point, defined for minimum value of thread run length. By analogy with
the switch-on-prefetch technique, the coefficientαR is called prefetching factor. By comparing (9) and (7) it is easy to see
that the prefetching factorαR for the run-on-prefetch technique exceeds the factorαC in switch-on-prefetch.

We call the coefficientβ overlapping factor. It represents a portion of computation (run length) overlapped with the
latency caused by prefetching (see 5.6).

5.3: Limits of MTA Efficiency in Saturation

Note that the linear approximation for efficiency of non-saturated MTA () has increasing error after point
 obtained from (2) assuming that run length has the maximum valuemR. Efficiency functions (7)

and (9) can be used only as bounds of real MTA efficiency to make rough preliminary decisions. More detailed investiga-
tion of the first-order approximation for efficiency is given in Appendix B. Nevertheless, the first-order approximation
allows to predict STA-efficiency and MTA-efficiency in saturation more precisely than in the linear region. The effi-
ciency of prefetching MTA in saturation, when , can be improved by increasing the length of prefetch packets and
the proportion of data being prefetched data. Limits of some functions (7) and (9) are:

(10)

It is interesting to note that the run-on-prefetch technique has the same limits of efficiency in saturation as switch-on-
prefetch. The above expressions can be used to define minimum values of the prefetch parameters (mγ or PPγ) required to
achieve some percentage, , of the efficiency limit. To obtain a solution it is necessary to solve one of the follow-
ing two equations:

Above equations are by substitution an expression forES from (7) reduced to

(11)

For example, assume that prefetching MTA executes a set of threads (n = 9) with parametersL = 128,C = 2 andR = 16
cycles. The portion of remote references which can be prefetched is 65% (PP = 0.65). According to (2) the saturation
point is NS = 8.11, i.e. the MTA is saturated even its workload does not use prefetching. According to (10) the effi-
ciency limit is 0.9581 as . For the switch-on-prefetch technique the length of prefetch packetsm required to
achieve 99% of efficiency limit can be obtain from (11) using expression forαC presented in (7). The root is

 = 8. The length of prefetch packets required to achieve the same efficiency in the run-on-prefetch
technique is = 6 (obtained from (11) using (9)).

5.4: Efficiency Curves. Comparison of Prefeetching with Non-Prefetching MTA

Figure 7.a,b depicts dependencies of prefetching MTA efficiency onn, m andPP. PlotsE(m, n) andE(PP, n) show that
both the derivative of efficiency in the linear region and the value of efficiency in saturation region increase with increas-
ing prefetching factor. The cause of such trends is increasing the mean value of thread run length due to data prefetching.
However the mean run length is a bounded function of prefetch parameters. This is quite obvious, because even if

 (), execution of a thread is interrupted by remote references which are not prefetched. In the case
 () all data are prefetched thread contexts are switched on prefetch operations.

Let us compare prefetching MTA, (7) and (9), with non-prefetching MTA (2), assuming that both execute a set ofn
threads with parametersL = 128 cycles,C = 2 cycles andR = 16 cycles. Expected relative increase,g, in the efficiency of

NS

n NS<
n L mR C+()⁄ 1+>

n NS≥

E1Cm ∞→
lim E1Rm ∞→

lim R
R L 1 PP–()+
----------------------------------= =

ESCm ∞→
lim ESRm ∞→

lim R
R C 1 PP–()+
-----------------------------------= =

RC
m ∞→
lim RR

m ∞→
lim R 1 PP–()⁄= =

αC
m ∞→
lim αR

m ∞→
lim 1 1 PP–()⁄= =













PP 1<()

E1CPP 1→
lim mR mR L+()⁄=

E1RPP 1→
lim mR m 1–()R L+()⁄=

ESCPP 1→
lim ESRPP 1→

lim mR mR C+()⁄= =

RC
PP 1→
lim RR

PP 1→
lim mR= =

αC
PP 1→
lim αR

PP 1→
lim m= =















m ∞≠()

γ 100%⋅

ES mγ() γ R R C 1 PP–()+()⁄⋅= , when PP is given

ES PPγ() γ mR mR C+()⁄⋅= , when m is given

α mγ() γ C⋅
R 1 γ–() C 1 PP–()+
--=

α PPγ() γ m C⋅ ⋅
mR 1 γ–() C+
------------------------------------= 






m ∞→

m0.99 7.7066=
m0.99 5.0093=

m ∞→ PP 1<
PP 1→ m ∞≠

 13

the prefetching MTA against non-prefetching MTA can be calculated as (for
run-on-prefetch MTA analogically). Plotsg(m, n) andg(PP, n) in Fig.7.c,d demonstrates the relative efficiency increase
as a function of the number of threads,n, for different fixed values of prefetch packet length,m, and prefetching probabil-
ity, PP. The functiong initially is a constant, untiln reaches an optimistic saturation pointns for the prefetching MTA.
After this point, the relative increase graph falls off, because the non-prefetching MTA is not saturated yet, and its effi-
ciency continues to grow in the linear region (Fig.4). After the saturation point of non-prefetching MTA,NS = 8.11, the
relative increase graph stabilizes again at values not more than 10%.

Curves of the run-on-prefetch MTA efficiency are similar to switch-on-prefetch. The comparison of the run-on-prefetch
MTA efficiency, , with the efficiency of the switch-on-prefetch MTA, , is depicted in Fig.8. Plots were obtained
according to expression . For the studied set of parameters (R = 16,L = 128,C
= 2 cycles and assuming), the run-on-prefetch technique provides higher efficiency comparing with switch-on-
prefetch, when both MTAs are not saturated and the number of threads is less than the optimistic saturation point
(). In this case the relative increase in efficiency of the run-on-prefetch MTA is about 10-20% vs. switch-on-
prefetch MTA. When both MTAs are saturated (), the relative increase is between 0.25 and 2.5%.

5.5: Mean Run Length in Prefetching MTA

Both prefetching techniques, switch-on-prefetch and run-on-prefetch, allow increasing the mean value of run length, i.e.
number of cycles between two consecutive remote references which cause context switching. Assume that a thread is
executed forever and specified by run lengthR (mean number of cycles between two consecutive remote references in a
thread), prefetch probabilityPP (portion of data which can be prefetched) andm (mean number of prefetch requests gen-
erated by each prefetch operation).

First consider the switch-on-prefetch technique. Execution of a thread with context switching after prefetch operation
can be represented by a Markov chain with dummy state labelledm (Fig.9.a)* . Being reactivated after suspension (C) the
thread is executed (R) until a remote reference is issued. Note that the mean number of remote references between two
consecutive prefetch operations is , therefore the probability of execution of a prefetch operation is . If the
reference is not prefetched (probability) the thread initiates a remote access and becomes suspended (C). If
prefetch was initiated the thread either continues to run (probability) or repeats the prefetch operationm
(probability).

By analogy, execution of a thread with synchronous overlapping of prefetching with computations (run-on-prefetch) can
be represented by a Markov chain, depicted in Fig.9.b. We analyse only the synchronous overlapping technique assuming
that the asynchronous model behaves as the synchronous for constant communication latency. Since the probability of a
remote reference between two consecutive prefetch operation is , then the probability of prefetched reference is

. Thus, execution of thread (R) is interrupted either by remote references which are not prefetched (probability
) or by a remote reference which is prefetched but the corresponding prefetch request is not yet satisfied (prob-

ability).

The mean run length in prefetching MTAs can be determined by considering both Markov chains as closed chains with a
dummy state labelled 0 (Fig.9). The steady-state probability of being at thei-th state of the Markov chain is
whereni is the mean number of repetitions of a state during one loop fromR to the dummy state 0, and N is the total
number of repetitions of all states in the chain. To define the mean run length the following systems of equations must be
solved independently with an assumption :

The solutions are

(12)

* We assume that the time of prefetch operation is included intoR

EnR
EnC

g EnR
Enc

,() EnR
Enc

–() Enc
⁄() 100%⋅=

PP 0.5≥

n 5<
n 8>

m PP⁄ PP m⁄
1 PP–()

PP 1 1 m⁄–()
PP m⁄

PP m⁄
PP

2
m⁄

1 PP–()
PP

2
m⁄

Pi ni N⁄=

n0 1=

switch-on-prefetch (Fig.5.a):

nR n0 nRPP 1 1 m⁄–()+=

nm nRPP m⁄=

n0 nR 1 PP–() nm+=

RC nRR=







run-on-prefetch (Fig.5.b):

nR n0 nRPP 1 PP m⁄–()+=

n0 nR 1 PP–() nRPP
2

m⁄+=

RR nRR=





switch-on-prefetch:

RC αCR=

where αC m m PPm– PP+()⁄=

run-on-prefetch:

RR αRR=

where αR m m PPm– PP
2

+()⁄= 





 14

Figure 7: First-Order Approximation for Efficiency of Prefetching MTA (R = 16, L = 128, C = 2)

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

,n
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m = 4

m = 2

m = ∞

m = 8

without prefetching

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(P

P,
n) 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PP = 0.5

PP = 0.1

PP = 1

PP = 0.75

without prefetching

(a) switch-on-prefetch MTA efficiency

(c) relative increase in efficiency of switch-on-prefetch MTA vs. non-prefetching MTA

Number of threads, n
2 4 6 10 12 14 168

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)% 140

120

100

80

60

40

20

0

m = ∞

m = 8

m = 4

m = 2

NS

R
el

at
iv

e
In

cr
ea

se
,g

 (
P

P,
n)

% 250

200

150

100

50

0

Number of threads, n
2 4 6 10 12 14 168

PP = 1

PP = 0.75

PP = 0.5

PP = 0.1

NS

PP = 0.65

PP = 0.65

m = 4

m = 4

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(P

P,
n) 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PP = 0.5

PP = 0.1

without prefetching

PP = 0.75

PP = 1

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

,n
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m = 4

m = 2

without prefetching

m = 8

m = ∞

(b) run-on-prefetch MTA efficiency

PP = 0.65
m = 4

R
el

at
iv

e
In

cr
ea

se
,g

 (
P

P,
 n

)
% 250

200

150

100

50

0

Number of threads, n
2 4 6 10 12 14 168

PP = 0.75

PP = 0.5
PP = 0.1

NS

PP = 1

Number of threads, n
2 4 6 10 12 14 168

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)

% 140

120

100

80

60

40

20

0

m = ∞

m = 8

m = 4

m = 2

NS

(d) relative increase in efficiency of run-on-prefetch MTA vs. non-prefetching MTA

PP = 0.65 m = 4

 15

Figure 8: Rrelative Increase in Efficiency of Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA
(R = 16, L = 128, C = 2)

Figure 9: Markov Chains of Run Length in Prefetching MTA

Τhe prefetching factorα is an increasing factor for the run length (Fig.10.a). ComparingαR andαC (12) it can be shown
that the prefetching factorαR in the run-on-prefetch technique exceeds the factorαC in switch-on-prefetch. Figure 10.b
depicts the relative increase in the mean of the run length in the run-on-prefetch technique compared to switch-on-
prefetch, . It is easy to see that with lower prefetch packet length,m, the relative
increase is larger. The functiong initially improves, reaches a maximum, and then falls off. It can be shown that the rela-
tive increase function,g, achieves its extremum when prefetching probability,PP, is .

Figure 10: Run Length in Prefetching MTA

5.6: Mean Thread-Idle-Time in Run-On-Prefetch MTA

The run-on-prefetch technique overlaps prefetching with computations and decreases the average value of idle time of a
thread (virtual latency). Consider the synchronous overlapping technique. The suspension time interval of a thread can
represented by a Markov chain depicted in Fig.11.

The thread becomes idle either for a mean period (observed latency) with the probability (see 5.5) or for
a periodL (probability). Analysis of the closed Markov chain in Fig.11 gives us an expression for the mean
idle time (virtual latency) of a thread for the run-on-prefetch technique:

R
el

at
iv

e
In

cr
ea

se
,g

 (
P

P,
 n

)%

Number of threads, n
2 3 4 6 7 8 951

12

10

8

6

4

2

0

14

PP = 0.75
PP = 0.5
PP = 0.1

PP = 1

o
*
x

+

Number of threads, n
2 3 4 6 7 8 95

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)

% 25

20

15

10

5

0

m = 8

m = 4

m = 2

1

PP = 0.65 m = 4

C

PP(1-1/m)

L

m

(1-PP)

PP/m

0

R

(a) switch-on-prefetch

C

PP(1- PP/m)

C

(1-PP)

PP(PP/m)

0

R

(b) run-on-prefetch

g RR RC,() αR αC–() αC⁄() 100%⋅=

m m±() m 1–()⁄ 1<

Length of prefetch packets, m
0 10 20 30 40 50

250

200

150

100

50

0

0.95

0.80

0.65

0.50
0.35
0.20
0.05

. .
 .

R
un

 le
ng

th
,R

C

P
re

fe
tc

hi
ng

 p
ro

ba
bi

lit
y,

P
P

60 70

Limit (PP = 0.8, m = ∞)

R = 16

PP = 1

Prefetching probability, PP

0 0.2 0.4 0.6

10
0%

(R
R

 -
 R

C
)/

R
C

15

10

5

0

20

25

m = 60m = 30

m = 10

m = 2

0.8 1

(a) switch-on-prefetch: run length as a function
of the prefetch-packet-length and prefetching probability

(b) run-on-prefetch: relative increase
in run length vs. switch-on-prefetch MTA

L RR– PP
2

m⁄
1 PP

2
m⁄–

 16

(13)

We call the coefficientβ theoverlapping factor which represents a portion of computation (run length) overlapping with
latency caused by prefetching.

Figure 11: Markov Chain of Thread Idle Time in the Run-On-Prefetch MTA

6: Queuing Model of a Multi-Threaded Architecture

A multi-threaded architecture executingn statistically identical threads can be represented as a closed queuing network
(Fig.12) withn circulating customers (threads). It consists of a queue Q, and servers, and a queuing system
with n servers . The latter assumption means that all remote references from different threads are served in parallel.

Figure 12: The Closed Queuing Network of MTA

Assume that all timing parameters,L, R andC, have exponential distributions. It is difficult to analyse this network
because and servers can not serve more than one customer simultaneously i.e. not more than one thread can
be active at any time. The behavior of the network with the above restriction can be described by the continuous-time
Markov chain in Fig.13. States of the chain are marked by triple indexes , which are:

• c - number of customers in Q and the server, .
• r - number of customers in the server, .
• l - the number of customers in servers, .

The chain (Fig.13.a) contains states and can be analysed computationally using Matlab environment [].

Figure 13: Markov Chain of the MTA Queuing Network

LR L βR, where β PP
2

m mPP– PP
2

+()⁄=–=

RR

1 - PP
2/m

PP
2/m

0

L - RR

C

L

1 C⁄ 1 R⁄
1 L⁄

. .
 .

1/(C + R)Q

1/C 1/R

1/L

1/L

1 R⁄ 1 C⁄

c r l, ,(); c r l+ + n={ }

1 C⁄ c 0 1 2 … n,, , ,{ }∈
1 R⁄ r 1 0,{ }∈
1 L⁄ l 0 1 2 … n,, , ,{ }∈

2n 1+

0, 0, n

1, 0, n-1

2, 0, n-2

3, 0, n-3

i, 0, n-i

n, 0, 0

0, 1, n-1

1, 1, n-2

2, 1, n-3

i-1, 1, n-i

n-1, 1, 0

1/ C
1/ R

1/ C

1/ C

1/ C

1/ C

1/ R

1/ R

1/ R

1/ R

1/ R

1/ R

(n-1)/ L

(n-2)/ L

(n-3)/ L

(n-i+1)/ L

(n-i)/ L

1/ L

(n-1)/ L

(n-2)/ L

(n-3)/ L

(n-i+1)/ L

(n-i)/ L

1/ L

n/ L

. .
 .

. .
 .

. .
 .

. .
 .

 17

The chain (Fig.13) contains states and can be analysed computationally.

To simplify the analytical solution consider and servers (Fig.12), as a closed queuing network consisting of
two M/M/1 queuing systems, the first with server and the second with server. Assume that this network
serves one circulating thread. The probability of having the thread in the server is the efficiency of the MTA in sat-
uration (): .

Figure 14: Simplified Markov Chain of the MTA Queuing Network

Next assume that the network (Fig.12) consists of a M/M/1 queuing system with one server (service rate)
and a M/M/n queuing system withn servers . The behavior of this queuing network is represented by the Markov
chain (birth-death process) in Fig.14. Each state is marked by a vector whereni is a number of threads in thei-
th system. The chain contains states. According the product form analysis the probability of havingn1 threads in
the first system and threads in the second system is:

The probability of having at least one thread in the first system, i.e. one thread in the server , is
. Thus the product is interpreted as the efficiency of the MTA. Queuing theory allows

also the derivation of a number of other results for the studied queuing network, such as the mean number of ready
threadsnW (mean number of customers in the queue), the mean number of activated and running threadsnCR (mean
number of customers in the first system), the mean number of suspended threadsnS (mean number of customers in the
second system) and the mean waiting time of ready threadstW (mean waiting time in the queue).

The queuing model of the MTA can be summarized in form of the following expressions:

(14)

An efficiency curve for exponentially distributed timing parameters (14) is bounded by the curve of first-order approxi-
mation of the MTA efficiency (2), as it is depicted in Fig.4 (see 5). The curve obtained with the queuing model allows us
to conclude that MTA efficiency is almost stabilized when the number of threads increases. It is easy to prove that

 as . The number of threads, , required to achieve MTA efficiency corresponding to some per-
centage, , of its limit, can be obtained by repetitive computations of the efficiencyEn for n = 1, 2,..., until

.

For example, with mean latencyL = 128 cycles, a context switch overheadC = 2 cycles, and mean run lengthR = 16
cycles, the deterministic model gives us the saturation pointNS = 8 threads, where MTA efficiency is predicted to be
0.8889. The queuing model predicts an efficiency value of 0.7243 (82% of its limit) for 8 threads; value of 0.8748 (98%)
for 13 threads, and 0.8818 (99%) for 14 threads. These results are close to those predicted in [12].

2n 1+

1 C⁄ 1 R⁄
1 C⁄ 1 R⁄

1 R⁄
t ∞= ES R C R+()⁄=

0, n 1, n-1

1/(C+R) 1/(C+R)

2, n-2 n-1,1

1/(C+R)

n, 0

1/(C+R)

n/L (n-1)/L 1/L2/L

1 C R+()⁄
1 L⁄

n1 n2,()
n 1+

n2 n n1–=

P n1 n2,()
L

n2 C R+()
n1

n2!
-------------------------------- L

i

i!
---- C R+()n i–

i 0=

n

∑
 
 
  1–

⋅=

1 C R+()⁄
1 P 0 n,()–() 1 P 0 n,()–()ES

Efficiency of the MTA:En 1 P n()–()ES=

Efficiency limit (saturation):ES R C R+()⁄ En
n ∞→
lim==

Mean number of ready threads:nW i 1–()P n i–()
i 2=

n

∑=

Mean number of active threads:nCR 1 P n()–=

Mean number of suspended threads:nS iP i()
i 1=

n

∑=

Mean waiting time of ready threads:tW
C R+

1 P n()–
-------------------nW=

whereP x()
ηx

x!
------ ηi

i!

i 0=

n

∑
 
 
  1–

⋅=

η L C R+()⁄= 























En ES→() n ∞→() nγ
γ 100%()⋅

En γ ES⋅≥

 18

A pseudo-saturation point,nS, can be defined with required accuracyε by repetitive computations of efficiency withn =
1, 2,..., until the difference between current and previous values becomes≤ ε. The saturation pointNS from the determin-
istic model (see Eq.(2)) can be used as a starting point for iterations.

We have demonstrated a possible queuing model of a multi-threaded architecture and its analysis. The number of
servers (k) can be limited and independent of the number of threads* (Fig.15(a)). An open queuing network (Fig.15(b))
can be used to model an MTA executing a load where the number of threads can be changed by terminating and creating
of contexts. For simplicity, streams of newly created threads can be assumed as Poisson arrivals with fixed rateλ. The
probability of thread termination,PT, can be specified as , whereT is the mean life-time of a thread.

Figure 15: Queuing Networks of MTA

Both closed and open networks (Fig.15) contain servers modelling remote reference service. These servers may be
composed in a different way depending on communication network structure. The simplest service disciplines are FIFO,
however, one can assume priorities associated to threads. Distribution parameters of service times,L, R andC, may also
depend on a thread priority. The efficiency of the MTA in steady state is the probability of having at least one thread in
the server multiplied by the ratio . This multiplication should be done to exclude switching time
from useful time. Experts in queuing theory have developed a number of methods (see for example [2, 8, 11]) to analyse
such queuing networks, which are similar to the central server model of a time-sharing system [2, 8].

6.1: Usage of the Queuing Model for Evaluation of Efficiency of Prefetching MTA

The expressions (14) obtained with the queuing model can be used for evaluation of efficiency of MTAs with data
prefetching. For the switch-on-prefetch MTA the parameterR (run length) in expressions (14) can be simply replaced by
the mean run lengthRC from equation (12) (see 5.5). Figure 16.a depicts dependencies of the switch-on-prefetch MTA
efficiency on workload parameters, such as number of threads,n, length of prefetch packets,m, and proportion of
prefetched data,PP.

For the run-on-prefetch MTA the parameterR (run length) in expressions (14) must be replaced by the mean run length
RR from equation (12) (see 5.5). The parameterL must be replaced by the mean latencyLR from (13) (see 5.6).
Figure 16.b depicts efficiency of the run-on-prefetch MTA as functions of workload parametersn, m, andPP.

A pseudo-saturation point,nS, where efficiency is closed to saturation with required errorε, can be found by repetitive
computations of efficiency withn = 1, 2,..., until the difference between current and previous values becomes≤ ε. The
saturation point from the deterministic model can be used as a starting point for iterations.

PlotsE(n, m) andE(n, PP) in Fig.16.a and Fig.16.b show that efficiency of prefetching MTA executing a fixed number of
threads can be improved by increasing the prefetching factor (length of prefetch packets or/and proportion of prefetched
data) for its workload. However, the efficiency is almost stabilized when the length of prefetch packet,m, reaches some
value called herepseudo-stability point, mS. This point can be defined with required accuracyε by repetitive computa-
tions of efficiency withm = 1, 2,..., until the difference between current and previous values becomes≤ ε.

A limit of the functionEn as is (using equations (10) and (14)):

(15)

* In the presented analysis we actually assumed that the number of 1/L servers is equal to the number of threads

1 L⁄

PT R T⁄=

1/(C + R)

Q Q2
. .

 .
1/L

1/L

k
1/(C + R)

Q Q2

. .
 .

1/L

1/L

(a) closed queueing networks of MTA (b) open queueing network of MTA

PT

λ

 (number of threads, n, is fixed) (number of threads is changeable)

1 L⁄

1 C R+()⁄ R C R+()⁄

NS L C R+()⁄ 1+=

m ∞→

En
m ∞→
lim 1

ηn

n!
------ ηi

i!

i 0=

n

∑
 
 
  1–

⋅–
 
 
 

ES=

where η
L 1 PP–()

R C 1 PP–()+
-----------------------------------= 

 

ES
R

R C 1 PP–()+
-----------------------------------= 

 

 19

Figure 16: Queuing Model: Efficiency of Prefetching MTA (R = 16, L = 128, C = 2).
Symbols correspond to simulation and curves without symbols correspond to the model

A prefetch packet length, , when MTA efficiency, corresponds to some percentage, , of its limit,
can be obtained by repetitive computations of form = 1, 2,..., until it becomes not less than desired value.

For example, assume that a switch-on-prefetch MTA with mean latencyL = 128 cycles, and a context switch overheadC
= 2 cycles, executes 8 threads with data prefetching. Each thread has mean run lengthR = 16 between consecutive remote
references, 65% of which are prefetched (PP = 0.65). For the studied parameters, according to (15) the efficiency limit is

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

,n
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(P

P,
n)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PP = 0.5

PP = 0.25

Length of prefetch packets, m

E
ffi

ci
en

cy
 o

f M
TA

,E
(n

,m
)

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

2 4 6 10 12 14 168

n = 4

n = 8

n = 4

n = 8

m = 4

m = 8

(a) switch-on-prefetch model

0.5

PP = 0.65

PP = 0.65

m = 4 m = 4

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

,n
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
without prefetching

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(P

P,
n)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PP = 0.5

PP = 0.25

Length of prefetch packets, m

E
ffi

ci
en

cy
 o

f M
TA

,E
(n

,m
) 0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

2 4 6 10 12 14 168

n = 4

n = 8

E
ffi

ci
en

cy
 o

f M
TA

,E
(n

,P
P
)

Prefetching probability, PP

0.1 0.3 0.5 0.7 0.9

n = 4

n = 8

m = 4

m = 8

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.5

PP = 0.65 PP = 0.65

m = 4
m = 4

(b) run-on-prefetch model

0.45

0.4

E
ffi

ci
en

cy
 o

f M
TA

,E
(n

,P
P
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Prefetching probability, PP

0.1 0.3 0.5 0.7 0.9

without prefetching

without prefetching

without prefetching

0.95

mγ E mγ() γ 100%()⋅
E m()

 20

0.9537 as . Calculating the mean run length,RC (12), with different values ofm and using it in (14) instead ofR,
we can see that fromm = 8 (pseudo-stability point) the efficiency of switch-on-prefetch MTA is almost stabilised at the
value 0.94 (98.6% of the limit) with an error less than 0.002. For the same set of parameters, the efficiency of run-on-
prefetch MTA has the same limit 0.9537 when . However, a pseudo-stability point for run-on-prefetch MTA
equals 6 requests per prefetch packet.

6.1.1: Prefetching MTA vs. Non-Prefetching MTA

Figure 17.a depicts the relative increase in efficiency of prefetching MTA compared with non-prefetching MTA. Curves
of the run-on-prefetch MTA efficiency are similar to switch-on-prefetch. As in the first-order approximation for MTA
efficiency, presented in §5, plotsg(m, n) andg(PP, n) show that the advantage of prefetching MTA over non-prefetching
MTA degrades when the number of threads,n, increases (compare Fig.7.b with Fig.17.a). This is because both prefetch-
ing and non-prefetching MTAs reach their pseudo-saturation points, and their efficiencies are almost stabilized.

Plot g(n, m) in Fig.17.a illustrate the dependence of the relative increase function on length of prefetch packets,m, for
different fixed numbers of threads,n. These plots show that he relative increase in efficiency of prefetching MTA vs. non-
prefetching MTA initially grows, if the length of prefetch packets,m, increases, but when prefetching MTA reaches its
pseudo-stability point, the relative increase is almost stabilized.

The advantage of prefetching MTA against non-prefetching MTA is more sensitive to the value of prefetching probabil-
ity, PP (see plotsg(n, PP) in Fig.17.a). The relative increase in efficiency grows when the proportion of prefetched data
increases. However, when the number of executed threads increases this dependence becomes weaker.

6.1.2: Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA

By analogy, we compare the efficiency of MTAs with different prefetching techniques. Figure 17.b depicts the relative
increase in the efficiency of the run-on-prefetch MTA compared with switch-on-prefetch MTA.

For the studied set of parameters (R = 16,L = 128,C = 2 cycles and assuming), plotsg(m, n) andg(PP, n) dem-
onstrate that the run-on-prefetch technique provides higher efficiency than switch-on-prefetch, when both MTAs are
loaded by a number of threads less than the saturation point, as predicted by first-order approximation for efficiency (9
threads in this case). After this point the relative increase in efficiency of the run-on-prefetch MTA is 0.25 and 2.5%.

We can conclude also that the advantage of the run-on-prefetch technique over switch-on-prefetch degrades when the
length of prefetch packets,m, increases (see plotsg(n, m) in Fig.17.b). After pseudo-stability points the relative increase
is almost stabilized at 1-6%. On the other hand, the advantage of the run-on-prefetch technique initially grows when the
proportion of prefetched data,PP, increases (see plotsg(n, PP) in Fig.17.b).

7: Validation of the Models

The first-order approximation for efficiency of prefetching MTA is represented by the equations (7) and (9) in 5. The
simple solution for the queuing model of multithreading with (without) prefetching is represented by the basic expres-
sions (14) in 6. These expressions can be used to evaluate prefetching MTA using (12) and (13), as described in 6.1. Both
models were validated using an MTA simulator presented in [14]. The simulator is based on a Finite State Machine
model and generates execution traces of synthetic threads in form of sequences of thread timed states such as running,
switching, suspended. While executing, the MTA simulator collects relevant statistics which are used by a plotter to dis-
play results of experiments. Model validation compares predicted MTA efficiency, mean run length and mean idle time
of threads with results obtained from simulation.

For the first model we report results of validation with the following fixed timing parameters:L = 128,R = 16 andC = 2.
Figure 19 shows both analytical and experimental curves of efficiency for prefetching MTAs. It is easy to see that theo-
retical lines on linear and saturation regions bound the experimental curves. Simulation proves that prefetching MTAs are
saturated by the same number of threads as those without prefetching. In all presented results the saturation point equals
9 threads, which corresponds to the saturation point of non-prefetching MTA executing threads with the same parame-
ters.

The queuing model was validated by simulation with the following timing parameters:L = 128 (exponential),R = 16
(exponential) andC = 2. In the presented experiments we do not evaluate efficiency of run-on-prefetch MTA based on
asynchronous overlapping of prefetching with computation, because the expressions for mean run length (12) and mean
idle time of a thread (13) are valid for asynchronous overlapping only ifR andL are fixed. Figure 16 depicts results of the
validation which show a good coincidence of analytical and experimental curves.

m ∞→

m ∞→

PP 0.5≥

 21

Figure 17: Queuing Model: Relative Increase in Efficiency of Prefetching MTA vs. Non-Prefetching
MTA (R = 16, L = 128, C = 2)

Number of threads, n
2 4 6 10 12 14 168

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)

%
120

100

80

60

40

20

0

Number of threads, n
2 4 6 10 12 14 168

R
el

at
iv

e
In

cr
ea

se
,g

 (
P

P,
 n

)
%

250

200

150

100

50

0

PP = 0.5

PP = 1

PP = 0.75

Length of prefetch packets, m
2 4 6 10 12 14 168

n = 2

n = 5

n = 6

n = 8

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 P
P
)

%

n = 2

Prefetching probability, PP

0 0.2 0.4 0.6 0.8 1.0

n = 4

n = 8

m = 2

m = 4

m = 8

160

140

120

100

80

60

40

20

n = 5

0

180

PP = 0.1

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 m
)

%

120

100

80

60

40

20

0

PP = 0.65 PP = 0.65

m = 4 m = 4

(a) switch-on-prefetch MTA vs. non-prefetching MTA

(b) run-on-prefetch MTA vs. non-prefetching MTA

Number of threads, n
2 4 6 10 12 14 168

Number of threads, n
2 4 6 10 12 14 168

Length of prefetch packets, m
2 4 6 10 12 14 168

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 P
P
)

% n = 2

Prefetching probability, PP

0 0.2 0.4 0.6 0.8 1.0

n = 4

n = 8

160

140

120

100

80

60

40

20

n = 5

0

180

200

R
el

at
iv

e
In

cr
ea

se
,g

 (
P

P,
 n

)
%

250

200

150

100

50

0

PP = 0.5

PP = 1

PP = 0.75

PP = 0.1

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)

%

120

100

80

60

40

20

0

m = 2

m = 4

m = 8 n = 2

n = 5

n = 6n = 8

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 m
)

%

120

100

80

60

40

20

0

PP = 0.65

PP = 0.65

m = 4 m = 4

 22

Figure 18: Queuing Model: Relative Increase in Efficiency of Run-On-Prefetch MTA vs. Switch-On-
Prefetch MTA (R = 16, L = 128, C = 2)

Figure 19: Validation of the First-Order Approximation for MTA Efficiency (R = 16, L = 128, C = 2)
Symbols correspond to simulation and curves without symbols correspond to the model

Number of threads, n
2 4 6 10 12 14 168

Number of threads, n
2 4 6 10 12 14 168

Length of prefetch packets, m
2 4 6 10 12 14 168

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 P
P
)

% n = 2

Prefetching probability, PP

0 0.2 0.4 0.6 0.8 1.0

n = 4

n = 8

12

10

8

6

4

2

0

n = 5

(a) as a function of m and n (PP = 0.65)

(c) as a function of PP and n (m = 4)

(b) as a function of n and m (PP = 0.65)

(d) as a function of PP and n (m = 4)

R
el

at
iv

e
In

cr
ea

se
,g

 (
P

P,
 n

)
%

10

8

6

4

2

0

12

14

PP = 0.75
PP = 0.5
PP = 0.1

PP = 1

o
+

x
*

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)

%

25

20

15

10

5

0
m = 8

m = 4

m = 2

n = 2

n = 5

n = 6

n = 8R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 m
)

%

30

25

20

15

10

5

0

35

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

,n
) 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m = 2

m = 8

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(P

P,
n)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PP = 0.5

PP = 0.75

(a) switch-on-prefetch MTA efficiency

m = 8PP = 0.65

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

,n
) 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m = 2

m = 8

E
ffi

ci
en

cy
 o

f M
TA

,E
(P

P,
n)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PP = 0.5

PP = 0.75

(b) run-on-prefetch MTA efficiency

m = 8PP = 0.65

Number of threads, n
2 4 6 10 12 14 168

 23

8: Conclusions

We presented two analytical models of multithreaded architectures with data prefetching. We evaluated two prefetching
techniques: switch-on-prefetch, and run-on-prefetch (mainly synchronous overlapping of prefetching with computation).
Both presented models can be used to predict the efficiency of a prefetching MTA assuming execution of a fixed number
of statistically identical threads. The architecture and its workload are specified in terms of communication latency (L),
context switching overhead (C), number of threads (n), number of cycles between two consecutive remote references (R),
proportion of data which can be prefetched (PP), and number of prefetch requests per prefetch operation (m).

The first model is the first-order approximation for MTA efficiency which is based on assumptions that all timing param-
eters (L, C, R) are constant, the length of prefetch packets (m) is fixed, and prefetched remote references are uniformly
distributed in a sequence of remote references within a thread. This model predicts the efficiency of MTA in saturation
and efficiency of STA more precisely than the efficiency of non-saturated MTA. It allows predicting a mean run length of
a thread with data prefetching and mean idle time of a thread in a run-on-prefetch MTA. The model predicts an optimistic
saturation point based on the assumption of linear dependence of efficiency on number of threads in a non-saturated
MTA. However, we have demonstrated by simulation that for both prefetching techniques, switch-on-prefetch and run-
on-prefetch, a more reliable saturation point is the same as for a non-prefetching MTA executing the same load.

The second model is a queuing network of an MTA with (without) prefetching. To demonstrate the usage of this model,
the closed queuing network of the MTA was solved for the case of exponentially distributed timing parameters and a
fixed number of statistically identical threads. An open queuing network of the MTA can be used for the case when the
number of threads is dynamically changeable.

We proved that the mean run length of a thread in prefetching MTAs grows when one or both prefetching parameters (PP
andm) increase. We have derived expressions for how much the run-length increases (called here prefetching factor) for
both prefetching techniques. The run-on-prefetch technique allows overlapping prefetching with computation, and
results in decreasing the mean idle time of a thread. The overlapping is characterized by an overlapping factor. The effi-
ciency of MTA can be improved by increasing prefetching and overlapping factors of its workload. However MTA-effi-
ciency is a bounded function of both parameters and almost stabilized when the length of prefetch packets (m) increases
over a finite point (called here pseudo-stability point). We have derived equations (first/second order) to define values of
prefetch parameters required to achieve a desired efficiency close to the limit.

Acknowledgments

I would like to thank my supervisor professor Lars-Erik Thorelli for his encouragement and support of this work. I am
extremely grateful for his reading and comments on this report. Special thanks to my colleague, friend and initiator of
this research Dr. Hallo Ahmed for his support and helpful discussions. Many thanks to my colleague Dr. Alexander V.
Kraynikov (St.Petersburg’s Electrotectical University, Russia) for helping validate the queuing model. Thanks also to my
colleague and friends Yuri Ismailov (Computer Communication Systems Lab) and Tarmo Uustalu (Sofware Engineering
Lab) for their critical suggestions and comments on the model derivation. Thanks to Abdel-Hlim Smai for his reading
and comments on this report.

The research reported here was partially supported by the Swidish National Board for Industrial Development, NUTEK.
The author is supported by a scholarship from the Wenner-Gren Center Foundation for Scientific Research.

 24

Appendix A:Markov Models of Run Length

This Appendix presents a technique which can be used for evaluation of the run length (R) for different context switching
strategies, depending on the programming model (massage passing or shared memory). We assume that the PE executes
a thread during . To evaluate the meanR in steady-state we introduce a set of Markov chains each of which repre-
sents state transitions of a thread during a run length on a particular architecture. The behavior of a Markov chain
depends on architectural parameters, such as context switching and data prefetching strategies, cache latency (LC), local
memory latency (LM). Note that Markov chains presented in this report are basic patterns and can be changed for other
architectures.

A.1: The Simplest Markov Chain of Run Length

The simplest Markov chain ofR is depicted in Fig.A.1. A thread is specified by a mean value of run interval,RI, which is
the number of cycles between two consecutive memory accesses, local or remote. Remote access occurs with the proba-
bility (called context switch probability) and can be caused by an explicit remote reference or a local memory
miss. In its turn remote access causes a context switch (C).

Figure A.1: The simplest Markov Chain of R(1)

Assume that the Markov chain is closed with dummy state marked 0 (Fig.A.1). The steady-state probability of being at
the i-th state of the Markov chain is whereni is the mean number of repetitions of a state during one loop
from stateR to state 0, andN is the total number of repetitions of all states in the chain. The mean run lengthR, can be
derived from the following system of equations with assumption :

Thus the mean run length as a function of context switch probability is:

(A1)

A.2: Run Length in a Message Passing Architecture without Data Prefetching

Consider a strategy of context switching on explicit remote references without data prefetching (message passing archi-
tecture). A thread is specified by the mean value of run interval,RI, which is the number of cycles between two consecu-
tive memory accesses, local or remote. The probability of explicit remote reference isPR (context switch probability).
The time required to generate a remote access request isr. The time needed for a load operation isl. The probability of a
cache accessPC, the probability of cache miss isPm. We assume that the thread reactivated after suspension passes
through a number of timed states (timing intervals) until a context switch (C) is initiated as a result of an explicit remote
reference. Thread state transitions are represented by the Markov chain depicted in Fig.A.2.

Figure A.2: Markov Chain of R(2). Message Passing Architecture without Prefetching

Execution of the activated thread resumes from the statel, where it loads the arrived data to a register. Then the thread is

t ∞=

PCS 0≠

C RI
PCS

C

(1 - PCS)

0

Pi ni N⁄=

n0 1=

n0 nRI
PCS 1= =

nRI
n0 nRI

1 PCS–()+=

R 1() nRI
RI=







R 1() RI PCS⁄=

C RI
PR

(1 - PR)PC

l r

LCLM
Pm

1 - Pm

C

(1 - PR)(1 - PC)

 25

executed during a run intervalRI. If the run interval ends by the local access with the probability , the thread
either performs a cache access (LC) with probabilityPC or returns back toRI (probability). In case of a cache
hit (probability) the thread continues to run (RI). On a cache miss with probabilityPm the thread performs a
local memory access (LM), returning back to theRI state. An instruction with remote reference (r) occurs with the proba-
bility and causes a context switch (C).

Assume that the Markov chain is closed (stater directly connected to statel). To define the run length,R, the following
system of equations must be solved with assumption :

Thus the mean run length of a thread executed on a message passing architecture without data prefetching is:

(A2)

wherePR is a context switch probability.

A.3: Run Length in a Message Passing Architecture with Data Prefetching

Consider a switch-on-prefetch multi-threaded processor with strategy of context switching on explicit remote references
(message passing architecture) with explicit data prefetching. The processors switches a context after each prefetch oper-
ation. A thread is specified byRI, PR, PC, Pm, r andl. The mean number of remote data requested by a prefetch operation
is m. The portion of remote data which can be prefetched is specified by a prefetch probabilityPP.

Figure A.3(a) illustrates the Markov chain representing state transitions of the thread during a run length interval. The
statemr represents a prefetch operation, where prefetch requests are sent to the network. We assume that the PE
performs an explicit context switch after prefetch operation, and a thread becomes suspended until all requested data
arrives. The next prefetch operation is issued when the thread passesm remote references which was prefetched by previ-
ous prefetch operations. We assume that the probability of executing a prefetch operation after prefetched remote refer-
ences is .

Being reactivated after suspension (C) the thread is executed (RI, LC, LM) until it needs remote data (PR). If data is not
prefetched (probability) the thread initiates a remote access (r) and becomes suspended. If a prefetch was initi-
ated the thread either continues to run (probability) or repeats the prefetch operationmr (probability

). If data was not prefetched (probability) then the thread initiates a remote access (r) and becomes sus-
pended.

Figure A.3: Markov Chains of R(3). Message Passing Architecture with Prefetching

The closed Markov chain in Fig.A.3(a) can be transformed into the chain depicted in Fig.A.3(b), whereR(2) is defined as
(A2) and the state marked 0 is a dummy state. An expression for the mean run length of a thread executed on a message
passing architecture with data prefetching can be derived using the same approach as in Section 1.2; the solution is:

1 PR–()
1 PC–()

1 Pm–()

PR

nl 1=

nl nr 1= =

nRI
nl nLM

nLC
1 Pm–() nRI

1 PR–() 1 PC–()+ + +=

nLM
nLC

Pm=

nLC
nRI

1 PR–()PC=

nr nRI
PR=

R 2() RInRI
LCnLC

LMnLM
l+ + + nl rnr+=












R 2()
RI LC LMPm+() 1 PR–()PC+

PR
-- r l+ +=

m 1≥

1 m⁄

1 PP–()
PP 1 1 m⁄–()

PP m⁄ 1 PP–()

C

PRPP(1-1/m)

(1 - PR)PC

l
r

LCLM
Pm

1 - Pm Cmr

PR(1-PP)

PRPP(1/m) C

PP(1-1/m)

r

C

mr

(1-PP)

PP(1/m)
R(2) - r

(a) (b)

0

RI

(1 - PR)(1 - PC)

 26

(A3)

where is a context switch probability. Note, if or then .

A.4: Run Length in a Shared Memory Architecture

Consider a switch-on-miss multi-threaded processor with context switching on a local memory miss (shared memory
architecture). A thread is specified byRI, l, probability of a cache accessPC. In this case a run intervalRI is the number
of cycles between two consecutive memory accesses, cache (probabilityPC) or registers (). The probability of a
cache miss isPm and the probability of a local memory miss isPM. T is the duration of a locality test which is performed
to check if a data resides in local or remote memory.

A Markov chain representing thread execution during a run length interval is depicted in Fig.A.4. On a cache miss with
probability the thread checks local memory (locality testT) and in the case of a local memory miss with probability

 it becomes suspended.

Figure A.4: Markov Chain of R(4). Shared Memory Architecture

The mean run length of a thread with context switching on a local memory miss (shared memory architecture) is:

(A4)

where the product is the context switch probability.

A.5: Run Length in a Message Passing / Shared Memory Architecture

Assume that a multithreaded processor supports both shared memory and message passing programming models. A con-
text switching policy aims to hide communication latency caused by explicit remote references in threads and local mem-
ory (cache) misses. The mean run length (A5) of a thread executed in an architecture with combination of shared
memory and message passing mechanisms is derived from a Markov chain illustrated in Fig.A.5.

Figure A.5: Markov Chain of R(5). Message Passing / Shared Memory Architecture

(A5)

where the product is the context switch probability.

R 3()
mR 2()

m PP m 1–()–
-----------------------------------=

PR 1 PP 1 1 m⁄–()–() m 1= PP 0= R 3() R 2()=

1 PC–

Pm
PM

C

1 - Pm

l
Pm

1 - PM

RI

LM

PM
C

PC

1 - PC

LC T

R 4()
RI LC T LM 1 PM–()+()Pm+()+ PC

PCPmPM
--- l+=

PCPmPM

C LC

1 - Pm

l
Pm

1 - PM

TRI

PM
C

(1 - PR)PC

(1 - PR)(1 - PC)

r

PR

LM

R 5() l
RI LC T LM 1 PM–()+()Pm+() 1 PR–()PC rPR+ +

PCPmPM 1 PR–() PR+
--+=

PCPmPM 1 PR–() PR+

 27

Appendix B:First-Order Approximation for MTA Efficiency

This Appendix summarizes results for the first-order approximation for efficiency of multi-threaded architecture (MTA).
This approximation is valid for constant values of timing parameters. The basic assumptions are:

• An MTA executes a set ofn identical threads (regularity).
• When a thread is suspended, all other (n - 1) threads pass through processor (linearity).

Expressions include the following parameters:

L = communication latency

C = context switch overhead

R = run length (a number of cycles between two consecutive remote references)

m = prefetch packet length (a number of prefetch requests generated by one prefetch operation)

PP = prefetching probability (a portion of data which can be prefetched).

The MTA efficiency is denoted by the following variables:

E1 is the efficiency of a single-threaded architecture.

En is the efficiency of an multi-threaded architecture.

EL is the efficiency of the MTA on the linear region of efficiency curve, when number of threads is less then saturation
point.

ES is the efficiency of the MTA in saturation.

NS is the saturation point of non-prefetching MTA and the reliable saturation point of prefetching MTA (minimum
number of threads required to achieve saturation).

nS is an optimistic saturation point of prefetching MTA.

The efficiency of non-prefetching MTA [12]:

(B1)

The efficiency of prefetching MTA based on switch-on-prefetch model:

(B2)

E1 R R L+()⁄=

En min EL ES,()=

EL nR R L C+ +()⁄=

ES R R C+()⁄=

NS L R C+()⁄ 1+=

Prefetching factor: αC m m mPP– PP+()⁄=

Mean run length: RC αCR=

E1C
RC RC L+()⁄=

EnC
min ELC

ESC
,()=

ELC
nRC RC L C++()⁄=

ESC
RC RC C+()⁄=

nSC
L RC C+()⁄ 1+=

NS L R C+()⁄ 1+=

The efficiency of prefetching MTA based on run-on-prefetch model:

(B3)

Figure B.2 - Figure B.6 depict different dependencies and comparisons of the first-order approximation for efficiency of
prefetching and non-prefetching MTAs for the following set of parameters:L = 128,C = 2,R = 16.

B.1: Saturation of Prefetching MTA by Increasing Prefetching Factor of Its Work-Load

The optimistic saturation point,nS, and the reliable saturation point,NS, of prefetching MTA is defined by (B2) or (B3).

PlotsE(n, m) in Fig.B.2.b and Fig.B.3.b, as well as plotsE(n, PP) in Fig.B.2.d and Fig.B.3.d show that in some cases the
non-saturated MTA can be saturated by increasing prefetching factor in executed threads (i.e., the length of prefetch
packets,m or/and the portion of prefetched data,PP). The minimum value of the prefetch packet length,mS (or prefetch-
ing probability), required to achieve MTA saturation is defined from:

(B4)

In particular, for switch-on-prefetch model the minimum value of prefetching factor, , required to achieve saturation
is derived from :

(B5)

If can not be found as (B4), it means that the MTA can not be saturated by increasingαC. In the latter case satura-
tion can be achieved by loading more number of threads.

For example, plotsE(n, m) in Fig.B.2.b and Table 2 demonstrate that an MTA executingn = 4 (5, 8) threads is saturated
when the length of prefetch packets achieves the valuem4 = 14.96 (m5 = 3.55, m8 = 1.03) respectively. Thus, the
larger the number of threads is , the smaller the length of prefetch packet is required to saturate the MTA. In casen = 2 or
n = 3 the MTA can not be saturated by increasingm.

PlotsE(n, PP) in Fig.B.2.d and Table 4 demonstrates that an MTA executing threads is saturated when
the portion of prefetched data (prefetching probability,PP) achieves a valueP3 = 0.9892 (P4 = 0.8087,P5 = 0.6222,P8 =
0.0234), respectively. The larger the number of threads is, the smaller portion of prefetched data is required to saturate
the MTA. In the casen = 2 the MTA can not be saturated by increasingPP.

PlotsE(n, m) in Fig.B.3.b and Table 6 demonstrate that an MTA executingn = 4 (5, 8) threads is saturated when the
length of prefetch packets achieves the valuem4 = 8.45 (m5 = 2, m8 = 0.57) respectively. In casen = 2 orn = 3 the
MTA can not be saturated by increasingm.

Prefetching factor: αR m m mPP– PP
2

+()⁄=

Overlapping factor: β PP
2

m mPP– PP
2

+()⁄=

Mean run length: RR αRR=

Mean latency (thread idle time):LR L βR–=

E1R
RR RR LR+()⁄=

EnR
min ELR

ESR
,()=

ELR
nRR RR C LR+ +()⁄=

ESR
RR RR C+()⁄=

nSR
LR RR C+()⁄ 1+=

NS L R C+()⁄ 1+=

EL mS() ES mS()=

mS 0>

 EL PS() ES PS()=

0 PS 1≤<



αSC
ELC

αSC
() ESC

αSC
()=

αSC

L C n 1–()–
R n 1–()

mS

αSC
PP

1 αSC
1 PP–()–

--------------------------------------- 0>=

PS

m αSC
1–()

m 1–()αSC

--------------------------- 1≤=

=









αSC

n 3= 4 5 8, ,()

 29

PlotsYen, PP) in Fig.B.3.d and Table 8 demonstrate that an MTA executing threads is saturated when the
portion of prefetched data (prefetching probability,PP) achieves a value 0.9304 (0.7188, 0.5268, 0.0176), respectively. In
the casen = 2 the MTA can not be saturated by increasingPP.

B.2: Limits of the MTA Efficiency

Limits of efficiency (B2) of switch-on-prefetch MTA:

(B6)

(B7)

Limits of efficiency (B3) of run-on-prefetch MTA:

(B8)

n 3= 4 5 8, ,()

αC
PP 1→
lim m=

RC
PP 1→
lim mR=

E1CPP 1→
lim mR mR L+()⁄=

EnCPP 1→
lim min ELCPP 1→

lim ESCPP 1→
lim,()=

ELCPP 1→
lim nmR mR L C++()⁄=

ESCPP 1→
lim mR mR C+()⁄=

nSCPP 1→
lim L mR C+()⁄ 1+=





















when PP 1→() and m ∞≠()

αC
m ∞→
lim 1 1 PP–()⁄=

RC
m ∞→
lim R 1 PP–()⁄=

E1Cm ∞→
lim R

R L 1 PP–()+
----------------------------------=

EnCPP 1→
lim min ELCm ∞→

lim ESCm ∞→
lim,()=

ELCm ∞→
lim nR

R L C+() 1 PP–()+
---=

ESCm ∞→
lim R

R C 1 PP–()+
-----------------------------------=

nSCm ∞→
lim

L 1 PP–()
R C 1 PP–()+
----------------------------------- 1+=























when m ∞→() and PP 1<()

αR
PP 1→
lim m=

RR
PP 1→
lim mR=

E1RPP 1→
lim mR

m 1–()R L+
--------------------------------=

EnRPP 1→
lim min ELRPP 1→

lim ESRPP 1→
lim,()=

ELRPP 1→
lim nmR

m 1–()R L C+ +
--=

ESRPP 1→
lim mR mR C+()⁄=

nSRPP 1→
lim L R–

mR C+
------------------ 1+=























when PP 1→() and m ∞≠()

 30

Limits of efficiency (B3) of run-on-prefetch MTA when and are the same as for switch-on-prefetch
MTA (B6).

The length of prefetch packetsmr required to achieve of efficiency limit can be obtain from the following set
of equations:

(B9)

For example, assume that switch-on-prefetch MTA executes a set of threads (n = 5) with parametersL = 128,C = 2 andR
= 16. A portion of remote references which can be prefetched is 65% (PP = 0.65). Define a length of prefetch packetsmr
required to achieve 99% of efficiency limit (). The efficiency limit when is 0.9581 (see (B7)) and 99%
of efficiency limit is 0.9495.

The solution of (B9) is = 8 (m1 = 3.6991;m2 = 7.7066). Figure B.1 illustrate obtained solution. The
curve crosses the lineEr when , however the MTA efficiency at this point is (MTA is sat-
urated). The curve crossesEr when and the MTA efficiency is . Thus .

Figure B.1: Length of Prefetch Packet Required To Achieve 99% of Efficiency Limit

This example demonstrates that if even prefetching MTA is saturated, its efficiency can be improved by increasing the
prefetching factor of its load.

m ∞→() PP 1<()

γ 100%()⋅

EL m1() Er=

ES m2() Er=

mr

m1 if min Er ES m1(),{ } Er=,

m2 if min EL m2() Er,{ } Er=,



=








where Er γ min EL m()
m ∞→
lim ES m()

m ∞→
lim,()⋅=

γ 0.99= m ∞→

mr 7.7066=
ELC

m() m m1= ESC
m1() Er<

ESC
m() m m2= ESC

m2() Er= mr m2=

Length of prefetch packets, m
2 3 4 6 7 8 95

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

) 1.15

1.1

1.05

1.0

0.95

0.9

0.85

0.8
m1 m2

mr

ELc(m)

ESc(m)

Er = 0.99E(∞)
E(∞)

 31

Figure B.2: Switch-On-Prefetch: MTA Efficiency (R = 16, L = 128, C = 2)

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

,n
) 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m = 4

m = 2

m = ∞

m = 8

without prefetching

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(P

P,
n)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PP = 0.5

PP = 0.1

PP = 1

PP = 0.75

without prefetching

Length of prefetch packets, m

E
ffi

ci
en

cy
 o

f M
TA

,E
(n

,m
) 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
2 4 6 10 12 14 168

n = 2

n = 3

n = 4

n = 5

n = 8

m5m8 m4

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

E
ffi

ci
en

cy
 o

f M
TA

,E
(n

,P
P
)

n = 2

Prefetching probability, PP

0 0.2 0.4 0.6 0.8 1.0

n = 3

n = 4

n = 5

n = 8

P3P4P5P8

(a) as a function of m and n (PP = 0.65)

(c) as a function of PP and n (m = 4)

(b) as a function of n and m (PP = 0.65)

(d) as a function of PP and n (m = 4)

 32

* Non-prefetching MTA

* The MTA can not be saturated by increasingm

TABLE 1. Saturation Points, nS, and Efficiency in Saturation (Fig.B.2.a)

m 0* 2 4 8 bb
αC - 1.48 1.95 2.32 2.86
nS 8.11 5.98 4.85 4.27 3.68
ES 0.8889 0.9222 0.9398 0.9489 0.9581

TABLE 2. Saturation Points, mS (Fig.B.2.b)

n 2 3 4 5 8
mS -* -* 14.98 3.55 1.03

* Non-prefetching MTA

* The MTA can not be saturated by increasingPP

TABLE 3. Saturation Points, nS, and Efficiency in
Saturation (Fig.B.2.c)

PP 0* 0.1 0.5 0.75 1
αC - 1.08 1.6 2.29 4
nS 8.11 7.63 5.64 4.32 2.94
ES 0.8889 0.8964 0.9275 0.9481 0.9697

TABLE 4. Saturation Points, PS (Fig.B.2.d)

n 2 3 4 5 8
PS -* 0.9892 0.8087 0.6222 0.0234

Figure B.3: Run-On-Prefetch: MTA Efficiency (R =

 33

16, L = 128, C = 2)

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(m

,n
) 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m = 4

m = 2

without prefetching

Number of threads, n
2 4 6 10 12 14 168

E
ffi

ci
en

cy
 o

f M
TA

,E
(P

P,
n)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

PP = 0.5

PP = 0.1

without prefetching

Length of prefetch packets, m

E
ffi

ci
en

cy
 o

f M
TA

,E
(n

,m
) 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2
2 4 6 10 12 14 168

n = 2

n = 3

n = 4

m5m8 m4

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

E
ffi

ci
en

cy
 o

f M
TA

,E
(n

,P
P
)

n = 2

Prefetching probability, PP

0 0.2 0.4 0.6 0.8 1.0

n = 3

n = 4

n = 5

n = 8

m = 8

m = ∞
n = 5n = 8

PP = 0.75

PP = 1

(a) as a function of m and n (PP = 0.65)

(c) as a function of PP and n (m = 4)

(b) as a function of n and m (PP = 0.65)

(d) as a function of PP and n (m = 4)

* Non-prefetching MTA

* The MTA can not be saturated by increasingm

TABLE 5. Saturation Points, nS, and Efficiency in
Saturation (Fig.B.3.a)

m 0* 2 4 8 bb
αC - 1.78 2.205 2.48 2.86
βC - 0.38 0.23 0.13 0
nS 8.11 5.00 4.35 4.02 3.68
ES 0.8889 0.9344 0.9461 0.9521 0.9581

TABLE 6. Saturation Points, mS (Fig.B.3.b)

n 2 3 4 5 8
mS -* -* 8.45 2.00 0.57

* Non-prefetching MTA

* The MTA can not be saturated by increasingPP

TABLE 7. Saturation Points, nS, and Efficiency in
Saturation (Fig.B.3.c)

PP 0* 0.1 0.5 0.75 1
αC - 1.11 1.78 2.56 4
βC - 0.003 0.11 0.36 1
nS 8.11 7.49 5.20 3.98 2.94
ES 0.8889 0.8986 0.9343 0.9534 0.9697

TABLE 8. Saturation Points, PS (Fig.B.3.d)

n 2 3 4 5 8
PS -* 0.9304 0.7188 0.5268 0.0176

 34

Figure B.4: Relative Increase in Efficiency of Switch-On-Prefetch MTA vs. Non-Prefetching MTA
(R = 16, L = 128, C = 2)

(a) as a function of m and n (PP = 0.65)

Length of prefetch packets, m

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 m
)%

120

100

80

60

40

20

0
2 4 6 10 12 14 168

n = 2

n = 6

n = 5

m8 m6

n = 8

m5

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 P
P
)%

250

200

150

100

50

0

Prefetching probability, PP

0 0.2 0.4 0.6 0.8 1.0

n = 2

n = 6

n = 5

n = 8

P8 P6 P5

Number of threads, n
2 4 6 10 12 14 168

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)%

140

120

100

80

60

40

20

0

m = ∞

m = 8

m = 4

m = 2

NS

R
el

at
iv

e
In

cr
ea

se
,g

 (
P

P,
n)

%

250

200

150

100

50

0

Number of threads, n
2 4 6 10 12 14 168

PP = 1

PP = 0.75

PP = 0.5

PP = 0.1

NS

(c) as a function of PP and n (m = 4)

(b) as a function of n and m (PP = 0.65)

(d) as a function of PP and n (m = 4)

* The prefetching MTA can not be saturated by increasingm
† At the pointm = 4

TABLE 9. Saturation Points, nS (Fig.B.4.a)

2 5.98
8.11

40.72 3.75
4 4.85 76.70 5.72
8 4.27 102.60 6.75
∞ 3.68 137.40 7.78

TABLE 10. Saturation Points, mS (Fig.B.4.b)

2 -* 76.70† 137.40
5 3.55 71.09 74.85
6 1.98 40.20 45.71
8 1.03 1.59 9.28

m nSC
nS g %() at nSC

g %() at nS

n mS g %() at mS g %() at m ∞=

* The prefetching MTA can not be saturated by increasingPP
† At the pointPP = 0.62

TABLE 11. Saturation Points, nS (Fig.B.4.c)

0.1 7.63
8.11

7.16 0.84
0.5 5.64 50.13 4.35
0.75 4.32 100.34 6.67

1 2.94 201.03 9.09

TABLE 12. Saturation Points, PS (Fig.B.4.d)

2 -* 71.09† 201.03
5 0.62 71.09 76.97
6 0.43 40.20 47.48
8 0.02 1.59 10.61

PP nSC
nS g %() at nSC

g %() at nS

n PS g %() at PS g %() at PP 1=

 35

Figure B.5: Relative Increase in Efficiency of Run-On-Prefetch MTA vs. Non-Prefetching MTA
(R = 16, L = 128, C = 2)

(a) as a function of m and n (PP = 0.65)

(b) as a function of PP and n (m = 4)

(c) as a function of n and m (PP = 0.65)

(d) as a function of PP and n (m = 4)

Number of threads, n
2 4 6 10 12 14 168

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)%

140

120

100

80

60

40

20

0

m = ∞

m = 8

m = 4

m = 2

nS
R

el
at

iv
e

In
cr

ea
se

,g
 (

P
P,

 n
)%

250

200

150

100

50

0

Number of threads, n
2 4 6 10 12 14 168

PP = 0.75

PP = 0.5
PP = 0.1

nS

PP = 1

Length of prefetch packets, m

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 m
)% 120

100

80

60

40

20

0
2 4 6 10 12 14 168

n = 2

n = 6

n = 5

m8

n = 8

m5
140

m6

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 P
P
)%

250

200

150

100

50

0

Prefetching probability, PP

0 0.2 0.4 0.6 0.8 1.0

n = 2

n = 6

n = 5

n = 8

P8 P6 P5

* The prefetching MTA can not be saturated by increasingm
† At the pointm = 4
‡ At the pointm = 1

TABLE 13. Saturation Points, nS (Fig.B.5.a)

2 5.00
8.11

70.60 5.13
4 4.35 98.53 6.44
8 4.02 116.23 7.10
∞ 3.68 137.40 7.78

TABLE 14. Saturation Points, mS (Fig.B.5.b)

2 -* 98.53† 137.40
5 2.00 70.53 74.85
6 1.11 39.38 45.71
8 0.57 4.02‡ 9.28

m nSC
nS g %() at nSC

g %() at nS

n mS g %() at mS g %() at m ∞=

* The prefetching MTA can not be saturated by increasingPP
† At the pointPP = 0.53

TABLE 15. Saturation Points, nS (Fig.B.5.c)

0.1 7.49
8.11

9.54 1.10
0.5 5.15 65.67 5.11
0.75 3.85 126.24 7.26

1 2.70 228.09 9.09

TABLE 16. Saturation Points, PS (Fig.B.5.d)

2 -* 70.91† 228.09
5 0.53 70.91 76.97
6 0.35 40.14 47.48
8 0.02 1.59 10.61

PP nSC
nS g %() at nSC

g %() at nS

n PS g %() at PS g %() at PP 1=

 36

Figure B.6: Relative Increase in Efficiency of Run-On-Prefetch MTA vs. Switch-On-Prefetch MTA
(R = 16, L = 128, C = 2)

* The MTA can not be saturated by increasingm
† At the pointm = 4
‡ At the pointm = 8
** At the point m = 1

TABLE 17. Saturation Points, nS (Fig.B.6.a)

2 5.00 5.98 21.23 1.33
4 4.35 4.85 12.35 0.67
8 4.02 4.27 6.73 0.34

TABLE 18. Saturation Points, mS (Fig.B.6.b)

2 -* -* 12.35† 6.73‡

5 2.00 3.55 21.25 0.76
6 1.11 1.98 31.15 1.34
8 0.57 1.03 4.02** 2.53

(a) as a function of m and n (PP = 0.65)

(c) as a function of PP and n (m = 4)

(b) as a function of n and m (PP = 0.65)

(d) as a function of PP and n (m = 4)

Prefetching probability, PP

0 0.2 0.4 0.6 0.8 1.0

n = 2

n = 6
n = 5

n = 8

Number of threads, n
2 3 4 6 7 8 95

R
el

at
iv

e
In

cr
ea

se
,g

 (
m

, n
)%

25

20

15

10

5

0

m = 8

m = 4

m = 2

1

Length of prefetch packets, m

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 m
)%

30

25

20

15

10

5

0
1 1.5 2 3 3.5 42.5

n = 6

n = 8

35

n = 2

n = 5

R
el

at
iv

e
In

cr
ea

se
,g

 (
P

P,
 n

)%

Number of threads, n
2 3 4 6 7 8 951

12

10

8

6

4

2

0

14

PP = 0.75
PP = 0.5
PP = 0.1

PP = 1

o
*
x

+

R
el

at
iv

e
In

cr
ea

se
,g

 (
n,

 P
P
)%

12

10

8

6

4

2

0

14

m nSR
nSC

g %() at nSR
g %() at nSC

n mSR
mSC

g %() at mSR
g %() at mSC

 37

* The MTA can not be saturated by increasingPP
† At the pointPP = 0.53
‡ At the pointPP = 0.62

TABLE 19. Saturation Points, nS (Fig.B.6.c)

0.1 7.49 7.63 2.23 0.25
0.5 5.15 5.64 10.36 0.73
0.75 3.85 4.32 12.93 0.56

1 2.70 2.94 8.99 0

TABLE 20. Saturation Points, PS (Fig.B.6.d)

2 -* -* 10.78† 12.07‡

5 0.53 0.62 10.78 0.69
6 0.35 0.43 7.55 0.71
8 0.02 0.02 0.39 0.06

PP nSR
nSC

g %() at nSR
g %() at nSC

n PSR
PSC

g %() at PSR
g %() at PSC

 38

References

[1] A. Agarwal, “Performance Tredeoffs in Multithreaded Processors”,IEEE Transactions on Parallel and Distributed Systems,
3(5): 525-539, September 1992.

[2] F. Baskett, K.M. Chandy, R.R.Muntz and F.G. Palacios, “Open, Closed, and Mixed Networks of Queues with Different Classes
of Customers“,Journal of the ACM, 22(2): 248-260, April 1975.

[3] B. Boothe and A. Ranade, “Improved Multithreading Techniques for Hiding Communication Latency in Multiprocessors”, in
Proc. 19th Ann. Int. Symp. on Comp. Arch., pp. 241-223, 1992.

[4] P. Cao, E.W. Felten, a.R. Karlin and K. Li, “Implementation and Performance of Integrated Application-Controlled Caching,
Prefetching and Disk Scheduling“, Tech. Rep. CS-TR-493-95, Dept. of Comp. Sci., Princeton University, Princeton, NJ, 1995.

[5] T.-F. Chen and J.-L. Baer, “Reducing Memory Latency via Non-blocking and Prefetching Caches“, inProc. of the 5th Int. Conf.
on Architectural Support for Programming Languages and Operation Systems, pp. 51-61, 1992.

[6] T.-F. Chen, “Data Prefetching for High-Performance Processors“, Ph.D. dissertation, UW-CSE-93-07-01, Dept. of Comp. Sci.
and Engineering, University of Washington, Seattle WA, July 1993.

[7] A. Gupta, J. Henessy, K. Gharachorloo, T. Mowry, and W.-D. Weber, “Comparative Evaluation of Latency Reducing and Toler-
ating Techniques“, inProc. of the 18th Annual Int. Symp. on Computer Arch., pp. 254-533, 1991.

[8] R. Jain, “The Art of Computer Systems Performance Analysis”, John Wiley & Sons, Inc.,1991.

[9] T.C. Mowry, M.S. Lam and A. Gupta, “Design and Evaluation of a Compiler Algorithm for Prefetching“, inProc. of the 5th Int.
Conf. on Architectural Support for Programming Languages and Operation Systems, pp. 62-73, 1992.

[10] S. S. Nemawarkar, R. Govindarajan, G.R. Gao and V.K. Agarwal, “Analysis of Multithreaded Multiprocessors with Distributed
Shared Memory”, inProc. of the 5th Int. Symp. on Parallel and Distr. Processing (SPDP), 1993.

[11] M. Reiser and S.S. Lavenberg, “Mean-Value Analysis of Closed Multichain Queuing Networks“,Journal of the ACM, 27(2):
313-322, April 1980.

[12] R. H. Saavedra-Barrera, D. E. Culler, and T. von Eicken, “Analysis of Multithreaded Architectures for Parallel Computing“, in
Proc. of the 2nd Ann. ACM Symp. on Parallel Algorithms and Architectures, pp. 169-178, 1990.

[13] R. H. Saavedra-Barrera and D. E. Culler, “An Analytical Solution for a Markov Chain Modeling Multithreaded Execution“,
Tech. Rep. UCB/CSD-91-623, University of California, Berkeley, 1991.

[14] V. Vlassov, H. Ahmed, L.-E. Thorelli and R. Ayani, “A Simulation Platform for Multi-Threaded Architectures“, inProc. of the
4th Int. Workshop on Modeling, Analysis and Simulation of Comp. and Telecom. Systems (MASCOTS), pp. 103-108, Feb 1996.

