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Abstract

This paper presents a novel control protocol for distance and orientation formation control of rigid bodies, whose sensing
graph is a static and undirected tree, in the special Euclidean group SE(3). The proposed control laws are decentralized, in the
sense that each agent uses only local relative information from its neighbors to calculate its control signal, as well as robust
with respect to modeling (parametric and structural) uncertainties and external disturbances. The proposed methodology
guarantees the satisfaction of inter-agent distance constraints that resemble collision avoidance and connectivity maintenance
properties. Moreover, certain predefined functions characterize the transient and steady state performance of the closed loop
system. Finally, simulation results verify the validity and efficiency of the proposed approach.
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1 Introduction

During the last decades, decentralized control of multi-
agent systems has gained a significant amount of atten-
tion due to the great variety of its applications, includ-
ing multi-robot systems, transportation, multi-point
surveillance as well as biological systems. Among the
various research topics in multi-agent systems, the most
popular ones can be considered to be (i) multi-agent
navigation [1], where the agents need to navigate to
predefined positions of the state space, and (ii) consen-
sus [2], where the agents aim to converge to a common
state. At the same time, the agents might need to fulfill
certain transient properties, such as network connectiv-
ity [3] and/or collision avoidance [4]. Another important
problem considered in multi-agent systems is formation
control [5], where the agents aim to form a predefined
shape in the state space, and which can be seen as a
combination of the navigation and consensus problems.
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Formation control is categorized in ([5]) position-based,
distance-based and orientation-based formation control,
as well as a combination of the two, which is also the
focus of this work.

Distance-based formation control has been well-studied
in the related literature (see, indicatively, [6–17]). In
these works, however, the authors consider simplified
single-integrator models for the agent dynamics. Dou-
ble integrator schemes have been studied in [18–20].
Orientation-based formation control has been investi-
gated in [21–24], whereas the authors in [24–26] have
considered the combination of distance- and orientation-
based formation, also employing single integrator or 2D
unicycle dynamics.

The use of simplified dynamics however, like in the afore-
mentioned works, does not apply to realistic engineer-
ing applications, where the systems may have compli-
cated and uncertain dynamics. Moreover, such systems
are inherently under the presence of exogenous distur-
bances. Two more characteristics not taken into account
in most of the aforementioned works is (i) connectivity
preservation among the agents, and (ii) inter-agent col-
lision avoidance. Both of these properties are important,
inherent from the limited sensing capabilities of multi-
agent systems, and dimensionless agents/robots in po-
tential real-time applications, respectively. In this paper,
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we aim to handle collision avoidance and connectivity
maintenance properties among the initially connected
agents of a static sensing graph. We note that these prop-
erties are taken into account in works that utilize poten-
tial functions [27], or aim at achieving position consensus
or velocity alignment (flocking) [28–31], some of which
consider collision avoidance between any pair of agents,
and not only the initially connected ones. Potential-
based formation control schemes suffer from inherent
local minima issues, which is not exhibited in the ve-
locity alignment problems, since the agents converge to
the same velocity regardless of their positions. In addi-
tion, simplified dynamics (single or double-integrators)
are considered in the aforementioned works, whereas
the more general dynamics considered here correspond
to more realistic scenarios. Finally, as we indicate be-
low, prescribed performance guarantees are given for the
agents’ transient and steady-state behavior.

More specifically, this paper presents a novel control pro-
tocol for the formation control of multiple rigid bod-
ies forming a tree sensing graph in SE(3). We employ
the Prescribed Performance Control methodology, ini-
tially proposed in [32], to achieve predefined transient-
and steady-state performance. Prescribed performance
control has been considered in the framework of multi-
agent systems in [33–36]. In [33, 34] the authors tackle
the position-based formation control problem, by taking
into-account position-based connectivity maintenance in
[34], and [35, 36] consider the consensus problem. The
proposed methodology exhibits the following attributes:
1) It is decentralized, in the sense that each agent com-
putes its own control signal based on its local sensing ca-
pabilities, without needing to communicate with the rest
of the agents, or to know the pose of a global coordinate
frame. 2) It is robust to bounded external disturbances
and uncertainties of the dynamic model, since these are
not employed in the control design. 3) It guarantees sat-
isfaction of certain distance constraints among the ini-
tially connected agents, which resemble collision avoid-
ance and connectivity maintenance specifications. 4) It
guarantees convergence to a feasible formation config-
uration with predefined transient and steady-state per-
formance from almost all initial conditions. Moreover,
in contrast to standard continuous control methodolo-
gies on SO(3) (where the closer the initial condition is
to the unstable equilibrium, the more the stabilization
time approaches infinity), it guarantees convergence to
the formation configuration arbitrarily fast, regardless of
the distance of the initial system configuration to the un-
stable equilibrium. This paper constitutes an extension
of our previous works [37], [38]. In both of these works
we addressed the same problem using Euler angles that
suffer from representation singularities as well as knowl-
edge of a common global inertial frame; [38] employs a
potential function-based solution, inherently exhibiting
local minima, and [37] also uses the idea of prescribed
performance control.

2 Notation and Preliminaries

The set of positive integers is denoted as N. The real
n-coordinate space, with n ∈ N, is denoted as Rn; Rn≥0

and Rn>0 are the sets of real n-vectors with all elements
nonnegative and positive, respectively. Given a set S,
denote by |S| its cardinality, by Sn = S × . . . S its
n-fold Cartesian product, and by 2S the set of all its
subsets. The notation ‖x‖ is used for the Euclidean
norm of a vector x ∈ Rn. Given a symmetric matrix
A, λmin(A) := min{|λ| : λ ∈ eig(A)} denotes the mini-
mum eigenvalue of A, respectively, where eig(A) is the
set of all the eigenvalues of A and rank(A) is its rank;
‖A‖F := tr(A>A) is the Frobenius norm of A, and tr[·]
is its trace; det(A) denotes the determinant of a matrix
A ∈ Rn×n. The notation diag{A1, . . . , An} stands for
the block diagonal matrix with the matrices A1, . . . , An
in the main block diagonal;A⊗B denotes the Kronecker
product of matrices A,B ∈ Rm×n, as was introduced
in [39]. Define by In ∈ Rn×n and 0m×n ∈ Rm×n the
unitary matrix and the m × n matrix with all entries
zeros, respectively; B(c, r) := {x ∈ R3 : ‖x − c‖ ≤ r}
is the vector-valued mapping representing the 3D ball
of radius r ∈ R>0 and center c ∈ R3. Given x, y ∈ R3,
S : R3 → so(3) is the skew-symmetric matrix defined
according to S(x)y = x × y, and S−1 : so(3) → R3

is its inverse, where so(3) = {S ∈ R3×3 : x>S(·)x =
0,∀x ∈ R3} is the space of skew-symmetric ma-
trices. The special Euclidean group is denoted by
SE(3) := {(c,R) ∈ R3 × SO(3)}, where SO(3) := {R ∈
R3×3 : R>R = I3,det(R) = 1}. Moreover, the tan-
gent space to SO(3) at R is denoted by TRSO(3) and
we also use TR := R3 × TRSO(3). We define the in-
duced norm in SO(3)N as ‖R‖T :=

∑
i∈{1,...,N} ‖Ri‖F

for any R = (R1, . . . , RN ) ∈ SO(3)N . Finally, all the
differentiations are performed with respect to an iner-
tial frame of reference unless otherwise stated. Some
useful properties of skew symmetric matrices [40]:
x>S(y)x = 0;S(Rx) = RS(x)R>,− 1

2 tr [S(x)S(y)] =

x>y, tr [AS(x)] = 1
2 tr
[
S(x)(A−A>)

]
= −x>S−1(A −

A>), for every x, y ∈ R3, A ∈ R3×3 and R ∈ SO(3).

2.1 Prescribed Performance Control

Prescribed Performance Control (PPC), originally pro-
posed in [32], describes the behavior where a tracking
error e(t) : R≥0 → R evolves strictly within a pre-
defined region that is bounded by certain functions
of time, achieving prescribed transient and steady
state performance. The mathematical expression of
prescribed performance is given by the inequalities
−ρL(t) < e(t) < ρU(t), ∀t ∈ R≥0, where ρL(t), ρU(t)
are smooth and bounded decaying functions of time,
satisfying lim

t→∞
ρL(t) > 0 and lim

t→∞
ρU(t) > 0, called

performance functions. Specifically, for the exponential
performance functions ρi(t) = (ρi0 − ρi∞)e−lit + ρi∞,
with ρi0, ρi∞, li ∈ R>0, i ∈ {U,L}, appropriately
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chosen constants, ρL0 = ρL(0), ρU0 = ρU(0) are se-
lected such that ρU0 > e(0) > ρL0 and the constants
ρL∞ = lim

t→∞
ρL(t) < ρL0, ρU∞ = lim

t→∞
ρU(t) < ρU0

represent the maximum allowable size of the tracking
error e(t) at steady state, which may be set arbitrarily
small to a value reflecting the resolution of the mea-
surement device, thus achieving practical convergence
of e(t) to zero. Moreover, the decreasing rate of ρL(t),
ρU(t), which is affected by the constants lL, lU in this
case, introduces a lower bound on the required speed
of convergence of e(t). Therefore, the appropriate selec-
tion of the performance functions ρL(t), ρU(t) imposes
performance characteristics on the tracking error e(t).

2.2 Dynamical Systems

Theorem 1 [41, Theorem 2.1.1] Let Ω be an open set
in Rn × R≥0. Consider a function g : Ω → Rn that
satisfies the following conditions: 1) For every z ∈ Rn,
the function t→ g(z, t) defined on Ωz := {t : (z, t) ∈ Ω}
is measurable. For every t ∈ R≥0, the function z →
g(z, t) defined on Ωt := {z : (z, t) ∈ Ω} is continuous; 2)
For every compact S ⊂ Ω, there exist constants CS, LS
such that: ‖g(z, t)‖ ≤ CS , ‖g(z, t)−g(y, t)‖ ≤ LS‖z−y‖,
∀(z, t), (y, t) ∈ S. Then, the initial value problem ż =
g(z, t), z0 = z(t0), for some (z0, t0) ∈ Ω, has a unique
and maximal solution defined in [t0, tmax), with tmax > t0
such that (z(t), t) ∈ Ω,∀t ∈ [t0, tmax).

Theorem 2 [41, Theorem 2.1.4] Let the conditions of
Theorem 1 hold in Ω and let a maximal solution of the
initial value problem ż = g(z, t), z0 = z(t0), exists in
[t0, tmax) such that (z(t), t) ∈ Ω,∀t ∈ [t0, tmax). Then,

either tmax =∞ or lim
t→t−max

[
‖z(t)‖+ 1

dS((z(t),t),∂Ω)

]
=∞,

where dS : Rn × 2R
n → R≥0 is the distance of a point

x ∈ Rn to a set A, defined as dS(x,A) := inf
y∈A
{‖x− y‖}.

2.3 Graph Theory

An undirected graph G is a pair (N , E), where N is a
finite set of N ∈ N nodes, representing a team of agents,
and E ⊆ {{i, j} : ∀i, j ∈ N , i 6= j}, with K := |E|, is the
set of edges that model the sensing capabilities between
neighboring agents. For each agent, its neighboring set
Ni is defined as Ni := {j ∈ N : {i, j} ∈ E}. If there is
an edge {i, j} ∈ E , then i, j are called adjacent. A path
of length r from vertex i to vertex j is a sequence of
r + 1 distinct vertices, starting with i and ending with
j, such that consecutive vertices are adjacent. For i = j,
the path is called a cycle. If there is a path between any
two vertices of the graph G, then G is called connected. A
connected graph is called a tree if it contains no cycles.
Consider an arbitrary orientation of G, which assigns to
each edge {i, j} ∈ E precisely one of the ordered pairs
(i, j) or (j, i). When selecting the pair (i, j), we say that
i is the tail and j is the head of the edge {i, j}. By

considering a numbering k ∈ K := {1, . . . ,K} of the
graph’s edge set, we define the N ×K incidence matrix
D(G) = [dij ], where: dij = 1, if i is the head of edge j;
dij = −1, if i is the tail of edge j; and dij = 0, otherwise.

Lemma 1 [17, Section III] Assume that the graph G is
a tree. Then, D(G)>∆D(G) is positive definite for any
positive definite matrix ∆ ∈ RN×N .

Proposition 1 Let f : R≥0 → R, with f(x) :=
exp(x) [exp(x)− 1] − x2. Then it holds that f(x) ≥ 0,
∀x ∈ R≥0.

Proposition 2 [42] Let R1, R2 ∈ SO(3), and eR :=

S−1(R>1 R2 − R>2 R1). Then ‖eR‖2 := ‖R1 − R2‖2F
(

1 −
1
8‖R1 −R2‖2F

)
.

Proposition 3 [43] Let R1, R2 ∈ SO(3). Then, for
the rotation matrix R>2 R1 ∈ SO(3) it holds that
−1 ≤ tr[R>2 R1] ≤ 3; tr[R>2 R1] = 3 if and only if
R>2 R1 = I3 ⇔ R1 = R2; tr[R>2 R1] = −1 when
R1 = R2 exp(±πS(x)), for every x in the unit sphere,
where exp(·) here is the matrix exponential.

3 Problem Formulation

Consider a set ofN rigid bodies, withN = {1, 2, . . . , N},
N ≥ 2, operating in a workspace W ⊆ R3. We consider
that each agent occupies a ball B(pi, ri), where pi ∈ R3 is
the position of the agent’s center of mass with respect to
an inertial frame Fo and ri ∈ R>0 is the agent’s radius.
We also denote as Ri ∈ SO(3) the rotation matrix asso-
ciated with the orientation of the ith rigid body. More-
over, we denote by vi,L ∈ R3 and ωi ∈ R3 the linear and
angular velocity of agent i with respect to frame Fo. The
vectors pi are expressed in Fo coordinates, whereas vi,L
and ωi are expressed with respect to a local frame Fi
centered at each agent’s center of mass. The position of
Fo, though, is not required to be known by the agents,
as will be shown later. By defining xi := (pi, Ri) ∈ SE(3)
and vi := [v>i,L, ω

>
i ]> ∈ R6, we model each agent’s mo-

tion with the 2nd order Newton-Euler dynamics:

ẋi = (Rivi,L, RiS(ωi)) ∈ TRi , (1a)

ui = Miv̇i + Ci(vi)vi + gi(xi) + wi(xi, vi, t), (1b)

where the matrixMi ∈ R6×6 is the constant positive def-
inite inertia matrix, Ci : R6 → R6×6 is the Coriolis ma-
trix, gi : SE(3) → R6 is the body-frame gravity vector,
wi : SE(3)×R6 ×R≥0 → R6 is a bounded vector repre-
senting model uncertainties and external disturbances,
and TRi = R3 × TRSO(3), as defined in Section 2. Fi-
nally, ui ∈ R6 is the control input vector representing the
6D body-frame generalized force acting on agent i. The
following properties hold for the aforementioned terms:
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• The terms Mi, Ci(·), gi(·) are unknown to the agents,
Ci(·), gi(·) are continuous, and it holds that

0 < mi < m̄i <∞ (2a)

‖gi(xi)‖ ≤ ḡi,∀xi ∈ SE(3), (2b)

where ḡi is a finite unknown positive constant and
mi := λmin(Mi), and m̄i := λmax(Mi), which are also
unknown to the agents, ∀i ∈ N .
• The functions wi(xi, vi, t) are assumed to be contin-

uous in vi ∈ R6 and bounded in (xi, t) by unknown
positive finite constants w̄i.

The dynamics (1b) can be written in a vector form rep-
resentation as:

ẋ = hx(x, v), (3a)

u = Mv̇ + C(v)v + g(x) + w(x, v, t), (3b)

where x := (x1, . . . , xN ) ∈ SE(3)N , v := [v>1 , . . . , v
>
N ]>

∈ R6N , u := [u>1 , . . . , u
>
N ]> ∈ R6N , and hx(x, v) :=

(hx1
(x1, v1), . . . , hxN (xN , vN )) := ((R1v1,L, R1S(ω1)),

. . . , (RNvN,L, RNS(ωN ))) ∈ TR1 × · · · × TRN , M :=
diag{[Mi]i∈V} ∈ R6N×6N , C(v) := diag{[Ci(vi)]i∈V}
∈ R6N×6N , g(x) := [g1(x1)>, . . . , gN (xN )>]> ∈ R6N ,
w(x, v, t) := [w1(x1, v1, t)

>, . . . , w(xN , vN , t)
>]> ∈ R6N .

It is also further assumed that each agent has a limited
sensing range of si > maxi,j∈N {ri + rj}. Therefore, by
defining the neighboring function Ni(p) := {j ∈ N :
pj ∈ B(pi, si)}, and p := [p>1 , . . . , p

>
N ]> ∈ R3N , agent

i can measure the relative offset R>i (pi − pj) (i.e., ex-
pressed in i’s local frame), the distance ‖pi − pj‖, as
well as the relative orientation R>j Ri with respect to its
neighbors j ∈ Ni(p). In addition, we consider that each
agent can measure its own velocity subject to time- and
state-varying bounded noise, i.e., agent i has continuous

feedback of ṽi := [ṽ>i,L, ω̃i
>]> := vi + ni(xi, t), ∀i ∈ N ;

ni(xi, t) are assumed to be bounded by unknown posi-
tive finite constants n̄i and ni,d(xi, ẋi, t) := ṅi(xi, t) are
assumed to be continuous in ẋi and bounded in (xi, t)
by unknown positive finite constants n̄i,d, ∀i ∈ N .

Remark 1 [Local relative feedback] Note that the
agents do not need to have information of any com-
mon global inertial frame. The feedback they obtain is
relative with respect to their neighboring agents (ex-
pressed in their local frames) and they are not required
to perform transformations in order to obtain absolute
positions/orientations. In the same vein, note also that
the velocities vi are vectors expressed in the agents’ local
frames.

The topology of the multi-agent network is modeled
through the undirected graph G = (N , E), with E =
{(i, j) ∈ N 2 : j ∈ Ni(p(0)) and i ∈ Nj(p(0))} (i.e., the

set of initially connected agents), which is assumed to
be nonempty and connected. We further denote K :=
{1, . . . ,K} where K := |E|. Given the k-th edge, we use
the simplified notation (k1, k2) for the function that as-
signs to edge k the respective agents, with k1, k2 ∈ N ,
∀k ∈ K. Since the agents are heterogeneous with respect
to their sensing capabilities (different sensing radii si),
the fact that the initial graph is nonempty, connected
and undirected implies that

‖pk2(0)− pk1(0)‖ < dk,con, (4)

with dk,con := min{sk1 , sk2},∀k ∈ K. In other words,
we consider that the position of the agents at t = 0 is
such that the agents for which (4) holds form a con-
nected sensing graph. We also consider that G is static
in the sense that no edges are added to the graph. We
do not exclude, however, edge removal through connec-
tivity loss between initially neighboring agents, which
we guarantee to avoid. That is, the proposed methodol-
ogy guarantees that ‖pk2(t)− pk1(t)‖ < dk,con, ∀k ∈ K,
∀t ∈ R≥0. It is also assumed that at t = 0 the neigh-
boring agents are at a collision-free configuration, i.e.,
dk,col < ‖pk2(0) − pk1(0)‖,∀k ∈ K, with dk,col := rk1 +
rk2 . Hence, we conclude that

dk,col < ‖pk2(0)− pk1(0)‖ < dk,con,∀k ∈ K. (5)

The desired formation is specified by the constants
dk,des ∈ R≥0, Rk,des ∈ SO(3),∀k ∈ K, for which, the
formation configuration is called feasible if the set
Φ := {x ∈ SE(3)N : ‖pk2 − pk1‖ = dk,des, R

>
k2
Rk1 =

Rk,des,∀k ∈ K} is nonempty. Apart from achieving a
desired inter-agent formation while maintaining the ini-
tial edges, we aim at guaranteeing that the inter-agent
distance of the edges k ∈ K (initially connected agents)
stays larger than rk1 + rk2 , complying with potential
collision avoidance specifications. We also make the
following required assumption:

Assumption 1 The sensing graph G is a tree.

The aforementioned assumption states the initially con-
nected agents in E must form a tree graph. In cases where
the agents satisfying (4) form a graph that contains cy-
cles, edges can be manually deleted according to certain
criteria (e.g. neighboring priorities) in order to obtain a
tree sensing graph.

Problem 1 Given N agents governed by the dynamics
(1), under Assumption 1 and given the desired inter-
agent configuration constants dk,des ∈ R≥0, Rk,des ∈
SO(3), with dk,col < dk,des < dk,con, ∀k ∈ K, design
decentralized control laws ui ∈ R6, i ∈ N such that, ∀ k ∈
K, the following hold: 1) lim

t→∞
‖pk2(t)− pk1(t)‖ = dk,des;

2) lim
t→∞

[Rk2(t)]>Rk1(t) = Rk,des; 3) dk,col < ‖pk2(t) −
pk1(t)‖ < dk,con,∀ t ∈ R≥0.
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The term “robust” here refers to robustness of the pro-
posed methodology with respect to the unknown dy-
namics and external disturbances in (1) as well as the
unknown noise ni(·) in the velocity feedback.

4 Main Results

Let us first introduce the distance and orientation errors:

ek := ‖pk2 − pk1‖
2 − d2

k,des ∈ R, (6a)

ψk :=
1

2
tr
[
I3 −R>k,desR

>
k2Rk1

]
∈ [0, 2], (6b)

∀k ∈ K. The fact that ψk ∈ [0, 2] is derived by using
Proposition 3. Regarding ek, our goal is to guarantee
limt→∞ ek(t) → 0 from all initial conditions satisfying
(5), while avoiding inter-agent collisions and connectiv-
ity losses among the initially connected agents specified
by E . Regardingψk, we aim to guarantee the following: 1)
limt→∞ ψk(t)→ 0, which according to Proposition 3 im-
plies that limt→∞Rk2(t)>Rk1(t) = Rk,des; 2) ψk(t) < 2,
∀t ∈ R≥0, since the configuration ψk = 2 is an undesired
equilibrium, as will be clarified later. 1 By invoking the
properties of skew symmetric matrices of Section 2, the
errors (6) evolve according to the dynamics:

ėk = 2(R>k1 p̃k2,k1)>(R>k1Rk2vk2,L − vk1,L), (7a)

ψ̇k =
1

2
e>Rk(R>k1Rk2ωk2 − ωk1), (7b)

where p̃k2,k1 := pk2−pk1 and eRk := S−1(R>k1Rk2Rk,des−
R>k,desR

>
k2
Rk1), ∀k ∈ K. By employing Proposition 2, we

obtain ‖eRk‖2 = ‖R>k2Rk1 − Rk,des‖2F(1 − 1
8‖R

>
k2
Rk1 −

Rk,des‖2F) as well as ‖R>k2Rk1−Rk,des‖2F = tr
[
(R>k2Rk1−

Rk,des)
>(R>k2Rk1 −Rk,des)

]
= tr

[
2I3 − 2R>k,desR

>
k2
Rk1

]
= 4ψk. Hence, it holds that:

‖eRk‖2 = 2ψk(2− ψk), (8)

which implies that: ‖eRk‖ = 0 ⇒ ψk = 0 or ψk = 2,
∀k ∈ M. The two configurations ψk = 0 and ψk =
2 correspond to the desired and undesired equilibrium,
respectively.

The concepts and techniques of prescribed performance
control (see Section 2.1) are adapted in this work in or-
der to: a) achieve predefined transient and steady state
response for the distance and orientation errors ek, ψk,
∀k ∈ K, as well as ii) avoid the violation of the distance

1 It is well known that topological obstructions do not allow
global stabilization on SO(3) with a continuous feedback
control law (see [40,42,43])

and connectivity constraints between initially neighbor-
ing agents, as presented in Section 3. The mathematical
expressions of prescribed performance are given by the
inequality objectives:

−Ck,colρek(t) < ek(t) < Ck,conρek(t), (9a)

0 ≤ ψk(t) < ρψk(t) < 2, (9b)

∀k ∈ K, where ρek : R≥0 →
[

ρek,∞
max{Ck,con,Ck,col} , 1

]
,

ρψk : R≥0 → [ρψk,∞, ρψk,0], with ρψk(t) := (ρψk,0 −
ρψk,∞)e−lψk t + ρψk,∞, ρek(t) :=

[
1− ρek,∞

max{Ck,con,Ck,col}

]
e−lek t+

ρek,∞
max{Ck,con,Ck,col} , are designer-specified, smooth,

bounded, and decreasing functions of time; the constants
lek , lψk ∈ R>0, and ρek,∞ ∈ (0,max{Ck,con, Ck,col}),
ρψk,∞ ∈ (0, ρψk,0), ∀k ∈ K, incorporate the desired
transient and steady state performance specifications
respectively, as presented in Section 2.1, and Ck,col,
Ck,con ∈ R>0,∀k ∈ K, are associated with the distance
and connectivity constraints. In particular, we select

Ck,col := d2
k,des − d2

k,col, Ck,con := d2
k,con − d2

k,des, (10)

∀k ∈ K, which, since the desired formation is compatible
with the constraints (i.e., dk,col < dk,des < dk,con,∀k ∈
K), ensures that Ck,col, Ck,con ∈ R>0,∀k ∈ K, and con-
sequently, in view of (5), that: −Ck,colρek(0) < ek(0) <
ρek(0)Ck,con, ∀k ∈ K. Moreover, assuming that ψk(0) <
2, ∀k ∈ K, by choosing:

ρψk,0 := ρψk(0) ∈
(
ψk(0), 2

)
, (11)

it is also guaranteed that: 0 ≤ ψk(0) < ρψk(0), ∀k ∈ K.
Hence, if we guarantee prescribed performance via (9),
by setting the steady state constants ρek,∞, ρψk,∞ arbi-
trarily close to zero and by employing the decreasing
property of ρek(t), ρψk(t),∀k ∈ K, we guarantee practi-
cal convergence of the errors ek(t), ψk(t) to zero and we
further obtain:

−Ck,col < ek(t) < Ck,con, 0 ≤ ψk(t) < ρψk(t), (12)

∀t ∈ R≥0, which, owing to (10), implies: dk,col <
‖pk2(t) − pk1(t)‖ < dk,con, ∀k ∈ K, t ∈ R≥0, provid-
ing, therefore, a solution to problem 1. Moreover, note
that the choice of ρψk,0 along with (12) guarantee that
ψk(t) < 2, ∀t ∈ R≥0 and the avoidance of the unstable
singularity equilibrium.

In the sequel, we propose a decentralized control protocol
that does not incorporate any information on the agents’
dynamic model and guarantees (9) for all t ∈ R≥0. Given
the errors ek, ψk, we perform the following steps:

Step I-a: Select the corresponding functions ρek(t),
ρψk(t) and positive parameters Ck,con, Ck,col, k ∈ K,
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following (9), (11), and (10), respectively, in order to
incorporate the desired transient and steady state per-
formance specifications as well as the distance and con-
nectivity constraints, and define the normalized errors,
∀k ∈ K,

ξek := ρek(t)−1ek, ξψk := ρψk(t)−1ψk. (13)

Step I-b: Define the transformations Tek : (−Ck,col,
Ck,con) → R, k ∈ K, and Tψ : [0, 1) → [0,∞) by

Tek(x) := ln

(
1+

x
Ck,col

1− x
Ck,con

)
, Tψ(x) := ln

(
1

1−x

)
, ∀k ∈ K,

and the transformed error states, ∀k ∈ K,

εek := Tek(ξek), εψk := Tψ(ξψk). (14)

Next, we design the decentralized reference velocity vec-
tor for each agent vi,des := [v>i,Ldes, ω

>
i,des]

> as

vi,des =

[
vi,Ldes

ωi,des

]
=

− δi

2
∑
k∈M

α(i, k, Rk1 , Rk2)
rek (ξek )

ρek (t) εekR
>
k1
p̃k2,k1∑

k∈K
α(i, k, Rk1 , Rk2)

rψ(ξψk )

ρψk (t) eRk

 , (15)

where δi ∈ R>0 are positive gains, ∀i ∈ N , rek :
(−Ck,col, Ck,con) → [1,∞), rψ : [0, 1) → [1,∞), with

rek(x) :=
∂Tek (x)

∂x , rψ(x) :=
∂Tψ(x)
∂x , and α is defined as

α(i, k, Rk1 , Rk2) = −I3, if i is the tail of the kth edge
(i = k1), α(i, k, Rk1 , Rk2) = R>k2Rk1 if i is the head of
the kth edge (i = k2), and 0 otherwise. The assignment
of the head and tail in each edge can be done off-line
according to the specified orientation of the graph, as
mentioned in Section 2.3.

Step II-a: Define for each agent the velocity errors evi :=
[e>vi,1, . . . , e

>
vi,6]> := ṽi − vi,des, ∀i ∈ N , and design

the decreasing performance functions as ρvi,` : R≥0 →
[ρv0

i,`
, ρv∞

i,`
], with ρvi,`(t) := (ρv0

i,`
− ρv∞

i,`
) exp(−lvi,`t) +

ρv∞
i,`

, where the constants ρv0
i,`
, ρv∞

i,`
, lvi,` incorporate the

desired transient and steady state specifications, with
the design constraints ρv0

i,`
> |evi,`(0)|, ρv∞

i,`
∈ (0, ρv0

i,`
),

∀` ∈ {1, . . . , 6}, i ∈ N . The term evi,`(0) can be mea-
sured by each agent at t = 0 directly after the calcula-
tion of vi,des(0). Moreover, define the normalized veloc-
ity errors

ξvi := [ξvi,1 , . . . , ξvi,6 ]> := ρvi(t)
−1evi , (16)

where ρvi(·) := diag{[ρvi,`(·)]`∈{1,...,6}}, ∀i ∈ N .

Step II-b: Define the transformation Tv : (−1, 1) → R

as: Tv(x) := ln
(

1+x
1−x

)
, and the transformed error states

εvi := [εvi,1, . . . , εvi,6]> = [Tv(ξvi,1), . . . , Tv(ξvi,6)]>, (17)

Finally, design the decentralized control protocol for
each agent i ∈ N as

ui := −γi [ρvi(t)]
−1
r̄v(ξvi)εvi , (18)

where r̄v(ξvi) := diag{[rv(ξvi,`)]`∈{1,...,6}} with rv :

(−1, 1) → [1,∞), rv(x) := ∂Tv(x)
∂x , and γi ∈ R>0 are

positive gains, ∀i ∈ N .

Remark 2 [Control protocol intuition] Note that
the selection of Ck,col, Ck,con and of ρψk(t), ρvi,`(t),
along with (5), guarantee that ξek(0) ∈ (Ck,col, Ck,con),
ψk(0) ∈ [0, 2), ξvi,`(0) ∈ (−1, 1), ∀k ∈ K, ` ∈ {1, . . . , 6},
i ∈ N . The prescribed performance control technique
enforces ξek(t), ξψk(t) and ξvi,`(t) to remain strictly
within the sets (−Ck,col, Ck,con), [0, 2), and (−1, 1), re-
spectively, ∀k ∈ K, ` ∈ {1, . . . , 6}, i ∈ N , t ≥ 0 (and
providing thus a solution to Problem 1), by simply main-
taining the boundedness of εek(t), εψk(t) and εvi(t) in a
compact set, ∀t ≥ 0.

Remark 3 [Arbitrarily fast convergence to ψk = 0]
The configurations where ‖eRk‖ = 0⇔ ψk = 0 orψk = 2
are equilibrium configurations that result in ωk1,des =
ωk2,des = 0, ∀k ∈ K. If ψk(0) = 2, the orientation forma-
tion specification for edge k cannot be met, since the sys-
tem becomes uncontrollable. This is an inherent property
of stabilization in SO(3), and cannot be resolved with a
purely continuous controller [44]. Moreover, initial con-
figurations ψk(0) starting arbitrarily close to 2 might take
infinitely long to be stabilized at ψk = 0 with common
continuous methodologies [45]. Note however, that the
proposed control law guarantees convergence to ψk = 0
arbitrarily fast, given that ψk(0) < 2. More specifically,
given the initial configuration ψk(0) < 2, we can always
choose ρψk,0 such that ψk(0) < ρψk,0 < 2, regardless of
how close ψk(0) is to 2. Then, as proved in the next sec-
tion, the proposed control algorithm guarantees (9b) and
the transient and steady state performance of the evo-
lution of ψk(t) is determined solely by ρψk(t) and more
specifically, its convergence rate is determined solely by
the term lψk . It can be observed from the desired angular
velocities ωi,des, designed in (15), that close to the con-
figuration ψk(0) = 2, the term eRk(0), which is close to
zero (since ψk(0) = 2 ⇒ ‖eRk(0)‖ = 0), is compensated
by the term rψ(ξψk(0)) = 1

1−ξψk (0) , which attains large

values (since ξψk(0) = ψk(0)
ρψk,0

is close to 1). In previous

related approaches, the term eRk(0) renders the control
input arbitrarily small in configurations arbitrarily close
to ψk(0) = 2, resulting thus in arbitrarily large stabiliza-
tion time. Finally, note that potentially large values (but
always bounded, as proved in the next section) for ωi,des
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and hence ui due to the term rψ(ξψk(0)) can be compen-
sated by tuning the control gains δi and γi.

Remark 4 [Decentralized manner, relative feed-
back, and robustness] Notice by (15) and (18) that
the proposed control protocols are decentralized in the
sense that each agent uses only local relative informa-
tion to calculate its own signal. In that respect, regard-
ing every edge k, the parameters ρek,∞, ρψk,∞, lek , lψk , as
well as the sensing radii sj ,∀j ∈ Ni(p(0)), which are
needed for the calculation of the performance functions
ρek(t), ρψk(t), can be transmitted off-line to the agents
k1, k2 ∈ N . In the same vein, regarding ρvi,`(·), the con-
stants ρv∞

i,`
, lvi,` can be transmitted off-line to each agent

i, which can also compute ρv0
i,`

, given the initial veloc-

ity errors evi(0). Notice also from (15) that each agent i
uses only relative feedback with respect to its neighbors.
In particular, for the calculation of vi,Ldes, the tail of
edge k, i.e., agent k1, uses feedback of R>k1(pk2 − pk1),
and the head of edge k, i.e., agent k2, uses feedback of
R>k2Rk1R

>
k1

(pk2 − pk1) = R>k2(pk2 − pk1). Both of these
terms are the relative inter-agent position difference ex-
pressed in the respective agent’s local frames. For the
calculation of ωi,des, agents k1 and k2 require feedback
of the relative orientation R>k2Rk1 , as well as the signal

S−1(R>k1Rk2Rk,des−R
>
k,desR

>
k2
Rk1), which is a function

of R>k2Rk1 . The aforementioned signals encode informa-
tion related to the relative pose of each agent with respect
to its neighbors, without the need for knowledge of a com-
mon global inertial frame. It should also be noted that
the proposed control protocol (18) depends exclusively on
the velocity of each agent (expressed in the agent’s local
frame) and not on the velocity of its neighbors. Finally,
the proposed control law does not incorporate any prior
knowledge of the model nonlinearities/disturbances, en-
hancing thus its robustness.

Remark 5 [Inter-agent collision avoidance and
tree graph topology] Note that the proposed protocol
does not guarantee collision avoidance among the agents
that are not initially connected. Multi-agent collision
avoidance under a higher level task (e.g., formation
control) has been widely studied in the related literature
([1, 27, 46–51]), with the main issue being the possibility
of local minima, due to conflicting objectives. Appropri-
ately designed potential fields restrict these cases to at-
tractor sets of measure zero (e.g., [1,51]), without, how-
ever, eliminating them completely, and at the expense
of simplified dynamics and possibly gain tuning. In this
work, although we do not deal with collision avoidance
among all agents, we derive important novelties with
respect to the related literature by considering 2nd-order
dynamics in SE(3) with unknown dynamic terms and
external disturbances, as well as achieving the desired
task (inter-agent formation) with prescribed transient-
and steady-state performance. The control scheme could
be modified by adding appropriate terms that deal with

the collision avoidance among all agents, as well as
discontinuous protocols that “pause” the performance
functions, which drive the formation control objective,
in cases of local minima. Such frameworks require how-
ever a significant amount of additional analysis and are
thus beyond the scope of this paper. On the same note,
the tree graph Assumption 1 is a technical assumption
needed for the subsequent analysis, since it guarantees
positive definiteness of the term D>D, where D is the
incidence of the graph (see Lemma 1). The assumption
is, in fact, a controllability assumption, since it can be
proven that D>D is the term multiplying the stacked
vector u of control inputs when considering the dynam-
ics of the errors ek, ψk (see also Assumption 1 of [32]).
In addition, note that the tree topology may in fact be
preferable in certain applications where communication
costs are taken into account, since the minimum number
of communicating edges corresponds to the tree topology.

Remark 6 [Construction of performance func-
tions and gain tuning] The desired performance
specifications concerning the transient and steady state
response and the distance/connectivity constraints are
introduced in the control schemes via ρek(t), ρψk(t) and
Ck,col, Ck,con, k ∈ K. In addition, the velocity perfor-
mance functions ρvi,`(t) impose prescribed performance
on the velocity errors evi = vi− vi,des, i ∈ N . The selec-
tion of these functions affects both the evolution of the er-
rors within the corresponding performance envelopes as
well as the control input characteristics (magnitude and
rate). More specifically, relaxing the convergence rate and
the steady state limit of the velocity performance func-
tions leads to increased oscillatory behavior within the
prescribed performance region, which is improved when
considering tighter performance functions, enlarging,
however, the control effort both in magnitude and rate.
Nevertheless, the only hard constraint attached to their
definition is related to their initial values. Specifically,
ρψk,0 = ρψk(0) ∈ (ψk(0), 2), ρv0

i,`
= ρvi,`(0) > |evi,`(0)|,

∀k ∈ K, ` ∈ {1, . . . , 6}, i ∈ N . In the same vein, as
will be verified by the proof of Theorem 3, the actual
transient- and steady-state performance of the closed
loop system is solely determined by the performance
functions ρek(t), ρψk(t), ρvi,`(t), and the constants
Ck,col, Ck,con, k ∈ K, ` ∈ {1, . . . , 6}, i ∈ N , without re-
quiring any tuning of the gains δi, γi, i ∈ N . It should
be noted, however, that their selection affects the control
input characteristics and the state trajectory in the pre-
scribed performance area. In particular, decreasing the
gain values leads to increased oscillatory behavior within
the prescribed performance area, which is improved when
adopting higher values, enlarging, however, the magni-
tude and rate of the control input. Fine gain tuning is
also needed in cases where the control input’s magnitude
and rate need to be bounded by pre-specified saturation
values, since, although the proposed methodology yields
bounded control inputs, it does not guarantee explicit
bounds. In such cases, gain tuning might be needed to
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guarantee that the magnitude and rate of the control
input do not exceed these values. A detailed analysis re-
garding the acquirement of such bounds is found in [52].

Remark 7 [Formation rigidity] Note that the desired
distance and orientation formation defined in this work
is not “rigid”, in the sense that the agents can achieve it
under more than one relative configurations. This con-
trasts with certain works in the related literature, where
the desired formation can be visualized as a fixed geomet-
ric shape in the configuration space (see, e.g., [6,8–10]).

4.1 Stability Analysis

In this section we provide the main result of this paper,
which is summarized in the following theorem.

Theorem 3 Consider the multi-agent system described
by the dynamics (3), under a static tree sensing graph G,
aiming at establishing a formation described by the de-
sired offsets dk,des ∈ (dk,col, dk,con) and Rk,des, ∀k ∈ K,
while satisfying the distance and connectivity constraints
between initially neighboring agents, represented by dk,col
and dk,con, ∀k ∈ K. Then, the control protocol (13)-
(18) guarantees the prescribed transient and steady-state
performance −Ck,colρek(t) < ek(t) < Ck,conρek(t), 0 ≤
ψk(t) < ρψk(t), ∀k ∈ K, t ∈ R≥0, under all initial con-
ditions satisfying ψk(0) < 2, ∀k ∈ K and (5), providing
thus a solution to Problem 1.

PROOF. We start by defining some vector and
matrix forms of the introduced signals and func-
tions: e := [e1, . . . , eK ]>, ψ := [ψ1, . . . , ψK ]>, eR
:= [e>R1

, . . . , e>RK ]>, ev := [e>v1 , . . . , e>vN ]>, ξa :=

[ξa1 , . . . , ξaK ]>, ξv := [ξ>v1 , . . . , ξ
>
vN ]>, εe := [εe1 , . . . ,

εeK ]>, εψ := [εψ1 , . . . , εψK ]>, εv := [ε>v1 , . . . , ε
>
vN ]>, p̃ :=

[p̃>12,11
, . . . , p̃>K2,K1

]>, vL := [v>1,L, . . . , v
>
N,L]>, vLdes :=

[v>1,Ldes, . . . , v
>
N,Ldes]

>, ω := [ω>1 , . . . , ω
>
N ]>, ωdes :=

[ω>1,des, . . . , ω
>
N,des]

>, vdes := [v>1,des, . . . , v
>
N,des]

>, ρa(t)
:= diag{[ρak(t)]k∈K}, ρv(t) := diag{[ρvi(t)]i∈N },
re(ξe) := diag{[rek(ξek)]k∈K}, Σe(ξe, t) := re(ξe)ρe(t)

−1,
r̃ψ(ξψ) := diag{[rψ(ξψk)]k∈K},Σψ(ξψ, t) := r̃ψ(ξψ)
ρψ(t)−1, r̃v(ξv) := diag{[r̄v(ξvi)]i∈N }, Σv(ξv, t) :=
r̃v(ξv)ρv(t)

−1, where a ∈ {e, ψ}.

With the introduced notation, (7) can be written in vec-
tor form as

ė = Fp(p̃)>R̂DR(R,G)>vL, (19a)

ψ̇ = FR(eR)>DR(R,G)>ω, (19b)

where R̂ := diag{[Rk1 ]k∈K} ∈ R3K×3K , Fp(p̃) :=

2


p̃12,11

. . . 03×1

...
. . .

...

03×1 . . . p̃K2,K1

 ∈ R3K×K , FR(eR) :=

1
2


eR1 . . . 03×1

...
. . .

...

03×1 . . . eRK

 ∈ R3K×K , and DR ∈ R3N × R3K is

the orientation incidence matrix of the graph:

DR(R,G) := R̄> [D(G)⊗ I3] R̂, (20)

with R̄ := diag{[Ri]i∈N } ∈ R3N×3N , and D(G) is the

incidence matrix of the graph. The terms R̄ and R̂ in
DR(R,G) correspond to the block diagonal matrix with
the agents’ rotation matrices along the main block di-
agonal, and the block diagonal matrix with the rotation
matrix of each edge’s tail along the main block diagonal,
respectively. These two terms have motivated the incor-
poration of the terms α(·) in the desired velocities vi,des

designed in (15), since, as shown next, the vector form
vdes yields the orientation incidence matrix DR(R,G).

The desired velocities (15) and control inputs (18) can
be written in vector form as

vLdes = −∆DR(R,G)R̂>Fp(p̃)Σe(ξe, t)εe, (21a)

ωdes = −∆DR(R,G) [Σψ(ξψ, t)⊗ I3] eR, (21b)

u = −Γ Σv(ξv, t)εv, (21c)

where ∆ := diag{[δiI3]i∈N } ∈ R3N×3N and Γ :=
diag{[γiI6]i∈N } ∈ R6N×6N . Note from (21c) and (13),
(16), (14), (17) that u can be expressed as a function
of the states u(x, v, t). Hence, the closed loop system
can be written as ẋ = hx(x, v), v̇ = hv(x, v, t) :=
−M−1{C(v)v + g(x) + w(x, v, t) − u(x, v, t)}, and by
defining z := (x, v) ∈ SE(3)N × R6N :

ż = h(z, t) := (hx(z), hv(z, t)). (22)

Next, define the set Ω := {(x, v, t) ∈ SE(3)N × R6N ×
R≥0 : ξek(pk1 , pk2 , t) ∈ (−Ck,col, Ck,con), ξψk(Rk1 , Rk2 , t)
< 1, ξvi(x, vi, t) ∈ (−1, 1)6,∀k ∈ K}, where we have ex-
pressed ξek , ξψk , ξvi from (13), (16) as a function of the
states. It can be verified that the set Ω is open due to
the continuity of the operators ξek(·), ξψk(·), ξvi(·) and
nonempty, due to (10). Our goal here is to prove firstly
that (22) has a unique and maximal solution (z(t), t) in
Ω and then that this solution stays in a compact subset
of Ω.

It can be verified that the function h : Ω → TR1 ×
· · · × TRN × R6N is (a) continuous in t for each fixed
(x, v) ∈ {(x, v) ∈ SE(3)N × R6N : (x, v, t) ∈ Ω}, and
(b) continuous and locally lipschitz in (x, v) for each
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fixed t ∈ R≥0. Therefore, the conditions of Theorem 1
are satisfied and hence, we conclude the existence of a
unique and maximal solution of (22) for a timed interval
[0, tmax), with tmax > 0 such that (z(t), t) ∈ Ω, ∀t ∈
[0, tmax). This implies that

ξek(t) = ρek(t)−1ek(t) ∈ (−1, 1), (23a)

ξψk(t) = ρψk(t)−1ψk(t) < 1, (23b)

ξvi(t) = ρvi(t)
−1evi(t) ∈ (−1, 1)6, (23c)

∀k ∈ K, i ∈ N , t ∈ [0, tmax). Therefore, the signals
ek(t), ψk(t), evi(t) are bounded for all t ∈ [0, tmax). In
the following, we aim to show that the solution (z(t), t)
is bounded in a compact subset of Ω and hence, by em-
ploying Theorem 2, that tmax =∞.

Consider the positive definite function Ve := 1
2‖εe‖

2,
which is well defined for t ∈ [0, tmax), due to (23a). By

differentiating Ve, we obtain V̇e = ε>e Σe(ξe, t){−ρ̇e(t)ξe
+Fp(p̃)>R̂DR(R,G)>vL}, which, by substituting vL =
ṽL−np(x, t) = evp + vLdes−np(x, t) and (19), becomes:

V̇e = −ε>e Σe(ξe, t)Fp(p̃)>D̃(G)Fp(p̃)Σe(ξe, t)εe+

ε>e Σe(ξe, t)
[
Fp(p̃)>R̂DR(R,G)>(evp − np(x, t))− ρ̇e(t)ξe

]
,

where D̃(G) := R̂DR(R,G)>DR(R,G)R̂> = (D(G)> ⊗
I3) ∆ (D(G) ⊗I3) ∈ R3K×3K (by employing (20)),
and evp , np(x, t) are the linear parts of ev and n(x, t)
(i.e., the stack vector of the first three components
of every evi , ni(xi, t)), respectively. Note first that,
due to (23c), the function evp(t) is bounded for all
t ∈ [0, tmax). Moreover, note that (23a) implies that
0 < dk,col < ‖pk1(t) − pk2(t)‖ < dk,con, ∀t ∈ [0, tmax).
Therefore, it holds that rank(Fp(p̃(t))) = K, ∀t ∈
[0, tmax). In addition, since G is a connected tree

graph and δi ∈ R>0, ∀i ∈ N , D̃(G) is positive defi-

nite and rank(D̃(G)) = 3K. Hence, we conclude that

rank
(

[Fp(p̃(t))]>D̃(G)Fp(p̃(t))
)

= K and the positive

definiteness of [Fp(p̃(t))]>D̃(G)Fp(p(t)), ∀t ∈ [0, tmax) is
deduced. In addition, since ‖pk2(t) − pk1(t)‖ < dk,con,

we also conclude that the term Fp(p̃)>R̂DR(R,G)>

is upper bounded, ∀t ∈ [0, tmax). Finally, ρ̇e(t)
and np(x, t) are bounded by definition and assump-
tion, respectively, ∀x ∈ SE(3)N , t ∈ R≥0. We ob-

tain V̇e ≤ −λ
D̃
‖Σe(ξe, t)εe‖

[
‖Σe(ξe, t)εe‖ − B̄e

λ
D̃

]
,

∀t ∈ [0, tmax), where

λ
D̃

:= min
p(t),t∈[t0,tmax)

{
λmin

(
Fp(p̃(t))>D̃(G)Fp(p̃(t))

)}
≥ d2

k,colλmin(D̃(G)) > 0,

and B̄e is a positive constant, independent of tmax, sat-
isfying B̄e ≥ ‖Fp(p̃)>R̂DR(R,G)> (evp(t) − np(x, t)) −
ρ̇e(t)ξe(t)‖,∀t ∈ [0, tmax). Note that, in view of the afore-
mentioned discussion, B̄e is finite.

Hence, we conclude that V̇e < 0 ⇔ ‖Σe(ξe, t)εe‖ > B̄e
λ
D̃

.

It holds that rek(x) =
∂Tek (x)

∂x =
1

Ck,col
+ 1
Ck,con(

1+ x
Ck,col

)(
1− x

Ck,con

)
> 1

Ck,col
+ 1

Ck,con
, ∀x ∈ (−Ck,col, Ck,con), and ρek(t) ≤

1,∀t ∈ R≥0, k ∈ K, and thus we conclude that

‖Σe(ξe(t), t)εe(t)‖ =

√∑
k∈K

[rek (ξek (t))]2

[ρek (t)]2 [εek(t)]2 ≥

C̄‖εe(t)‖, ∀t ∈ [0, tmax), where C̄ := max
k∈K

{
Ck,col+Ck,con
Ck,colCk,con

}
.

Hence, we conclude that V̇e(εe) < 0, ∀‖εe‖ ≥ B̄e
λ
D̃
C̄

,

∀t ∈ [0, tmax). Therefore, by invoking Theorem 4.8 in
[53] we conclude that

‖εe(t)‖ ≤ ε̄e := max

{
εe(0), B̄e

λ
D̃
C̄

}
, (24)

t ∈ [0, tmax), and by taking the inverse logarithm func-
tion:

− Ck,col < −ξe ≤ ξek(t) ≤ ξ̄e < Ck,con, (25)

∀t ∈ [0, tmax), where ξ̄e := exp(ε̄e)−1
exp(ε̄e)+1Ck,con, and ξ

e
:=

exp(−ε̄e)−1
exp(−ε̄e)+1Ck,con. Note that εe(0) is finite due to the as-

sumption dk,col < ‖pk2(0)−pk1(0)‖ < dk,con. Therefore,
since λ

D̃
is strictly positive and B̄e is also finite, ε̄e is

well defined. Hence, (24) and (25) imply the bounded-
ness of εek(t), rek(ξek(t), p̃(t), and p(t) in compact sets,
∀k ∈ K, and therefore, through (15), the boundedness
of vi,Ldes(t), ∀i ∈ N , t ∈ [0, tmax).

Similarly, consider the positive definite function Vψ =

2
∑
k∈K εψk , whose derivative is V̇ψ = 2

∑
k∈K

rψ(ξψk )

ρψk (t) (ψ̇k

−ρ̇ψkξψk). After substituting (7b), (19), we obtain

V̇ψ = −2
∑
k∈K

rψ(ξψk)

ρψk(t)
ρ̇ψk(t)ξψk+

e>R [Σψ(ξψ, t)⊗ I3]DR(R,G)>
[
ωdes + evR − nR(x, t)

]
,

where evR and nR(x, t) are the angular parts of ev and
n(x, t) (i.e., the stack vector of the last three components
of every evi , ni(x, t)), respectively. By substituting (21b)

and defining Σ̃ψ(ξψ, t) := Σψ(ξψ, t) ⊗ I3 ∈ R3K×3K ,

D̃R(R,G) := DR(R,G)>∆DR(R,G) ∈ R3K×3K , we ob-
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tain

V̇ψ = − e>RΣ̃ψ(ξψ, t)D̃R(R,G)Σ̃ψ(ξψ, t)eR

+ e>RΣ̃ψ(ξψ, t)DR(R,G)> [evR − nR(x, t)]

− 2
∑
k∈K

rψ(ξψk)

ρψk(t)
ρ̇ψk(t)ξψk .

According to (20), DR(R,G) = R̄> [D(G)⊗ I3] R̂. Since

R̄ and R̂ are rotation (and thus unitary) matrices, the
singular values of DR(R,G) are identical to the ones of

D(G), and hence λmin(D̃R(R,G)) = λmin(D̃(G)) > 0.
Indeed, let D(G) ⊗ I3 = UΣDV

> be a singular
value decomposition of D(G) ⊗ I3, where U , V
are unitary matrices, and ΣD is a diagonal ma-
trix containing the singular values of D(G) ⊗ I3.

Then DR(R,G) = R̄>UΣDV
>R̂ = ŨΣDṼ

> where

Ũ := R̄>U , and Ṽ = R̂>V are unitary matrices (be-

ing products of unitary matrices). Thus, ŨΣDṼ
> is

the singular value decomposition of DR(R,G), and
hence its singular values are the diagonal values
of ΣD. By further defining β := [β>1 , . . . , β

>
K ]> :=

DR(R,G)>(evR − nR(x, t)) ∈ R3M , with βk ∈ R3,

∀k ∈ K, V̇ψ becomes

V̇ψ ≤− λmin(D̃(G))‖Σ̃ψ(ξψ, t)eR‖2

+
∑
k∈K

rψ(ξψk)

ρψk(t)
(eRk)>βk − 2

∑
k∈K

rψ(ξψk)

ρψk(t)
ρ̇ψk(t)ξψk .

Note that, by construction, ξψk ≥ 0, ∀k ∈ K, and

rψ(x) =
∂Tψ(x)
∂x = 1

1−x > 1,∀x < 1. Hence, in view of

(23b), we conclude that rψ(ξψk(t)) > 1, ∀t ∈ [0, tmax).
By noting also that ρ̇ψk(t) < 0,∀t ∈ R≥0 and after

substituting (8), V̇ψ becomes

V̇ψ(εψ) ≤− λmin(D̃(G))
∑
k∈K

[
rψ(ξψk)

ρψk(t)

]2

‖eRk‖2

+ B̄ψ1

∑
k∈K

rψ(ξψk)

ρψk(t)
‖eRk‖

+ 2 max
k∈K
{lψk(ρψk,0 − ρψk,∞)}

∑
k∈K

rψ(ξψk)

ρψk(t)
ξψk ,

where B̄ψ1 is a positive constant, independent of tmax,
satisfying B̄ψ1

≥ maxk∈K{‖βk(t)‖}, ∀t ∈ [0, tmax). Note
that B̄ψ1

is finite, ∀t ∈ [0, tmax), due to (23b) and the
boundedness of the noise signals n(x, t).

From (23b) and the definition of ψk, we conclude that
0 ≤ ψk(t) < ρψk(t) ≤ ρψk,0 < 2, and hence 2 − ψk(t) ≥
2 − ρψk,0 =: ρ

k
> 0 ∀t ∈ [0, tmax), k ∈ K. Moreover,

by noticing that 2 − ψk ≤ 2, ρψk(t) ≤ ρψk,0, and ψk =

ξψkρψk(t), ∀k ∈ K, V̇ψ becomes

V̇ψ ≤ −µ̃
∑
k∈K

[rψ(ξψk)]
2
ξψk

+
2B̄ψ1

max
k∈K
{√ρψk,0}

∑
k∈K

rψ(ξψk)
√
ξψk

+ 2 max
k∈K

{
lψk(ρψk,0 − ρψk,∞)

ρψk,0

}∑
k∈K

rψ(ξψk)ξψk ,

where µ̃ :=
2λmin(D̃(G)) mink∈K{ρ

k
}

maxk∈K{ρψk,0}
. In view of (23b), it

holds that ξψk(t) <
√
ξψk(t),∀k ∈ K. By also employing∑

k∈K rψk(ξψk)
√
ξψk ≤

√
K
√∑

k∈K(rψk(ξψk))2ξψk , we
obtain

V̇ψ ≤ −
√∑
k∈K

[rψ(ξψk )]2 ξψk

{
µ̃

√∑
k∈K

[rψk (ξψk )]2 ξψk − B̄ψ

}
,

where

B̄ψ := 2
√
K

[
B̄ψ1

max
k∈K
{√ρψk,0}

+ max
k∈K

{
lψk (ρψk,0 − ρψk,∞)

ρψk,0

}]
.

Therefore, V̇ψ < 0 ⇔
√∑

k∈K [rψ(ξψk)]
2
ξψk >

B̄ψ

µ̃
.

From (14), given y = Tψ(x), we obtain [rψ(x)]
2
x =[

∂T (x)
∂x

]2
T−1(y) = 1

(1−x)2T
−1(y) = 1

[1−T−1(y)]2
T−1(y) =

exp(y) [exp(y)− 1], ∀x ∈ [0, 1). Therefore, [rψ(ξψk)]
2
ξψk

= exp(εψk) [exp(εψk)− 1], and according to Prop. 1,√∑
k∈K

[rψ(ξψk)]
2
ξψk =

√∑
k∈K

exp(εψk) [exp(εψk)− 1]

≥
√∑
k∈K

ε2
ψk

= ‖εψ‖.

Hence, we conclude that V̇ψ < 0,∀‖εψ‖ > B̄ψ

µ̃
. There-

fore,

‖εψ(t)‖ ≤ ε̄ψ := max
{
εψ(0),

B̄ψ

µ̃

}
, (26)

∀t ∈ [0, tmax), and by taking the inverse logarithm:

0 ≤ −ξ
ψ
≤ ξψk(t) ≤ ξ̄ψ < 1, (27)

10



∀k ∈ K, where ξ̄ψ :=
exp(ε̄ψ)−1

exp(ε̄ψ) and ξ
ψ

:=
exp(−ε̄ψ)−1

exp(−ε̄ψ) .

Note that B̄ψ as well as εψ(0) are finite, due to the
choice ψk(0) < ρψk(0) < 2, ∀k ∈ K. Hence, since µ̃ is
strictly positive, ε̄ψ is also finite. Therefore, we conclude
the boundedness of εψk , rψk(ξψk(t)), ev(t) in compact
sets, ∀k ∈ K, and therefore, through (15), the bounded-
ness of ωi,des(t), ∀i ∈ N , t ∈ [0, tmax). From the proven
boundedness of p(t) and pi,des(t), we also conclude the
boundedness of n(x(t), t) and invoking ṽ = v+n(x, t) =
ev(t) − vdes(t) and (23c), the boundedness of v(t) and
ẋ(t), ∀t ∈ [0, tmax). Moreover, in view of (24), (25), (22),
(15), we also conclude the boundedness of v̇des(t).

Proceeding along similar lines, we consider the pos-
itive definite Lyapunov candidate Vv : R → R≥0

with Vv(εv) = 1
2ε
>
v Γεv. By computing V̇v(εv) =[

∂Vv(εv)
∂εv

]>
ε̇v and using the dynamics ξ̇v = ρv(t)

−1(ėv(t)

−ρ̇v(t)ξv), we obtain:

V̇v(εv) = −ε>v Σv(ξv, t)ΓM
−1ΓΣv(ξv, t)εv

− ε>v Σv(ξv, t)
{

ΓM−1
[
C(v)v + g(x) + w(x, v, t)

]
− ṅ(x, t) + v̇des + ρ̇v(t)ξv

}
. (28)

Since we have proven the boundedness of v(t) and ẋ,
∀t ∈ [0, tmax) the terms C(v)v, ṅ(x, t), and w(x, v, t)
are also bounded, t ∈ [0, tmax), due to the continuities
of C(·), w(·), and ṅ(·) in v, ẋ and the boundedness of
w(·) and ṅ() in x, t. Moreover, g(x), ξv(t), and ρ̇v(t)
are also bounded due to (2b), (23c), and by construc-
tion, respectively. By also using (2a), we obtain from

(28): V̇v(εv) ≤ −λK‖Σv(ξv, t)εv‖2 + ‖Σv(ξv, t)εv‖B̄v,
where B̄v is a positive term, independent of tmax, sat-

isfying B̄v ≥
∥∥∥maxi∈N {γi}

mini∈N {mi}

[
C(v)v + g(x) + w(x, v, t)

]
−

ṅ(x, t) + v̇des(t) + ρ̇v(t)ξv(t)
∥∥∥, ∀t ∈ [0, tmax) and λK :=

mini∈N {γi}2
maxi∈N {m̄i} > 0. Hence, V̇v(εv) < 0 ⇔ ‖Σv(ξv, t)εv‖ >
B̄v
λ
K

. By noting that rv(x) = ∂Tv(x)
∂x = 2

(1+x)(1−x) >

2 > 1, ∀x ∈ (−1, 1), as well as ρvi,`(t) ≤ ρv0
i,`

, ∀` ∈
{1, . . . , 6}, t ∈ R≥0, we conclude that ‖Σv(ξv(t), t)εv(t)‖

=

√∑
i∈N

∑
`∈{1,...,6}

[rv(ξvi,` (t))]
2

[ρvi,` (t)]
2 [εvi,`(t)]

2 ≥ 1

ρ̃
‖εv(t)‖,

∀t ∈ [0, tmax), where ρ̃ := max
i∈N

m∈{1,...,6}

{ρv0
i,m
}. Hence, we

conclude that V̇v(εv) < 0,∀‖εv‖ ≥ ρ̃B̄v
λK

,∀t ∈ [0, tmax),

and consequently that

‖εv(t)‖ ≤ ε̄v := max

εv(0),
ρ̃B̄v
λK

max
i∈N
{γi}

min
i∈N
{γi}

 , (29)

∀t ∈ [0, tmax), and by taking the inverse logarithm func-

tion:
− 1 < −ξ̄v ≤ ξvi,`(t) ≤ ξ̄v < 1, (30)

∀` ∈ {1, . . . , 6}, t ∈ [0, tmax) where ξ̄v := exp(εv)−1
exp(εv)+1 =

− exp(−εv)−1
exp(−εv)+1 . Note that the terms B̄v finite, ∀t ∈

[0, tmax). Moreover, the term εv(0) is finite due to the
choice ρv0

i,`
> |evi,`(0)|,∀` ∈ {1, . . . , 6}, i ∈ N . Hence,

since λK is strictly positive, the term ε̄v is also finite.
Thus, the terms ev(t), r̃v(ξv(t)) and hence the con-
trol laws (18) are also bounded in compact sets for
all t ∈ [0, tmax). What remains to be shown is that
tmax = ∞. Towards that end, suppose that tmax is fi-
nite, i.e., tmax < ∞. Then, according to Theorem 2, it
holds that

L := lim
t→t−max

[
‖z(t)‖+

1

dS((z(t), t), ∂Ω)

]
=∞, (31)

where ‖z‖ := ‖p‖+ ‖v‖+ ‖R‖T and, with a slight abuse
of notation with respect to Section 2, dS((z(t), t), ∂Ω) :=
inf(z′p,v,R

′)∈∂Ω{‖zp,v − z′p,v‖ + ‖R − R′‖T }, and zp,v :=

[p>, v>]> ∈ R3N × R6N . We now aim to prove that
(31) is a contradiction. Firstly, it holds that ‖R(t)‖T =∑
i∈N ‖Ri(t)‖F ≤ N supt∈[0,tmax){maxi∈N {Ri(t)}}.

However, according to Proposition 3, it holds that
−1 ≤ tr(R) ≤ 3 for any R ∈ SO(3). Hence, ‖R(t)‖T ≤
3N, ∀t ∈ [0, tmax]. Moreover, from (30) and (16) we ob-

tain ‖ev(t)‖ ≤
√

6ξ̄vρ̃, ∀t ∈ [0, tmax). By invoking (24),
(26), we can also conclude that there exists a finite v̄des

such that ‖vdes(t)‖ ≤ v̄des, ∀t ∈ [0, tmax). Therefore,
since ‖ni(xi, t)‖ ≤ n̄i, ∀xi ∈ SE(3), t ∈ R≥0, i ∈ N ,
v = ṽ−n(x, t) = ev+vdes−n(x, t) implies that there ex-
ists a finite v̄ such that ‖v(t)‖ ≤ v̄, ∀t ∈ [0, tmax). Hence,

‖p(t)‖ = ‖
∫ tmax

0
R̄(s)v(s)ds‖ ≤

∫ tmax

0
‖R̄(s)v(s)‖ds =∫ tmax

0
‖v(s)‖ds ≤

∫ tmax

0
v̄ds ⇒ ‖p(t)‖ ≤ tmaxv̄,

∀t ∈ [0, tmax), which proves the boundedness of
‖p(t)‖, since tmax is bounded. Next, note that ∂Ω =
{(p, v,R, t) ∈ R3N × R6N × SO(3)N × R≥0 : (∃k ∈
K : ξek(pk1 , pk2 , t) = −Ck,col or ξek(pk1 , pk2 , t) =
Ck,con or ξψk(Rk1 , Rk2 , t) = 1) or (∃i ∈ N , ` ∈
{1, . . . , 6} : ξvi,`(x, vi, t) = −1 or ξvi,`(x, vi, t) = 1)}.
We have proved, however, from (25), (27), and (30)
that the maximal solution satisfies the strict in-
equalities −Ck,col < −ξ

e
≤ ξek(pk1(t), pk2(t), t) ≤

ξ̄e < Ck,con, ξψk(Rk1(t), Rk2(t), t) ≤ ξ̄ψ < 1, and
|ξvi,`(x(t), vi(t), t)| ≤ ξ̄v < 1, ∀k ∈ K, ` ∈ {1, . . . , 6},
i ∈ N , t ∈ [0, tmax). Therefore, we conclude that there
exists a strictly positive constant εz, ∈ R>0 such that
dS((z(t), t), ∂Ω) ≥ εz. Therefore, we have proved that
L ≤ (tmax + 1)v̄ + 3N + ε−1

z , which is finite, since tmax

is finite. This contradicts (31) and hence, we conclude
that tmax =∞.

We have proved the containment of the errors ek(t),
ψk(t) in the domain defined by the prescribed perfor-
mance funnels: −Ck,colρek(t) < ek(t) < Ck,conρek(t),
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0 ≤ ψk(t) < ρψk(t), ∀k ∈ K, t ∈∈ R≥0, which also
implies that: dk,col < ‖pk1(t) − pk2(t)‖ < dk,con, 0 ≤
ψk(t) < 2, ∀k ∈ K, t ∈ R≥0, i.e., avoidance of the singu-
larity ψk = 2 and satisfaction of the distance and con-
nectivity constraints for the initially connected edge set
E . The closed loop signals and functions are also proven
to be bounded for all t ∈ [0,∞), which leads to the con-
clusion of the proof.

Remark 8 (Prescribed performance) We can de-
duce from the aforementioned proof that the proposed
control scheme achieves its goals without resorting to the
need of rendering ε̄e, ε̄ψ, ε̄v arbitrarily small by adopting
extreme values of the control gains δi, γi. Notice that
(24), (26), and (29) hold no matter how large the finite
bounds ε̄e, ε̄ψ, ε̄v are. Hence, the actual performance of
the system is determined solely by the performance func-
tions ρe(t), ρψ(t), ρv(t) and the parametersCk,col, Ck,con,
as mentioned in Remark 6.

5 Simulation Results

We considered N = 5 spherical agents with N =
{1, . . . , 5}, with dynamics of the form (1), with ri = 1m,
si = 4m, and dynamic parameters (mass and moment of
inertia) randomly selected in (0, 1), i ∈ N . We selected
the exogenous disturbances and measurement noise
as wi = Awi sin(‖p1‖1tr(Ri)ωw,it + φw,i)vi, and ni =
Ani sin(‖p1‖1tr(Ri)ωn,it + φn,i)vi, where the parame-
ters Awi , Ani , ωw,i, ωn,i, φw,i, φn,i are randomly chosen
in (0, 0.1), ∀i ∈ N . The initial conditions were taken as:
p1(0) = [0, 0, 0]> m, p2(0) = [−2.1,−2.3, 2]> m, p3(0) =
[1.3, 1.3, 1.5]> m, p4(0) = [−2, 3.25, 2.2]> m, p5(0) =
[2, 2.4,−0.15]> m, R1(0) = R4(0) = R5(0) = I3, R2(0)
= [−0.8253,0,0.5646;0,1,0.2562;−0.5646,0,−0.8253],
R3(0) = [−0.3624,0,0.9320;0.6591,0.7071,0.2562;−0.6591,
0.7071,−0.2562], v1(0) = v2(0 = v3(0) = v(4) =
06×1, which form the edge set E = {{1, 2}, {1, 3},
{3, 4}, {3, 5}}. The desired graph formation was de-
fined by the constants dk,des = 2.5m and Rk,des =
[0.5,−0.8660, 0; 0.6124, 0.3536,−0.7071; 0.6124, 0.3536,
0.7071], ∀k ∈ {1, . . . , 4}. We selected dk,col = 2,
dk,con = 4, and in view of (10), Ck,col = 2.25 and
Ck,con = 9.75. Moreover, the parameters of the perfor-
mance functions were chosen as ρek,∞ = ρψk,∞ = 0.1,
ρψk,0 = 1.99 > max{ρψ1

(0), ρψ2
(0), ρψ3

(0)} and
lek = lψk = 1.5. In addition, we chose ρv0

i,`
=

2|evi,`(0)| + 1, lvi,` = 0.2 and ρv∞
i,`

= 0.1, for every

i ∈ N , ` ∈ {1, . . . , 6}. Finally, the control gains were
set to δi = 0.1 and γi = 15, ∀i ∈ N . The simulation
results are shown in Figs. 1-3. In particular, Figs. 1
and 2 depict the distance and orientation errors ek(t),
ψk(t), respectively, along with the corresponding per-
formance functions ρk(t), ρψk(t), ∀k ∈ K. Moreover,
Fig. 3 depict the control inputs of the agents, ∀t ∈ [0, 5]
seconds. It can be observed that, although the initial
errors ek(0) and ψk(0) are very close to the performance

bounds, the proposed control algorithm achieves con-
vergence to the desired formation configuration in a
short time interval without significant control effort. A
video illustrating the simulation results can be found in
http://y2u.be/Z4xLyO1twvk.

6 Conclusions and Future Work

In this paper we proposed a robust decentralized control
protocol for distance- and orientation-based formation
control of multiple rigid bodies with unknown dynamics
in SE(3). The transient- and steady-state trajectories of
the closed loop system are determined by pre-specified
performance functions. Simulation examples have ver-
ified the proposed approach. Future efforts will be de-
voted towards extending the current results to collision
avoidance among all the agents as well as relaxing the
tree graph assumption.
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Fig. 1. The distance errors ek(t) along with the performance functions −Ck,colρek (t), Ck,conρek (t), ∀k ∈ K.
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Fig. 2. The orientation errors ψk(t) along with the performance function ρψk (t), ∀k ∈ K.
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