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Abstract— This paper presents a novel control methodology
for the coordination of a multi-agent system with 2nd order
uncertain Lagrangian dynamics, while guaranteeing collision
and connectivity properties in the transient state. More specif-
ically, we consider that a leader agent aims at tracking a
desired pose, while all the agents must avoid collisions with
each other. Motivated by cooperative tasks, we also consider
that a subset of the initially connected agents must remain
connected, in the sense of a connected sensing graph. We employ
a key property of the incidence matrix and integrate potential
fields with discontinuous adaptive control laws to compensate
for unknown dynamic parameters of the model and external
disturbances. Simulation results in a realistic dynamics engine
illustrate the theoretical findings.

I. INTRODUCTION

Multi-agent systems are receiving increasing attention
during the last decades, due to the advantages they bring
with respect to single-agent setups. Their main focus is the
design of decentralized control protocols to achieve global
tasks, such as consensus, formation, and navigation, while
possibly satisfying transient properties, such as connectivity
[1]–[7], or collision avoidance [8]–[11].

In the special case of autonomous robotic agents, there
has been a lot of research in multi-agent navigation and
formation control [8], [9], [12]–[19], while aiming also for
inter-agent collision avoidance, which is a crucial safety
property of the overall system. Most of these works guarantee
the primary agent objectives (navigation or formation) while
avoiding collisions from almost all initial configurations,
under simplified dynamics (single- and double-integrators).
In real scenarios though, potential deviations from the ac-
tual agent dynamics might result in failure of meeting the
objectives or even cause collisions.

Another important feature of multi-agent systems is their
coordination under leader-follower architectures, where an
assigned leader aims at executing a task, and the rest of the
team is concerned with secondary tasks, such as staying con-
nected with the leader, forming a desired formation, or per-
forming consensus protocols [20]–[23]. Most leader-follower
schemes in the related literature consider the follower con-
sensus problem with fixed or time varying communication
graphs, where the followers’ states converge to the leader’s
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one, which is assumed to have bounded velocity/acceleration
[2], [20]–[24]. Such schemes cannot be extended to multi-
robot systems though, since collision avoidance is of ut-
termost importance and it is unreasonable to consider the
convergence of the agents’ states (e.g., positions) to the same
value. Vehicular platoons are special cases of leader-follower
structures where collision avoidance is taken into account
[25], restricted, however, to the longitudinal platoon-type
sensing/communication graph.

Moreover, many of the multi-agent works in the related
literature consider simplified/known dynamics (e.g., [4]–[7],
[16]–[19]). Such an assumption might have crucial effects on
the actual behavior of real robotic systems, whose dynamics
are described accurately by Lagrangian models, jeopardizing
their performance/safety. More complex/uncertain dynamics
are taken into account in [3], [20], [21], without considering
collision specifications; [11] integrates collision avoidance
with finite boundedness of the inter-agent distances, and
[10], [26] deal with the multi-robot collision avoidance
problem, without, however, providing theoretical guarantees
with respect to the robot dynamics. An MPC methodology is
developed in [27], which can be computationally infeasible
in real-time when complex dynamics are considered.

In this paper, we propose a decentralized control proto-
col for the coordination of a multi-agent system with 2nd
order uncertain Lagrangian dynamics, subject to collision
avoidance and connectivity maintenance. In particular, we
consider that a leader agent has to navigate to a desired
pose, inter-agent collisions must be avoided, and some of
the initially connected agents have to remain connected. By
using certain properties of the incidence matrix, we avoid
issues of local minima and we relax the assumptions on the
connectivity of the graph (as opposed to, e.g., [23], [24]) as
well as the access of the leader’s velocity by the followers.
Moreover, we consider uncertain terms and unknown exter-
nal disturbances in the dynamic model, which we cope with
by using adaptive and discontinuous control laws. Similar
adaptive discontinuous schemes are considered in our works
[28], which, however, proposes smooth barrier functions for
collision avoidance of ellipsoidal agents without, however,
guaranteeing achievement of any primary objectives.

The rest of the paper is organized as follows. Section II
introduces notation and preliminary background. Section III
provides the problem formulation and Section IV discusses
the proposed solution. Simulation results are given in Section
V and Section VI concludes the paper.



II. NOTATION AND PRELIMINARIES

The set of natural and real numbers is denoted by
N, and R, respectively, and R≥0, R>0 are the sets of
nonnegative and positive real numbers, respectively; ‖x‖1
and ‖x‖ denote the 1- and 2-norm, respectively, of a
vector x ∈ Rn. The identity matrix is In ∈ Rn×n.
The open and closed balls with radius δ, centered at
x ∈ Rn, are denoted by B(x, δ) and B̄(x, δ), respectively.
The sign function is defined as sgn(x) = {−1, 0, 1}, for
x < 0, x = 0, x > 0, respectively. The Filippov reg-
ularization of a function f : Rn → Rk is defined as
[29] K[f ](x) :=

⋂
δ>0

⋂
µ(N̄)=0 co(f(B(x, δ)\N̄), t), where⋂

µ(N̄)=0 is the intersection over all sets N̄ of Lebesgue
measure zero, and co(E) is the convex closure of the set
E. The Filippov regularization of sgn(x) ∈ R is denoted
by K[sgn](x) = SGN(x) where SGN(x) = −1, if x <
0, SGN(x) = 1, if x > 0, and SGN(x) ∈ [−1, 1], if
x = 0. For a vector x = [x1, . . . , xn]> ∈ Rn, we use
sgn(x) = [sgn(x1), . . . , sgn(xn)]> ∈ Rn and SGN(x) :=
[SGN(x1), . . . ,SGN(xn)]> ∈ Rn.

Consider the following differential equation with a discon-
tinuous right-hand side:

ẋ = f(x, t), (1)

where f : D × [t0,∞) → Rn, D ⊂ Rn, is Lebesgue
measurable and locally essentially bounded.

Definition 1 (Def. 1 of [30]): A function x : [t0, t1) →
Rn, with t1 > t0, is called a Filippov solution of (1) on
[t0, t1) if x(t) is absolutely continuous and if, for almost all
t ∈ [t0, t1), it satisfies ẋ ∈ K[f ](x, t), where K[f ](x, t) is
the Filippov regularization of f(x, t).

Lemma 1 (Lemma 1 of [30]): Let x(t) be a Filippov so-
lution of (1) and V : D× [t0, t1)→ R be a locally Lipschitz,
regular function1. Then V (x(t), t) is absolutely continuous,
V̇ (x(t), t) = ∂

∂tV (x(t), t) exists almost everywhere (a.e.),

i.e., for almost all t ∈ [t0, t1), and V̇ (x(t), t)
a.e∈ ˙̃
V (x(t), t),

where ˙̃
V := ∩ξ∈∂V (x,t)ξ

>[K[f ](x, t)>, 1]>, and ∂V (x, t) is
Clarke’s generalized gradient at (x, t) [30].

Theorem 1 (Corollary 2 of [30]): For the system given in
(1), let D ⊂ Rn be an open and connected set containing
x = 0 and suppose that f is Lebesgue measurable and x 7→
f(x, t) is essentially locally bounded, uniformly in t. Let
V : D × [t0, t1) → R be locally Lipschitz and regular such
that W1(x) ≤ V (x, t) ≤ W2(x), ∀t ∈ [t0, t1), x ∈ D, and
z ≤ −W (x(t)),∀z ∈ ˙̃

V (x(t), t), t ∈ [t0, t1), x ∈ D, where
W1 and W2 are continuous positive definite functions and W
is a continuous positive semi-definite on D. Choose r > 0
and c > 0 such that B̄(0, r) ⊂ D and c < min‖x‖=rW1(x).
Then for all Filippov solutions x : [t0, t1)→ Rn of (1), with
x(t0) ∈ D̄ := {x ∈ B̄(0, r) : W2(x) ≤ c}, it holds that
t1 =∞, x(t) ∈ D̄, ∀t ∈ [t0,∞), and limt→∞W (x(t)) = 0.

III. PROBLEM FORMULATION

Consider N > 1 autonomous robotic agents, with N :=
{1, . . . , N}, operating in Rn and described by the spheres

1See [30] for a definition of regular functions.

Ai(xi) := {y ∈ Rn : ‖xi − y‖ < ri}, with xi ∈ Rn being
agent i’s center, and ri ∈ R>0 its bounding radius. The
agents’ motion is described by the Lagrangian dynamics:

Mi(xi)ẍi + Ci(xi, ẋi)ẋi + gi(xi) + fi(ẋi) + di(t) = ui,
(2)

where Mi : Rn → Rn×n are positive definite inertia
matrices, with the property 0 < mIn ≤ Mi(x) ≤ m̄In,
∀x ∈ Rn, i ∈ N , for positive constants m, m̄, Ci : R2n →
Rn×n are the Coriolis terms, gi : Rn → Rn are the gravity
vectors, fi : Rn → Rn are unknown vector fields that
represent friction-like terms, di : R≥0 → Rn are unknown
external disturbances and modeling uncertainties, and ui ∈
Rn are the agents’ control inputs, ∀i ∈ N . The terms Mi,
Ci and gi are continuous in their arguments, the terms fi
are Lebesgue measurable and locally bounded, and di are
uniformly bounded. Moreover, we consider that the dynamic
terms Mi, Ci, and gi include unknown constant dynamic
parameters of the agents (e.g., masses, moments of inertia),
denoted by the vectors θi ∈ R`, ` ∈ N, ∀i ∈ N , and satisfy
the following well-known properties [31]:

Property 1: The terms Ṁi(x) − 2Ci(x, z) are skew-
symmetric, i.e., (Ṁi(x)− 2Ci(x, z))

> = 2Ci(x, z)− Ṁi(x)
and y>(Ṁi(x)− 2Ci(x, z))y = 0, ∀x, y, z ∈ Rn, i ∈ N .

Property 2: The dynamic terms of (2) can be linearly
parameterized with respect to the agents’ dynamic param-
eters. That is, for any vectors x, y, z, w ∈ Rn, it holds that
Mi(x)y+Ci(x, z)w+gi(x) = Yi(y, z, w, x)θi, ∀x, y, z, w ∈
Rn, where Yi : R4n → Rn×` are known regressor matrices,
and θi ∈ R`, ` ∈ N, are vectors of constant but unknown
dynamic parameters of the agents, ∀i ∈ N .

Moreover, we impose the following assumptions on the
system (2), which encapsulate standard properties of friction-
terms and external disturbances:

Assumption 1: It holds that ‖fi(ẋi)‖1 ≤ fbi‖ẋi‖1,
‖di(t)‖1 ≤ dbi , ∀ẋi ∈ Rn, t ∈ R≥0, where fbi , dbi are
unknown positive constants, i ∈ N .

Without loss of generality, we assume that agent i = 1
corresponds to the team leader, whereas i > 1 are the
followers, which belong to the set F := {2, . . . , N}. The
task of the leader is to navigate to a desired pose xd ∈ Rn,
and the entire team is responsible for guaranteeing collision
avoidance as well as connectivity maintenance properties.

In addition, we consider that each agent has a limited
sensing radius dcon,i ∈ R>0, with dcon,i > maxj∈N {ri+rj},
which implies that the agents can sense each other without
colliding. Based on this, we model the topology of the
multi-agent network through the undirected graph G(x) :=
(N , E(x)), with E(x) := {(i, j) ∈ N 2 : ‖xi − xj‖ ≤
min{dcon,i, dcon,j}}, where x := [x>1 , . . . , x

>
N ]> ∈ RnN .

Note that, implicitly, G is time-varying, since x(t) depends
on time. We further denote M(x) := |E(x)|. Given the m-th
edge in the edge set E(x), we use the notation (m1,m2) ∈
N 2 that gives the agent indices that form edge m ∈M(x),
whereM(x) := {1, . . . ,M(x)} is an arbitrary numbering of
the edges E(x). By also denoting m1 as the tail and m2 as
the head of edge m, we define the N ×M incidence matrix



D(G) = [dim], where: dim = 1, if i is the head of edge m;
dim = −1, if i is the tail of edge m; and dim = 0, otherwise.
Moreover, we provide the following property of the incidence
matrix, which we use in the subsequent analysis:

Property 3: Consider the incidence matrix of a graph G
as D(G) = [d1, . . . , dN ]> ∈ RN×M , where d>i ∈ RM are
the rows of D. Then it holds that

∑
i∈{1,...,N} di = 0, i.e.,

the rows of the incidence matrix sum up to zero.
As discussed before, we also need to guarantee that inter-

agent collisions are avoided for all times, and that some
initial edges, denoted by E0 ⊂ E(x(0)), are preserved. The
motivation for that is mainly potential cooperative tasks that
the agents have to accomplish, whose details are provided
only to a leader agent and hence the graph has to remain
connected. Formally, we treat the following problem:

Problem 1: Consider N spherical autonomous robotic
agents with dynamics (2). Given Properties 1-2 and Assump-
tion 1, develop a decentralized control strategy that guaran-
tees 1) achievement of the leader’s task lim

t→∞
(x1(t)− xd) =

0,, 2) inter-agent collision avoidanceAi(xi(t))∩Aj(xj(t)) =
∅, ∀t ∈ R≥0, i, j ∈ N , i 6= j,, and 3) connectivity main-
tenance between a subset of the initially connected agents
‖xm1

(t) − xm2
(t)‖ ≤ min{dcon,m1

, dcon,m2
}, ∀t ∈ R≥0,

m ∈ M0 ⊂ M(x(0)), where M0 := {1, . . . ,M0} is an
edge numbering for the edge set E0, with M0 := |E0|.

IV. MAIN RESULTS

In this section we propose a decentralized control protocol
for the solution of Problem 1.

Besides the edge set E0, with edge numbering M0 and
M0 edges, which needs to remain connected, consider also
the complete graph Ḡ := (N , Ē), with Ē := {(i, j),∀i, j ∈
N , i < j}, the respective incidence matrix D̄ := D(Ḡ),
M̄ := |Ē | = N(N−1)

2 , and the edge numbering M̄ :=
{1, . . . ,M0,M0 + 1, . . . , M̄}, where {M0 + 1, . . . , M̄} cor-
responds to the edges in Ē\E0.

We construct now the local collision and connectivity
functions for all edges M̄ and M0, respectively. Given
positive constants β̄c and β̄n, let βc,m : R≥0 → [0, β̄c] and
βn,l : R≥0 → [0, β̄n], with

βc,m(x) :=

{
ϑc,m(x) 0 ≤ x < d̄c,m,
β̄c d̄c,m ≤ x ,

βn,l(x) :=

{
ϑn,l(x) 0 ≤ x < d2

n,l

β̄n d2
n,l ≤ x

,

∀m ∈ M̄, l ∈ M0, where ϑc,m : R≥0 → [0, β̄c], ϑn,l : R≥0

→ [0, β̄n] are polynomials that guarantee that βc,m and βn,l,
respectively, are twice continuously differentiable, ∀m ∈ M̄,
l ∈ M0. Then, we choose βc,m := βc,m(ιm), βn,l :=
βn,l(ηl), where ιm := ‖xm1 − xm2‖2 − (rm1 + rm2)2, ηl :=
d2
n,l − ‖xl1 − xl2‖2, dn,m := min{dcon,m1 , dcon,m2} and we

also set d̄c,m := d2
n,m−(rm1

+rm2
)2, ∀m ∈ M̄, l ∈M0. The

terms β̄c, β̄n can be any positive constants. Note that βc,m
and βn,l take into account the limited sensing capabilities
of the agents and their derivatives vanish at collisions and
connectivity breaks, respectively, of the respective edges. All

the parameters for the construction of βc,m, βn,l can be
transmitted off-line to the agents.

Regarding the uncertain terms of (2), note that θi ∈ R`,
fbi ∈ R, and dbi ∈ R from Properties 1, 2 and Assumption 1
are unknown to the agents. Hence, we define the estimations
of these terms θ̂i ∈ R`, f̂bi ∈ R, d̂bi ∈ R, ∀i ∈ N , with
the respective errors θ̃i := θ̂i − θi, f̃bi := f̂bi − fbi , d̃bi :=
d̂bi − dbi , ∀i ∈ N . In addition, we define the leader error
signals e := x1−xd, φ :=

∫ t
0
e(τ)dτ , as well as the combined

sliding mode-type error se := e + λφ, where λ is a non-
negative constant. We also define αc

i,m and αn
i,l:

αc
i,m :=





−1, i = m1

1, i = m2

0, otherw.
αn
i,l :=





−1, i = l1

1, i = l2

0, otherw.

∀m ∈ M̄, l ∈ M0, i ∈ N , which provide boolean values
depending on whether agent i is part (head or tail) of edge
m and l. Finally, we define ∀m ∈ M̄, l ∈M0, the terms

β′c,m :=
∂

∂ιm

(
1

βc,m(ιm)

)
, β′n,l :=

∂

∂ηl

(
1

βn,l(ηl)

)
,

which diverge to infinity in a collision and a connectivity
break of the agents m1,m2 and l1, l2, respectively. We
propose now the following decentralized adaptive control
protocol. Choose the agents’ desired velocity as

vd1
= −(γe + λ)se + k1

∑

m∈M̄

αc
1,mβ

′
c,m

∂ιm
∂xm1

+ k1

∑

l∈M0

αn
1,lβ
′
n,l

∂ηl
∂xl1

(3a)

vdi = ki


 ∑

m∈M̄

αc
i,mβ

′
c,m

∂ιm
∂xm1

+
∑

l∈M0

αn
i,lβ
′
n,l

∂ηl
∂xl1


 ,

(3b)

∀i ∈ F , that concerns the collision avoidance and connectiv-
ity maintenance properties, with the extra term (γe+λ)se for
the leader to guarantee the navigation to xd. The terms γe,
ki are positive constants, ∀i ∈ N . Since vdi is not the actual
velocity of the agents, we define the errors evi := ẋi − vdi ,
∀i ∈ N , and design the decentralized control laws

ui =
∑

m∈M̄

αc
i,mβ

′
c,m

∂ιm
∂xm1

+
∑

l∈M0

αn
i,lβ
′
n,l

∂ηl
∂xl1

− kvievi+

Yi(v̇di , ẋi, vdi , xi)θ̂i − sgn(evi)‖ẋi‖1f̂bi − sgn(evi)d̂bi

− s̃ei , (4)

∀i ∈ N , where s̃e1 = se, s̃ei = 0,∀i ∈ F , and kvi are
positive gains. Moreover, we design the adaptation signals

˙̂
dbi = γi,d‖evi‖1,
˙̂
fbi = γi,f‖evi‖1‖ẋi‖1,
˙̂
θi = −γi,θYi(v̇di , ẋi, vdi , xi)>evi




i ∈ N , (5)

with arbitrary bounded initial conditions, and positive con-
stants γi,d, γi,f , γi,θ, ∀i ∈ N . Note from (4) that, unlike the



usual case in the related literature, the leader contributes to
the collision avoidance and connectivity maintenance prop-
erties, apart from just guaranteeing achievement of its task.
Regarding the rest of the terms, Yi(·)θ̂, sgn(evi)‖ẋi‖1f̂bi ,
and sgn(evi)d̂bi compensate for the unknown terms θi, fbi ,
and dbi , respectively, and evi is a dissipative velocity term
that ensures closed-loop stability. The main results of this
work are summarized in the following theorem.

Theorem 2: Consider a multi-agent team N , described by
the dynamics (2) subject to Properties 1,2 and Assumption
1. Then, application of the control and adaptation laws (4),
(5) with the following choice of control gains:

k1(2− a)

a
− λ > γe > k1 + λ (6a)

2ki > (1− a)(k1 + λ+ γe), ∀i ∈ F , (6b)

where a is a constant satisfying a ∈
[
0, k1

k1+λ

)
⊂ [0, 1),

guarantees: 1) navigation of the leader agent to xd, 2)
connectivity maintenance of the subset E0 of the initial
edges, 3) inter-agent collision avoidance, and 4) boundedness
of all closed loop signals, from all collision-free initial
configurations, i.e., Ai(xi(0)) ∩ Aj(xj(0)) = ∅, ∀i, j ∈ N ,
with i 6= j, providing thus a solution to Problem 1. Moreover,
it holds that limt→∞ vi(t) = 0, ∀i ∈ N .

Proof: By employing (2), (4), (5), we can write the
closed-loop system as

µ̇ ∈ fµ(µ, t) (7)

where µ := [x>, ẋ>, d̂>b , f̂
>
b , θ̂

>]>, ẋ := [ẋ>1 , . . . , ẋ
>
N ]>,

d̂b := [d̂b1 , . . . , d̂bN ]>, f̂b := [f̂b1 , . . . , f̂bN ]>, θ̂ :=
[θ̂>1 , . . . , θ̂

>
N ]>, and fµ is a set valued function formed by

replacing the sgn() functions with SGN(). Consider the set
X := {µ ∈ R2Nn+2N+`N : Ai(xi) ∩ Aj(xj) = ∅,∀i, j ∈
N , i 6= j, ‖xm1

− xm2
‖ ≤ min{dcon,m1

, dcon,m2
},∀m ∈

M0}. Since, initially the agents do not collide and E0 is
a subset of the initially connected agents E(x(0)), it holds
that µ(0) ∈ X . The right hand side of (7) is measurable in t
over R≥0 and Lebesgue measurable and locally bounded in
µ on X . Therefore, by invoking Prop. 3 of [32], there exists
at least a Filippov solution µ : [0, t1)→ X for some t1 > 0.
Consider now the function

V1 :=
λ2

2
‖φ‖2 +

1

2
‖se‖2 +

∑

m∈M̄

1

βc,m
+
∑

l∈M0

1

βn,l
(8)

which is well defined when µ ∈ X . We aim to show that V1,
given its initial boundedness, remains bounded ∀t ∈ R≥0,
and so do the terms 1

βc,m
, 1
βn,l

. By considering the time
derivative of V1, substituting e = se−λφ in the term λ2φ>e,
and taking into account that ∂ιm

∂xm1
= − ∂ιm

∂xm2
, ∀m ∈ M̄,

∂ηl
∂xl1

= − ∂ηl
∂xl2

, ∀l ∈M0, we obtain

V̇1 =− λ3 ‖φ‖2 + s>e (ẋ1 + λse)− β>(D̃ ⊗ In)>ẋ, (9)

where β := [β>c , β
>
n ]> ∈ RM̄+M0 , βc := [β′c,1

∂ι1
∂x11

,

. . . , β′
c,M̄

∂ιM̄
∂xM̄1

]> ∈ RM̄ , βn := [β′n,1
∂η1

∂x11
, . . . ,

β′n,M0

∂ηM0

∂x(M0)1

]> ∈ RM0 , and D̃ := [D̄,D0] ∈ RN×(M̄+M0),
where D̄ and D0 are the incidence matrices corresponding to
Ē and E0, respectively. Let now d̃>i ∈ RM̄+M0 , i ∈ N , be the
rows of D̃, i.e., D̃ = [d̃1, . . . , d̃N ]>. Then, the last term of
(9) can be written as β>(D̃⊗In)>ẋ =

∑
i∈N β

>(d̃i⊗In)ẋi
and hence (3) and (4) become

vd1
=− (λ+ γe)se + k1(d̃1 ⊗ In)>β (10a)

vdi =ki(d̃i ⊗ In)>β, ∀i ∈ F (10b)

ui =(d̃i ⊗ In)>β − s̃ei + Yi(v̇di , ẋi, vdi , xi)θ̂i − kvievi
− sgn(evi)‖ẋi‖1f̂bi − sgn(evi)d̂bi , ∀i ∈ N . (10c)

Achievement of the desired velocities, i.e., ẋi = vdi , ∀i ∈
N , implies that V̇1 = −λ3‖φ‖2 − γe‖se‖2 + k1s

>
e (d̃1 ⊗

In)>β−∑i∈N ki‖(d̃i⊗ In)>β‖2 + (λ+γe)β
>(d̃1⊗ In)se.

Note that the incidence matrix property (Prop. 3) implies that
d̃1 = −∑i∈F d̃i. By also using the identity xy = x2

2 + y2

2 −
1
2 (x− y)2, ∀x, y ∈ R, V̇1 becomes

V̇1 ≤− (γe − k′1) ‖se‖2 − (k1 − ak′1)
∥∥∥(d̃1 ⊗ In)>β

∥∥∥
2

−
∑

i∈F
(ki − (1− a)k′1)

∥∥∥(d̃i ⊗ In)>β
∥∥∥

2

,

where a ∈
[
0, k1

k1+λ

)
, 2k′1 := k1 +λ+ γe. From (6), we can

conclude that γ̃e := γe − k′1 > 0, k̃1 := (k1 − ak′1) > 0, and
k̃i := ki − (1 − a)k′1 > 0, ∀i ∈ F , and the last inequality
is non-positive, i.e. V̇1 ≤ −γ̃e‖se‖2 − k̃1‖(d̃1 ⊗ In)>β‖2 −∑
i∈F k̃i‖(d̃i ⊗ In)>β‖2 ≤ 0. The actual velocities of

the agents, however, are not necessarily equal to the
desired ones vdi , and therefore we use a backstepping-
like technique to proceed. Consider the vector ζ :=

[φ>,s>e ,
√
β−1
c,1 ,. . . ,

√
β−1
c,M̄

,
√
β−1
n,1,. . . ,

√
β−1
n,M0

,e>v ,d̃>b ,f̃>b ,

θ̃>]> ∈ Z , where ev := [e>v1
, . . . , e>vN ]> ∈ RnN , d̃b :=

[d̃b1 , . . . , d̃bN ]> ∈ RN , f̃b := [f̃b1 , . . . , f̃bN ]> ∈ RN , θ̃ :=
[θ̃>1 , . . . , θ̃

>
N ] ∈ R`N , and Z := R2n+2N+nN+M̄+M0+`N .

Similar to (7), we guarantee the existence of a Filippov
solution ζ : [0, t1) → Z for the respective closed-loop
system obtained by differentiating ζ. We aim to prove that
ζ(t) remains in a compact subset of Z , which implies that µ
remains in a compact subset of ∈ X . Define the barrier-like
function V : Z × [0, t1)→ R≥0, with

V (ζ, t) :=V1(ζ) +
∑

i∈N

{
1

2
e>viMi(xi(t))evi +

1

2γi,d
d̃2
bi+

1

2γi,f
f̃2
bi +

1

2γi,θ
‖θ̃i‖2

}
, (11)

for which, by using the fact m ≤ Mi(x) ≤ m̄, ∀x ∈ Rn,
i ∈ N , it holds that W1(ζ) ≤ V (ζ, t) ≤ W2(ζ), where
the functions W1,W2 : Z → R≥0 are defined as W1(ζ) :=
λ1‖ζ‖2, W2(ζ) := λ2‖ζ‖2, and λ1, λ2 are positive constants.
Since initially the agents do not collide and E0 is a subset of
the initially connected agents E(x(0)), V1, as defined in (8),
is well-defined, and hence V (ζ(0), 0), 1

βc,m(ιm(0)) , 1
βn,l(ηl(0))



are bounded, ∀m ∈ M̄, l ∈ M0, i.e., V (ζ(0), 0) ≤ V̄ for
a finite constant V̄ . By taking the derivative of V , and in
view of Lemma 1, one obtains V̇ (ζ(t), t)

a.e.∈ ˙̃
V (ζ(t), t).

Since V (ζ, t) is continuously differentiable, the generalized
gradient reduces to the standard gradient and one obtains
after using ẋi = evi + vdi , (9), and Properties 1, 2,

˙̃
V ⊂ −λ3 ‖φ‖2 + s>e (vd1 + λse)−

∑

i∈N
β>(d̃i ⊗ In)vdi+

s>e ev1
+
∑

i∈N

{
e>vi
(
ui − Yi(v̇di , vdi , ẋi, xi)θi − fi(ẋi)− di(t)

− (d̃i ⊗ In)>β
)

+
1

γi,f
f̃bi

˙̂
fbi +

1

γi,d
d̃bi

˙̂
dbi +

1

γi,θ
θ̃>i

˙̂
θi

}
.

Next, by substituting the control laws (10), employing the
property x>sgn(x) = ‖x‖1, ∀x ∈ Rn (which also implies
that x>SGN(x) = ‖x‖1, since x>SGN(x) = {0} when x =
0), as well as (10), and Assumption 1, we obtain

max
z∈ ˙̃
V

{z} ≤ −Wζ(ζ) +
∑

i∈N

{
e>viYi(v̇di , ẋi, vdi , xi)θ̃i

+ fbi‖evi‖1‖ẋi‖1 + dbi‖evi‖1 − kvi‖evi‖2 +
1

γi,f
f̃bi

˙̂
fbi

− ‖evi‖1
(
‖xi‖1 f̂bi + d̂bi

)
+

1

γi,d
d̃bi

˙̂
dbi +

1

γi,θ
θ̃>i

˙̂
θi

}
,

where Wζ : Z → R≥0, with Wζ(ζ) := γ̃e ‖se‖2 + k̃1‖(d̃1 ⊗
In)>β‖2 +

∑
i∈F k̃i‖(d̃i⊗ In)>β‖2. Finally, by substituting

fbi = f̂bi − f̃bi , dbi = d̂bi − d̃bi , ∀i ∈ N , as well as the
adaptation laws (5), we obtain max

z∈ ˙̃
V
{z} ≤ −Wζ(ζ) −∑

i∈N kvi‖evi‖2 =: −W (ζ). Therefore, we conclude that

z ≤ −W (ζ), ∀z ∈ ˙̃
V (ζ(t), t), t ∈ [0, t1), ζ ∈ Z , where

W : Z → R≥0 is a positive semi-definite function defined
on Z . Hence, the conditions of Theorem 1 hold, according
to which we conclude that all Filippov solutions starting in
ζ(0) ∈ Z̄ := {ζ ∈ B(0, r) : W2(ζ) < min‖ζ‖=rW1(ζ)} are
extended to t1 = ∞, satisfy ζ(t) ∈ Z̄ for all t ∈ R≥0 and
any positive r, and limt→∞W (ζ(t)) = 0. Thus, the terms
βc,m(ιm(t)), βn,l(ηl(t)) are bounded, ∀t ∈ R≥0, m ∈ M̄ ,
l ∈M0, which implies that connectivity breaks of the set E0
and inter-agent collisions are avoided, ∀t ∈ R≥0. In addition,
it holds that limt→∞ evi(t) = 0, limt→∞(d̃i ⊗ In)>β(t) =
0, ∀i ∈ N , and limt→∞ se(t) = 0, which implies that
limt→∞ e(t) = 0, since λ > 0, as well as limt→∞ vi(t) = 0,
∀i ∈ N due to (10). Note that r can be any positive constant
and hence the result is global with respect to ζ, i.e., all
collision-free initial configurations that satisfy E0 ⊂ E(x(0)).

Remark 1: Note that initial connectivity of the graphs
G(x(0)), G0 and connectivity to the leader are not technical
requirements, as is usually the case in the related literature
(e.g., [23], [24]). Regarding the unknown terms fi(ẋi),
di(t), θi, note from Theorem 2 and its proof that these are
successfully compensated, without the need of convergence
of the respective errors to zero. Regarding the control gains,
their selection according to (6) is done off-line. It is worth

noting that a determines the degree to which the leader agent
participates in the collision and connectivity properties; by
selecting a = 0, the left part of (6a) is transformed to k1 > 0
and the right part of (6b) achieves a maximum with respect
to a, burdening more the followers. Finally, λ can be chosen
equal to zero, neglecting the integrator effect (i.e., se = e).

V. SIMULATION RESULTS

We conducted simulations with N = 6 UAVs in R3

using the realistic robotic simulator Gazebo [33]. We con-
sidered bounding radii ri = 0.35m, sensing ranges dcon,i =
3m, ∀i ∈ N , and initial positions x1(0) = [0, 0, 0.1]>,
x2(0) = [2,−0.5, 0.1]>, x3(0) = [−1.5, 1.5, 0.1]>, x4(0) =
[1, 2, 0.1]>, x5(0) = [−1.5,−1, 0.1]>, and x6(0) =
[0.5,−1.5, 0.1]> m. We also considered that the leader has 4
navigation objectives, that is, to sequentially navigate to the
points xd,1 = [0, 0, 5]>, xd,2 = [4, 5, 3]>, xd,3 = [−2, 4, 2]>,
xd,4 = [3,−2, 3]> m. Since this work provides asymptotic
results with respect to the error e, the leader switches
navigation goal each time it gets closer than 0.075m to
the current goal, i.e., ‖e‖ ≤ 0.075m. We also considered
E0 = {(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (5, 6), (2, 6)}. The
unknown parameters θi concerned the UAVs’ mass and the
gravity constant. The control gains and parameters were
set as λ = 0.00015, γe = 0.7, k1 = 0.5, ki = 5,
∀i ∈ {2, . . . , 6}, which satisfy (6) with a = 0.5, and
γi,θ = 0.1, γi,d = 0.01, γi,f = 0.1, kvi = 2, ∀i ∈
{1, . . . , 6}. The simulation results are shown in Figs. 1-
2 for t ∈ [0, 277] s. More specifically, Fig. 1 shows
(a) the evolution of the signal ‖se(t)‖ + ‖ev1

(t)‖, which
converges to zero for each navigation objective, (b) the evo-
lution of the product

∏
m∈M̄

1
βc,m(ιm(t))

∏
l∈M0

1
βn,l(ηl(t))

,
which remains bounded, verifying thus the collision avoid-
ance and connectivity maintenance properties, and (c)
the evolution of the products of the adaptation signals∏
i∈{1,...,6} ‖θ̂i(t)‖,

∏
i∈{1,...,6} d̂bi(t),

∏
i∈{1,...,6} f̂bi(t),

which remain bounded, verifying thus the boundedness of the
individual signals. Finally, Fig. 2 shows the control inputs of
the UAVs. The simulations were carried out in a ROS-Python
interface of an i7-8750H laptop computer with 12 cores at
2.2GHz and 16GB of RAM and an illustrating video can be
found in https://youtu.be/bzzXC-v2hEM.

VI. CONCLUSIONS AND FUTURE WORKS

We presented a decentralized control protocol for the
leader-follower coordination of multi-agent systems with
connectivity and collision specifications. Future directions
will address timed and multi-agent simultaneous navigation.
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