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Abstract— This paper addresses the problem of cooperative
object manipulation, with the coordination relying solely on
implicit communication. We consider a decentralized leader-
follower architecture where the leading robot, that has exclusive
knowledge of the object’s desired trajectory, tries to achieve the
desired tracking behavior via an impedance control law. On the
other hand, the follower estimates the leader’s desired motion
via a novel prescribed performance estimation law, that drives
the estimation error to an arbitrarily small residual set, and im-
plements a similar impedance control law. Both control schemes
adopt feedback linearization as well as load sharing among
the robots according to their specific payload capabilities.
The feedback relies exclusively on each robot’s force/torque,
position as well as velocity measurements and apart from a
few commonly predetermined constant parameters, no explicit
data is exchanged on-line among the robots, thus reducing the
required communication bandwidth and increasing robustness.
Finally, a comparative simulation study clarifies the proposed
method and verifies its efficiency.

I. INTRODUCTION

The study of decentralized multi-robot systems in object
carrying tasks (see Fig. 1) has received increasing attention
over the last decades. In such tasks, the inter-robot com-
munication has been proven critical, since there is no central
unit to supervise the agents’ actions. In general, there are two
types of communication, namely the explicit and the implicit
(see Fig. 2). The former type is designed solely to convey
information such as control signals or sensory data directly
to other robots [1]. On the other hand, the latter occurs as
a side-effect of robot’s interactions with the environment or
other robots, either physically (e.g., the interaction forces
between the object and the robot) or non-physically (e.g.,
visual observation). In this case, the information needed is
acquired by appropriate sensors attached on the agents.

The most investigated and frequently employed commu-
nication form is the explicit one. It usually leads to simpler
theoretic analysis and renders teams more effective. How-
ever, in case of faulty communication environments, severe
problems may arise, such as dropping the object, exertion of
excessive forces and performance degradation. Moreover, as
the number of cooperating robots increases, communication
protocols require complex design to deal with crowded
bandwidth [2]. On the other hand, several of the aforemen-
tioned limitations can be overcome by employing implicit
communication instead. Despite the increased difficulty of
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Fig. 1. Robotics in construction: Drywall.

the theoretical analysis, it leads to simpler protocols and
saves bandwidth as well as power, since no or very few
data is explicitly exchanged. Furthermore, it significantly
increases robustness in case of faulty environments as well
as stealthiness of operation, since the agent activity is not
easily detected. One may argue though, that the explicit form
leads, when accurately employed, to superior performances.
Nevertheless, there are tasks, for which it is not essential,
especially when the implicit form is available. It should also
be noticed that more complex communication networks may
offer little or no benefit over implicit communication [3], [4].

Cooperative manipulation has been well-studied in the
literature, especially the centralized schemes [5]–[8]. Despite
its efficiency, centralized control is less robust, since all
units rely on a central system, and its complexity increases
rapidly as the number of participating robots becomes large.
On the other hand, decentralized control usually depends
on either explicit communication or off-line knowledge of
the desired trajectory [9]–[11]. Moreover, in other leader-
follower schemes [12], [13], the leader has to transmit on-
line the desired trajectory to the follower.

Implicit communication has been exclusively employed in
a few decentralized schemes for holonomic mobile manipu-
lators. Kosuge et. al. in a series of works [14]–[16] presented
a leader-follower scheme for holonomic manipulators. The
leader implements a desired trajectory profile through an
impedance scheme, while the follower estimates it through
the motion of the object. However, the dynamics of the object
are neglected and the estimation error remains bounded only
if the desired acceleration is zero (i.e., trajectories with
constant velocity profile). Finally, regarding nonholonomic
mobile robots, the follower’s passive caster behavior was
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Fig. 2. The two types of communication, namely the explicit and the
implicit.

adopted in [17], [18]. Although, the stability of the follower’s
contact is established, it is not stated how the object’s
trajectory can be controlled.

This paper addresses the problem of decentralized cooper-
ative object manipulation. The challenge lies in completely
replacing explicit communication with implicit. Similarly
to [16], the considered architecture is a leader-follower
formation. The leader is aware of the object’s desired tra-
jectory and implements it via an impedance control law.
The follower, that does not know the desired trajectory,
estimates it by observing the object’s motion and imposes
a similar impedance law. Both impedance laws linearize
the dynamics, adopt similar control gains and incorporate
coefficients for load-sharing. The estimation process is based
on the prescribed performance methodology [19] that drives
the estimation error to an arbitrarily small residual set. In
this sense, the tracking error is ultimately bounded with
customizable ultimate bounds. Finally, it should be noticed
that both agents use solely their own force, position and ve-
locity measurements. The only explicit information needed,
is limited down to a few constant parameters, which may be
transmitted off-line.

In this work, we extend the current state of art [14]–
[16], via a more robust estimation algorithm that converges
even though the desired object’s acceleration profile is non-
zero (i.e., arbitrary object’s desired trajectory as long as it is
bounded and smooth). Moreover, the customizable ultimate
bounds allow us to achieve practical stabilization of the
tracking error, with accuracy limited only by the sensors’
resolution. Finally, we provide a novel way to share the
object load among the participating robots.

The rest of the manuscript is organized as follows: Section
II introduces shortly the prescribed performance concept and
some preliminary results on dynamical systems. Section III
introduces the problem and describes the system’s model.
The control methodology along with the estimation algorithm
are presented in Section IV. Section V validates our approach
through simulated paradigms. Finally, Section VI concludes
the paper.

II. DEFINITIONS AND PRELIMINARIES

At this point, we recall some definitions and preliminary
results that are necessary in the subsequent analysis.

A. Prescribed Performance

It will be clearly demonstrated in the sequel that the
concepts and techniques of prescribed performance control,
recently proposed in [20], [21] for nonlinear systems, are
innovatively adapted herein to develop a novel estimation
scheme. Prescribed performance characterizes the behavior
where an error converges to a predefined arbitrarily small
residual set with convergence rate no less than a certain
predefined value. In that respect, consider a generic scalar
error e (t). The mathematical expression of prescribed per-
formance is given by the following inequalities:

−ρ (t) < e (t) < ρ (t) , ∀t ≥ 0 (1)

where ρ (t) is a smooth and bounded function of time
satisfying limt→∞ ρ (t) > 0, called performance function.
The aforementioned statements are clearly illustrated in
Fig. 3 for an exponential performance function ρ (t) =
(ρ0 − ρ∞) e−st + ρ∞ with appropriately chosen positive
constants ρ0, ρ∞, s. Specifically, ρ0 is selected such that
ρ0 > |e (0)| and ρ∞ = limt→∞ ρ (t) > 0 represents the
maximum allowable size of the error e (t) at the steady
state, which may even be set arbitrarily small to a value
reflecting the resolution of the measurement device, thus
achieving practical convergence of e (t) to zero. Moreover,
the decreasing rate of ρ (t) which is affected by the constant
s > 0 in this case, introduces a lower bound on the required
speed of convergence of e (t). Therefore, the appropriate
selection of the performance function ρ (t) imposes transient
and steady state performance characteristics on the error
e (t).
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Fig. 3. Graphical illustration of the prescribed performance definition.



B. Dynamical Systems

Consider the initial value problem:

ξ̇ = h (t, ξ) , ξ (0) = ξ0 ∈ Ωξ (2)

with h : ℜ+ × Ωξ → ℜn where Ωξ ⊂ ℜn is a non-empty
open set.

Definition 1: [22] A solution ξ (t) of the initial value
problem (2) is maximal if it has no proper right extension
that is also a solution of (2).

As an example, consider the initial value problem ξ̇ = ξ2,
ξ (0) = 1, whose solution is ξ (t) = 1

1−t , ∀t ∈ [0, 1). The
solution is maximal since it cannot be defined for t > 1.
Stated otherwise, there is no proper extension of ξ (t) to the
right of t = 1 that is also a solution of the original initial
value problem.

Theorem 1: [22] Consider the initial value problem (2).
Assume that h (t, ξ) is: a) locally Lipschitz on ξ for almost
all t ∈ ℜ+, b) piecewise continuous on t for each fixed
ξ ∈ Ωξ and c) locally integrable on t for each fixed ξ ∈ Ωξ.
Then, there exists a maximal solution ξ (t) of (2) on the
time interval [0, τmax) with τmax > 0 such that ξ (t) ∈ Ωξ,
∀t ∈ [0, τmax).

Proposition 1: [22] Assume that the hypotheses of Theo-
rem 1 hold. For a maximal solution ξ (t) on the time interval
[0, τmax) with τmax < ∞ and for any compact set Ω′

ξ

⊂ Ωξ there exists a time instant t′ ∈ [0, τmax) such that
ξ (t′) /∈ Ω′

ξ.

III. PROBLEM FORMULATION

Consider two mobile manipulators in a leader-follower
scheme handling a rigidly grasped object as shown in Fig.
4. We assume that each robot has at least 6 DOFs and
is fully actuated. Only the leading robot is aware of the
object’s desired trajectory profile xdl (t), whereas the fol-
lower estimate it by xdf (t) via its own state measurements.
Owing to the strict communication constraints (i.e., no on-
line communication is permitted), the problem becomes
very challenging, hence we inevitably relax the asymptotic
tracking requirements down to ultimate boundedness of the
tracking errors. Moreover, we assume that measurements
of position, velocity and interaction forces/torques with the
object are available for each robot exclusively. Additionally,
the geometric and inertial parameters of the mobile manipu-
lators as well as of the grasped object are considered known.
Finally, the only information, allowed to be exchanged,
concerns the values of a few constant control parameters
that need to be transmitted off-line to the follower.

A. Kinematics

We denote the leader’s and follower’s task space (end
effector) coordinates with respect to an inertial frame {I} by
xi =

[
xT
ip, x

T
ir

]T , i ∈ {l, f}, where xip and xir correspond
to the end-effector’s position and orientation respectively.
Similarly, we denote the object’s coordinates with respect to
{I} by xo =

[
xT
op, x

T
or

]T . Let also qi, i ∈ {l, f} be the joint
space variables. Invoking the forward kinematics equations,

Fig. 4. Two mobile manupulators handling a rigidly grasped object.

we express the task space variables as a nonlinear function
of the joint variables as follows:

xi = fi (qi) , i ∈ {l, f} . (3)

Differentiating the above equation, we obtain:

ẋi = Ji (qi) q̇i, i ∈ {l, f} (4)

where Ji (qi) = ∂fi(qi)
∂qi

is the Jacobian matrix. Moreover,
since the contacts are considered rigid, the following rela-
tions hold:

xip = xop + li

xir = xor + ai

}
, i ∈ {l, f} (5)

where the vectors li = [lix, liy, liz]
T and ai = [aix, aiy, aiz]

T

represent the relation between the object’s and the end
effector’s frames (see Fig. 4). Since the object’s geometric
parameters are considered known, each robot may compute
the object’s coordinates via (5). Furthermore, we establish a
velocity relation by differentiating (5) as follows:

ẋip = ẋop + ẋir × li

ẋir = ẋor

or in a compact matrix form:

ẋi = Joiẋo =

[
I3×3 −Li

03×3 I3×3

]
ẋo, i ∈ {l, f} (6)

where Joi is the Jacobian from the end-effector to the object’s
center of mass and

Li =

 0 −liz liy
liz 0 −lix
−liy lix 0


is the cross-product matrix. Notice that since the end-effector
and the object are rigidly connected, the aforementioned Ja-
cobian has always full rank and hence a well defined inverse
J−1
oi . Thus, each robot may compute the velocity of the

object’s center of mass through (6). Finally, differentiating
with respect to time once more, we establish the acceleration
relation:

ẍi = J̇oiẋo + Joiẍo, i ∈ {l, f} . (7)



B. Dynamics

The dynamic model in terms of task space coordinates,
for a single robot, is described by:

Mi (qi) ẍi+Ci (q̇i, qi) ẋi+Gi (qi) = Ui+Fi, i ∈ {l, f} (8)

where Mi is the positive definite inertial matrix, Ci is a
matrix representing Coriolis and centrifugal forces and Gi

represents gravitational forces. The vector Fi, i ∈ {l, f}
represents the interaction force/torque exerted at the end
effector by the object and Ui, i ∈ {l, f} denotes the input
task space wrench. The relation between the joint torques τi
and the task space wrench is given by:

τi = Ji
T
Ui +

(
I − JT

i Ji
T
)
τin, i ∈ {l, f} (9)

where Ji is the generalized inverse that is consistent with
the equations of motion of the manipulator and its end-
effector [6]. The vector τin does not contribute to the end-
effector’s wrench and can be regulated independently to
achieve secondary goals (e.g., manipulability increase or
collision avoidance).

Invoking the kinematic relations (5)-(7), we may express
the aforementioned dynamic models (8) with respect to the
object’s coordinates as follows:

Moi (qi) ẍo+Coi (q̇i, qi) ẋo+Goi (qi) = JT
oiUi+JT

oiFi (10)

for i ∈ {l, f}, where

Moi (qi) = JT
oiMi (qi) Joi

Coi (q̇i, qi) = JT
oi(Ci (q̇i, qi) Joi +Mi (qi) J̇oi)

Goi (qi) = JT
oiGi (qi) .

Similarly, the dynamic equation of the object is given by:

Mo (xo) ẍo + Co (ẋo, xo) ẋo +Go (xo) = Fo (11)

Assuming that no other external forces are exerted on the
object, the total force Fo equals to Fo = −JT

olFl−JT
ofFf =

−GF , where

G =
[
JT
ol, J

T
of

]
(12)

denotes the grasp matrix of the overall configuration and

F =
[
FT
l , FT

f

]T
.

Remark 1: Wrenches that lie on the null space of the
grasp matrix G do not contribute to the object dynamics.
Therefore, we may incorporate in the control scheme an
extra component Fint,i =

(
I −G#G

)
F̂int, i ∈ {l, f}, that

belongs to the null space of G, in order to regulate the steady-
state internal forces, where G# is the right pseudo-inverse
of G. Notice that since li, i ∈ {l, f} are considered known
to both agents, if F̂int is chosen constant, no communication
is needed during task execution in order to compute G, G#

and Fint,i.

IV. CONTROL METHODOLOGY

A. Impedance Control Scheme

The inertial and geometric parameters of both mobile
manipulators and the object are considered known, hence a
feedback linearization scheme may be applied in each robot.
In this respect, we select the following control inputs:

Ui = −Fi + J−T
oi (MoiVi + Coiẋo +Goi) , i ∈ {l, f} (13)

to cancel the nonlinearities of (10). Moreover, the auxiliary
inputs Vi, i ∈ {l, f} are chosen as:

Vi = ẍcmd,i +M−1
o JT

oi (Fi − Fdi) , i ∈ {l, f} (14)

imposing thus the desired impedance behavior1:

ẍo = ẍcmd,i +M−1
o JT

oi (Fi − Fdi)

where Fdi, i ∈ {l, f} denote the desired robot/object inter-
action wrench:

Fdi = Fint,i−J−T
oi ci (Coẋo +Go +Moẍcmd,i) , i ∈ {l, f} .

(15)
Notice that the aforementioned selection cancels the object’s
nonlinearities, ensures adequate internal forces via Fint,i

(see Remark 1) and achieves the motion control objec-
tives through the appropriate design of ẍcmd,i, that will
be presented in the sequel. Moreover, the load distribution
coefficients ci, i ∈ {l, f}, that are subject to the following
design constraints:

cl + cf = 1

cl, cf > 0
(16)

are assigned values according to the payload capabilities
of the mobile manipulators (e.g., in case of heterogeneous
robots) thus introducing a load sharing attribute as opposed
to previous related work [14]–[16]2. Finally, the commanded
acceleration signal, that is responsible for the tracking ob-
jective, is designed as follows:

ẍcmd,i = ẍdi −Di (ẋo − ẋdi)−Ki (xo − xdi) , i ∈ {l, f}
(17)

where Di, Ki, i ∈ {l, f} are diagonal positive definite
control gain matrices.

As stated above, xdl (t) and xdf (t) stand for the actual
object’s desired trajectory profile to be implemented by the
leader, and its estimate at the follower’s side respectively.
Hence, substituting (13)-(17) in (10), we obtain the leader’s
and follower’s tracking error dynamics:

∆ẍi +Di∆ẋi +Ki∆xi = M−1
o JT

oi (Fi − Fdi) , i ∈ {l, f}
(18)

where ∆xi = xo − xdi, i ∈ {l, f}. Selecting Dl = Df =
D and Kl = Kf = K as well as adding the object’s
dynamics (11) in (18), we get:

∆ẍ+D∆ẋ+K∆x = 0 (19)

1The desired impedance behaviour can be easily verified by substituting
(13) and (14) in (10).

2In these works, the object’s dynamics were neglected.



where ∆x = xo − (cl+1)xdl+(cf+1)xdf

3 . In this way,
the positive definiteness of the control gain matrices
D, K renders the aforementioned system asymptotically
stable. Therefore, ∆x and ∆ẋ converge exponentially
to the origin (i.e., ∆x

(
∆x (0) ,∆ẋ (0) ; t

) exp→ 0 and
∆ẋ
(
∆x (0) ,∆ẋ (0) ; t

) exp→ 0). Finally, it can be easily
verified that the object’s trajectory suffices:

xo (t) =
(cl+1)xdl(t)+(cf+1)xdf (t)

3

+∆x
(
∆x (0) ,∆ẋ (0) ; t

)
. (20)

B. Estimation law

The follower is not aware of the object’s actual desired
trajectory profile xdl (t). However, even though explicit
communication between the leader and the follower is not
permitted, the follower may estimate the error xdl (t)−xdf (t)

by measuring the term 3
xo(t)−xdf (t)

cl+1 , which is easily obtained
via (20), after a few trivial algebraic manipulations, and
the fact that ∆x

(
∆x (0) ,∆ẋ (0) ; t

) exp→ 0. Moreover, the
estimator should also compensate for acceleration residuals,
since acceleration measurements are not available. In this
sense, we sacrifice asymptotic stability by adopting a robust
prescribed performance estimator that guarantees ultimate
boundedness of the estimation error xdl (t) − xdf (t) and
consequently ultimate boundedness of the tracking error
xo (t)− xdf (t).

Let us define the error e (t) = 3
xo(t)−xdf (t)

cl+1 . The expres-
sion of prescribed performance for each element of e (t) =
[e1 (t) , e2 (t) , . . . ]

T is given by the following inequalities:

−ρj (t) < ej (t) < ρj (t) , ∀t ≥ 0 (21)

where ρj (t) denotes the corresponding performance func-
tion. As stated in Subsection II-A, a candidate performance
function would be:

ρj(t) = (ρj,0 − ρj,∞)e−st + ρj,∞

where the constant s dictates the exponential convergence
rate, ρj,∞ denotes the ultimate bound and ρj,0 is chosen
to satisfy ρjo > |ej (0)|. Hence, following the prescribed
performance control technique [20], the estimation law is
designed as follows:

ẋdfj = kj ln

(
1+

ej(t)

ρj(t)

1−
ej(t)

ρj(t)

)
, kj > 0 (22)

from which the follower’s estimate xdfj (t) is calculated
via a simple integration. Moreover, differentiating (22) with
respect to time, we acquire the desired acceleration signal:

ẍdfj =
2kj

1−
(

ej(t)

ρj(t)

)2

ėj(t)ρj(t)−ej(t)ρ̇j(t)

ρ2
j (t)

(23)

which is bounded as long as the performance bounds (21)
are met.

C. Stability Analysis
The main results of this work are summarized as follows.
Theorem 2: Consider the error e (t) = [e1 (t) , e2 (t) ,

. . . ]
T

= 3
xo(t)−xdf (t)

cl+1 , where cl is the leader’s load dis-
tribution coefficient and xo (t), xdf (t) denote the object’s
actual position/orientation and desired trajectory estimate at
the follower’s side respectively. Given a smooth and bounded
desired trajectory xdl (t) with bounded derivatives as well
as some appropriately selected performance functions ρj (t)
satisfying |ej (0)| < ρj (0) and incorporating the desired
transient and steady state performance specifications, the
estimation law (22) guarantees that |ej (t)| < ρj (t) , ∀t ≥ 0.

Proof: The proof follows identical arguments for each
element of e (t). Hence, let us define the normalized error:

ξj =
ej(t)
ρj(t)

. (24)

The estimation law (22) may be rewritten as a function of
the normalized error ξj as follows:

ẋdfj = kj ln
(

1+ξj
1−ξj

)
. (25)

Differentiating ξj with respect to time and substituting (20)
and (25), we obtain:

ξ̇j = hj (t, ξj)

=
ẋdlj(t)+3

∆ẋj(∆xj(0),∆ẋj(0);t)
cl+1 −kj ln

(
1+ξj
1−ξj

)
ρj(t)

− ξj
ρ̇j(t)
ρj(t)

.
(26)

We also define the non-empty and open set Ωξj = (−1, 1).
In the sequel, we shall prove that ξj (t) never escapes a
compact subset of Ωξj and thus the performance bounds (21)
are met. The following analysis is divided in two phases.
First, we show that a maximal solution exists, such that
ξj (t) ∈ Ωξj ∀t ∈ [0, τmax), and subsequently we prove by
contradiction to Proposition 1 stated in Subsection II-B that
τmax is extended to ∞.

Phase A: Since |ej (0)| < ρj (0), we conclude that
ξj (0) ∈ Ωξj . Additionally, owing to the smoothness of: a)
the leader’s desired trajectory, b) the exponentially decreas-
ing term ∆ẋj

(
∆xj (0) ,∆ẋj (0) ; t

)
and c) the proposed

estimation scheme (22) over Ωξj , the function hj (t, ξj) is
continuous for all t ≥ 0 and ξj ∈ Ωξj . Therefore, the
hypotheses of Theorem 1 stated in Subsection II-B hold and
the existence of a maximal solution ξj (t) of (26) on a time
interval [0, τmax) such that ξj (t) ∈ Ωξj , ∀t ∈ [0, τmax) is
ensured.

Phase B: Notice that the transformed error signal:

εj (t) = ln
(

1+ξj(t)
1−ξj(t)

)
(27)

is well defined for all t ∈ [0, τmax). Hence, consider the
positive definite and radially unbounded function Vj =

1
2ε

2
j .

Differentiating with respect to time and substituting (26), we
obtain:

V̇j =
2εj

(1−ξ2j )ρj(t)

(
ẋdlj (t) + 3

∆ẋj(∆xj(0),∆ẋj(0);t)
cl+1

− kjεj − ξj ρ̇j (t)
)

(28)



Since ∆ẋj

(
∆xj (0) ,∆ẋj (0) ; t

)
is exponentially decreas-

ing, ξj ∈ Ωξj and ẋdlj (t) , ρ̇j (t) are bounded either by
assumption or by construction, we conclude that:∣∣∣∣ẋdlj (t) + 3

∆ẋj(∆xj(0),∆ẋj(0);t)
cl+1 + ξj ρ̇j (t)

∣∣∣∣ ≤ Ūj

for an unknown positive constant Ūj . Moreover, 1
1−ξ2j

> 1,
∀ξj ∈ Ωξj and ρj (t) > 0, ∀t ≥ 0. Hence, we conclude that
V̇j < 0 when |εj (t)| > Ūj

kj
and consequently that:

|εj (t)| ≤ ε̄j = max
{
|εj (0)| , Ūj

kj

}
, ∀t ∈ [0, τmax) . (29)

Thus, invoking the inverse of (27), we get:

−1 < e−ε̄j−1
e−ε̄j+1

= ξ
j
≤ ξj (t) ≤ ξj =

eε̄j−1
eε̄j+1

< 1. (30)

Therefore, ξj(t) ∈ Ω
′

ξj
=
[
ξ
j
, ξj

]
, ∀t ∈ [0, τmax), which

is a nonempty and compact subset of Ωξj . Hence, assuming
τmax < ∞ and since Ω

′

ξj
⊂ Ωξj , Proposition 1 in Subsection

II-B dictates the existence of a time instant t
′ ∈ [0, τmax)

such that ξj

(
t
′
)

/∈ Ω
′

ξj
, which is a clear contradiction.

Therefore, τmax is extended to ∞. As a result, all closed loop
signals remain bounded and moreover ξj (t) ∈ Ω

′

ξj
⊂ Ωξj ,

∀t ≥ 0. Finally, from (24) and (30), we conclude that:

−ρj (t) < ξ
j
ρj (t) ≤ ej (t) ≤ ξjρj (t) < ρj (t)

for all t ≥ 0, which completes the proof.
Corollary 1: The follower’s estimation error is ultimately

bounded.
Proof: Notice from Theorem 2 and (20) that:

|ej (t)| =
∣∣∣∣xdlj (t)− xdfj (t) +

3∆xj(∆xj(0),∆ẋj(0);t)
cl+1

∣∣∣∣ < ρj (t)

which leads to:

|xdlj (t)− xdfj (t)| < ρj (t)+
3|∆xj(∆xj(0),∆ẋj(0);t)|

cl+1 . (31)

Therefore, the estimation error |xdlj (t)− xdfj (t)| is ulti-
mately bounded by ρj,∞ ≡ limt→∞ ρj (t) owing to the fact
that ∆xj

(
∆xj (0) ,∆ẋj (0) ; t

) exp→ 0.
Corollary 2: The object’s trajectory tracking error is ulti-

mately bounded.
Proof: Notice from (20) that:

|xoj (t)− xdlj (t)| =
∣∣∣(xdfj (t)− xdlj (t))

cf+1
3

+∆xj

(
∆xj (0) ,∆ẋj (0) ; t

) ∣∣∣
<

cf+1
3 |xdlj (t)− xdfj (t)|

+
∣∣∆xj

(
∆xj (0) ,∆ẋj (0) ; t

)∣∣ .
Therefore, invoking Corollary 1, we conclude that the
tracking error |xoj (t)− xdlj (t)| is ultimately bounded by
cf+1

3 ρj,∞.
Remark 2: The aforementioned ultimate bounds depend

directly on ρj,∞, which can be set arbitrarily small to a
value reflecting the resolution of the measurement device,
thus achieving practical convergence of the estimation and
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Fig. 5. Two mobile robots handling an object in 1-D motion. The leader
is aware of the object’s desired trajectory whereas the follower estimates it
via (22). The control forces Ul, Uf and the interaction forces Fl, Ff are
depicted with arrows.

tracking errors to zero. Moreover, the transient response
depends on both the convergence rate of the performance
functions ρj (t), that is directly affected by the parameter s,
as well as the choice of the impedance control gain matrices
D, K in (19).

Remark 3: This method does not utilize any explicit on-
line communication. The only information needed on-line
to implement the developed control schemes concerns the
measurements acquired exclusively by each robot’s sensor
suite (i.e., force, position and velocity). Some constant
parameters, though, should be transmitted off-line, namely
the gain matrices D, K, the load distribution coefficients
ci, i ∈ {l, f}, the internal force F̂int and the contact
points relative to the object. Nevertheless, this amount of
information is not significant.

Remark 4: This estimation scheme is more robust than
previous works presented in [14]–[16], against desired trajec-
tory profiles with non-zero acceleration. The only necessary
condition concerns the smoothness and boundedness of the
desired trajectory. In this sense, our method guarantees
bounded closed loop signals and practical asymptotic sta-
bilization of the estimation and tracking errors.

V. SIMULATIONS

We consider a simple 1-D scenario with two mobile robots
in a leader-follower scheme handling an object (see Fig. 5).
The leader is assigned the desired sinusoidal trajectory and
the follower estimates it via the proposed algorithm (22),
by simply observing the motion of the object and without
communicating explicitly with the leader. A comparative
simulation study was carried out between the proposed
control scheme and the one presented in [14], assuming
that the object load is equally shared to both agents, i.e.,
cl = cf = 0.5. Moreover, in order to examine the robustness
of the closed loop system, we considered a realistic case,
where the model parameters and the force measurements
adopted in both control schemes deviate up to 5% from their
actual values. Finally, the damping and stiffness coefficients
were selected as D = 2, K = 1, the parameters of the
proposed estimator and the one presented in [14] were chosen
as k1 = 0.5, ρ1(t) = 0.49e−t + 0.01 and a = 2, b = 1
respectively and Fint,i, i ∈ {l, f} were set to zero.

The results of the comparative simulation study are given
in Figs. 6-9. Notice that both the estimation error (Fig. 6)
and the tracking error (Fig. 7) of the proposed scheme prac-
tically converge to zero without requesting high control input
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Fig. 6. The estimation errors along with the performance bounds imposed
by the proposed method.

signals (see Fig. 8) or yielding excessive forces between
the object and the agents (see Fig. 9). On the contrary, the
method proposed in [14] was unable to control the system
satisfactorily and yielded high control signals and interaction
forces owing to the non-constant acceleration profile of the
desired trajectory, proving thus the superiority of the pro-
posed method. Finally, the accompanying video demonstrates
the aforementioned comparative simulation study as well
as a simulated paradigm of the proposed method with two
KUKA Youbots manipulating an object in a 3-D motion (see
Fig. 10), carried out in the Virtual Robot Experimentation
Platform (V-REP).

VI. CONCLUSION

This paper presented a leader-follower scenario for co-
operative object manipulation under implicit communica-
tion. We managed to completely avoid tedious explicit on-
line communication. The only information exchanged off-
line concerned the values of a few constant parameters.
The leader imposed the object’s desired trajectory profile
via an impedance scheme. The follower adopted a similar
impedance law with identical control gains and a pre-
scribed performance estimator to evaluate the object’s de-
sired trajectory, that was unaware of. The achieved ultimate
boundedness of the estimation errors resulted in ultimate
boundedness of the tracking errors, with bounds depending
exclusively on the choice of certain designer-specified perfor-
mance parameters, thus enabling practical stabilization. We
extended the related literature by: i) introducing the object’s
dynamics, ii) incorporating a load sharing technique and iii)
robustifying the estimation process against any smooth and
bounded object’s desired trajectory. Future research efforts
will be devoted towards extending the current methodology
in multiple cooperating robots and considering uncertainties
in the dynamic model of both the mobile manipulators and
the grasped object.
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Fig. 7. The tracking errors.
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