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Abstract— Cooperative robotics is a trending topic nowadays
as it makes possible a number of tasks that cannot be performed
by individual robots, such as heavy payload transportation
and agile manipulation. In this work, we address the problem
of cooperative transportation by heterogeneous, manipulator-
endowed robots. Specifically, we consider a generic number of
robotic agents simultaneously grasping an object, which is to be
transported to a prescribed set point while avoiding obstacles.
The procedure is based on a decentralized leader-follower
Model Predictive Control scheme, where a designated leader
agent is responsible for generating a trajectory compatible with
its dynamics, and the followers must compute a trajectory for
their own manipulators that aims at minimizing the internal
forces and torques that might be applied to the object by
the different grippers. The Model Predictive Control approach
appears to be well suited to solve such a problem, because
it provides both a control law and a technique to generate
trajectories, which can be shared among the agents. The
proposed algorithm is implemented using a system comprised
of a ground and an aerial robot, both in the robotic Gazebo
simulator as well as in experiments with real robots, where the
methodological approach is assessed and the controller design
is shown to be effective for the cooperative transportation task.

I. INTRODUCTION

Multi-robot systems is a trending and pervasive topic in
academic and industrial research, due to the strong potential
impact that affects many application fields [1], [2]. For in-
stance, cooperative transportation or manipulation of large or
heavy objects [3], [4], inspection and servicing of infrastruc-
tures [5], monitoring and mapping of the environment [6],
[3], search and rescue operations [7], are just some of the
real world applications that can benefit more by these studies
and the related technological developments.

Strong results have been demonstrated on the control
of single and multiple robotic systems [8], [9] and, more
recently, a lot of effort has been made to allow physical inter-
action among these systems and with the environment [10].
Robustness in the estimation and regulation actions for non-
ideal actual scenarios and in presence of environment/agent
constraints has been also considered [11], [12].

Heterogeneous robots with different capabilities (e.g.,
sensing, actuation) are an important aspect of multi-robot
systems, since they offer greater flexibility and versatility
in complex scenarios [13]. This paper considers the prob-
lem of cooperative object transportation via aerial-ground
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Fig. 1: Two heterogeneous robots transporting an object (in
the Gazebo simulation environment).

manipulator-endowed robots, which can be beneficial in
cases where the different sensing and operating workspaces
of the two robotic types might be needed.

Regarding the related literature, [14] considers the coop-
erative object transportation by aerial-ground mobile robots,
limited to a coplanar case. Collaborative task control with
heterogeneous robots has been also studied in [15], where a
team of ground robots is used to stabilize the aerial vehicle,
and in [16] where the interaction between a multi-rotor and
an industrial manipulator is considered. Further tests for
aerial ground manipulation tasks have been made in [17],
where the ground vehicle is tasked to deploy the object to a
position and the UAV adjusts its attitude to adapt to it.

In the context of this research, the Model Predictive
Control approach in its non-linear form (NMPC) appears to
be the suitable and effective framework to tackle this study,
since it can be formulated as a constrained optimization prob-
lem subject to the system dynamics [18] and that accounts
also for model uncertainties (e.g. [19], [20]). In [20], in
particular, the problem of cooperative manipulation is solved
in a non-scalable centralized way by deriving a coupled
model of the agents involved in the task, with a decentralized
extension being developed in [21]; These solutions, however,
do not explicitly consider heterogeneous robots and rely on
the strong assumption of rigid grasping robot-object points.

This paper extends the aforementioned works by propos-
ing a multi-robot algorithm for the cooperative object trans-
portation with collision avoidance by heterogeneous robots
deriving a novel approach to address the problem, which
increases robustness to non-idealities and allows the defi-
nition of a more general framework compared to the cited
literature, as well as relevant experimental results. The devel-
oped scheme is decentralized, since each robot computes its
own MPC control signals via a leader-follower coordination,
inspired by [21]. Intuitively, a leader robot generates the



desired trajectory of the grasped object, and the rest of the
robots comply via an internal force minimization problem,
without assuming rigid grasping points. The proposed algo-
rithm is implemented and tested on a system of a ground
and aerial robot (see Fig. 1 for an illustrative example), both
on the robotic simulator Gazebo [22] and in real laboratory
experiments.

II. PRELIMINARY NOTATION AND MODELS

We consider a generic setup where N robotic agents are
grasping an object. The robots are composed of a moving
base and a robotic manipulator, which can have an arbitrary
number of degrees of freedom. The base can be either a
ground vehicle, e.g. fully actuated with holonomic wheels
and 3 d.o.f., or an unmanned aerial vehicle (UAV). The aim
of the agents is to transport the object along a collision-
free reference trajectory in a decentralized manner avoiding
internal forces exerted by the manipulators.

In the remainder of this paper, letters i, j, h, k, `, are
used as indexes; scalar parameters and variables are de-
noted by nonbold lowercase letters, while vector and matrix
quantities are denoted, respectively, by bold lowercase and
bold uppercase symbols. Rotation matrices are defined in the
Special Orthogonal group SO(3), while [ · ]× indicates the
skew symmetric matrix associated to the argument vector.
Given two frames {a}, {b}, as well as a world frame {W},
we denote by T ab and Tb the affine transformation from
frame {a} to frame {b} and from {W} to {b}, respectively.
Similarly, pa ∈ R3 and Ra ∈ SO(3) are the position and
rotation matrix, respectively, of frame {a} with respect to
{W}. Frames {v, i} and {e, i} are the vehicle and end-
effector frame of agent i.

Let qi ∈ Rni be the vector of joint variables describing
the configuration of each manipulator, with ni being the
corresponding number of degrees of freedom. The first-order
kinematics of the agents can be written as follows:

Agent i:



ṗe,i = Ap,iuv,i + JP,i(qi)uq,i
ωe,i = Aω,iuω,i + JO,i(qi)uq,i
Ṙe,i =

[
ωe,i

]
×Re,i

q̇i = uq,i
ṗv,i = Apuv,i
Ṙv,i =

[
Aωuω,i

]
×Rv,i

(1)

where:
• pv,i, pe,i(pv,i, qi) ∈ R3 are the position of the base

and the end-effector of the i-th agent, respectively.
• Rv,i, Rei(Rv,i, qi) ∈ SO(3) refer to the corresponding

rotation matrices relative to a fixed world frame {W}.
• uv,i, uω,i ∈ R3 are the linear and angular input

velocities applied at the base expressed in the local
frame.

• uq,i are the joint velocities, which are assumed to be
the manipulator’s control input.

• Ap,i, Aω,i ∈ R3×3 allow to model constraints on
the input velocity (e.g. reference frame transform or
nonholonomic constraints)

Fig. 2: Elastic joints object to model non-ideal rigidity

• ωe,i is the angular velocity of the end effector in the
world frame.

• JP,i(pv,i, qi), JO,i(Rv,i, qi) ∈ R3×ni are, respec-
tively, the position and orientation Jacobian matrices,
which depend on the structure of the manipulator.

The full state and input are defined as: xi =
[pe,i re,i pv,i qi]

> ∈ Rni , ui = [uq,i uv,i uω,i]
> ∈ Rpi

where the lower case re,i refers to a vector representation
of the rotation matrix Re,i, s.t. [Re,i](h,k) = [re,i](3k+h).
We can then rewrite (1) with in compact form as ẋi =
fAi

(xi)ui, where fAi
(xi) collects all the control-affine

terms and can be easily inferred by (1).

III. COOPERATIVE MANIPULATION WITH MPC

In this section, we propose a decentralized algorithm for
cooperative manipulation with obstacle collision avoidance.
The objective is formalized as follows. Let {o} be a frame
attached to the object’s. We consider the reference trajectory
that the object is desired to follow, To,ref (t) ∈ SE(3), t > 0,
where SE(3) = R3×SO(3). The goal is to find a control law
for each agent such that the object is transported along the
trajectory, while ensuring collision avoidance. To avoid the
object being detached from the grasps or breaking, we also
aim at minimizing the internal forces and torques applied to
the object by the agents.

We assume that, at time t = 0, the agents are still and
already grasping the object, defining an initial condition
for the relative transforms from object frame to each end
effector’s T oe,i(0), that, for t = 0 only, we assume that they
can measure. Also, we assume that they can communicate.

The robotic agents are heterogeneous and, especially in the
case of aerial vehicles, they can be characterized by a low
number of degrees of freedom. This can lead to situations
where a perfect compliance of the grasps is impossible, e.g.,
an underactuated UAV that needs to roll-pitch to generate
horizontal forces and no possibility to compensate.

To allow the algorithm to be robust to such non-idealities,
we first need to theoretically allow deviations from rigidity.
To this aim, we consider the object gripper joints as elastic,
as depicted in Fig. 2, with the rest condition being defined
by T oe,i(0), i = 1, . . . , N . This can either model a case where
gripper joints are actually elastic, or a case where the grasps
are rigid and the object is elastic itself. We denote by fi, τi,
the forces and torques applied from agent i to the respective
grasping point. In view of the elastic joint model, a part of
these forces/torques will result in actual object motion while
the rest will be absorbed by the imaginary elastic spring.



We denote the latter by fi,o, τi,o, which, since the initial
condition at t = 0 is the rest condition, satisfy∥∥∥∥∥

[
fi,o(t)
τi,o(t)

]∥∥∥∥∥ = κi dist
(
T oe,i(t),T

o
e,i(0)

)
(2)

where dist(Ta,Tb) := ‖pa−pb‖+β‖R>aRb−I‖F , β ∈ R,
κi > 0 is a positive constant depending on the initial condi-
tion and physical properties of the object and the grippers,
and ‖ ·‖F is the Frobenius norm. The total forces/torques fo
and τ applied to the object are the sum of the contributions of
the agents. We define as internal forces all the components
that cancel out in the sum but create tension/compression
stresses on the object. Given all the possible forces/torques
applied at the object that produce the same acceleration
for the object center of mass, we aim at outputing those
with minimal internal forces that also minimize the total
norm

∑N
i=1 ‖[fi,o(t) τi,o(t)]‖2, since internal forces do

not contribute in the net force but increase the norm sum.
Assumption (2) then allows to translate this problem into the
minimization of the corresponding displacement T oe,i(t).

In particular, we address the prescribed objectives by
resorting to a nonlinear MPC formulation: at each time t,
given the state measure xi(t), solve the following Finite
Horizon Optimal Control Problem (FHOCP) [18]:

argmin
û1(·),...,ûN (·)

∫ t+T

t

{
dist(T̂o(τ), T̂o,ref (τ))

+

N∑
i=1

dist(T̂ oe,i(τ), T̂
o
e,i(0))

+

N∑
i=1

ûi(τ)
>Wuûi(τ)

}
dτ

subject to: ˙̂xi = fAi
(x̂i)ûi, i = 1, . . . , N

x̂i(t) = xi(t)

x̂i(τ) ∈ Xi, ûi(τ) ∈ Ui τ ∈ [t, t+ T ]

(3)

where the hat terms ·̂ denote the predicted variables, over
a horizon T . The first integral term is the trajectory error,
the second accounts for the minimization of internal forces,
Wu is a matrix that weighs a penalty on the control effort,
providing stability [18], T is the finite time window (MPC
horizon) and Xi, Ui are the admissible sets for state and
input values for each agent, that can account for singularity-
avoidance and actuation limits.

The problem can be approached in a decentralized way by
resorting to a leader-follower architecture, as follows.

A. Leader and Follower Coordination

At the design stage, one agent is designed to be the leader.
This choice has no theoretical limitations and it is driven by
experimental evaluations. The leader computes the trajectory
for its end effector such that the object tracks the prescribed
trajectory, accounting for the object trajectory error as if the
follower agents could not alter its behavior. In other words,
the forces applied to the object along the desired trajectory

are produced by the leader and the action by the followers
is then obtained to minimize the internal forces.

Note that: To(t) = Te,`(t)T
e,`
o (t), with ` ∈ {1, . . . , N}

being the leader index. Te,`(t) is a quantity that can be
controlled, and it is accounted by (1); T e,`o (t), on the other
hand, is not controllable since it is a direct result of the forces
applied at the object CoM, due to the elasticity assumption,
that are not included in the model. However, if the overall
dynamics is sufficiently slow and the elasticity is sufficiently
low, it is reasonable to assume that, in absence of other forces
and torques, the displacement is bounded over time, i.e.,

dist(T oe,`(t),T
o
e,`(0)) < ε` (4)

for a positive constant ε`. Without the ability to make
predictions on T oe,`, which is needed to estimate the object
position given the end effector prediction, we will choose as
estimate T̂ oe,`(t) = T

o
e,`(0), ∀t ∈ [0, T ], satisfying (4). Due to

this assumption, agents are not needed to measure the object
frame for t > 0. Then, the leader aims at minimizing the
cost function:

J`(x̂`(·),u`(·) =
∫ t+T

t

dist(T̂e,`(τ), T̂e,`,ref (t)) dτ (5)

through the following FHOCP:

argmin
u`(·)

J`(x`(·),u`(·)) +
∫ t+T

t

u>` Wuu` dτ

subject to: ˙̂x` = fA`
(x̂`)u`

x̂`(t) = x`(t)

x̂`(τ) ∈ X`, u`(τ) ∈ U`, τ ∈ [t, t+ T ]

(6)

The solution to (6) u∗` (τ), for τ ∈ [t, t + T ], defines a
predicted state trajectory x∗` (τ) that is optimal with respect
to the reference trajectory for the object. In particular, from
the first 12 components of the state vector the predicted
trajectory for the end effector pose can be extracted, which
we will refer to as T ∗e,`(·).

Conversely to the leader, the followers have to ensure that
the trajectory planned by the leader is attained by adapting
their system states and output forces/torques. The role of
the followers is to minimize the internal forces, which is
accomplished, due to (2), by minimizing the second term in
(3). For j 6= `, define T̂ oe,j = T

o
e,j(0), and then note that, by

left-multiplication with To(t) and using (4), we obtain:

dist(T oe,j(t),T
o
e,j(0)) = dist(To(t)T

o
e,j(t),To(t)T̂

o
e,j)

= dist(Te,j(t),Te,`(t)(T̂
o
e,`)
−1T̂ oe,j) + εj

(7)

where εj is an error due to the approximations of (4). This
means that T oe,j , for the followers, is controllable up to εj . In
this way we explicitly express the displacement of the grasps
from the rest condition in terms of controllable quantities. In
view of (7) and given T ∗e,`(·), which is the leader trajectory
that minimizes (6), each follower agent j aims at minimizing
the following cost function:

Jj(x̂j(·),uj(·)) =
∫ t+T

t

dist(T̂e,j(τ), T̂e,j,ref (τ)) dτ (8)



where Te,j,ref (t) = T ∗e,`(t)(T̂
o
e,`)
−1T̂ oe,j is a transformation

of the trajectory predicted from the leader. This is achieved,
by iteratively solving the following FHOCP problem:

argmin
uj(·)

Jj(x̂j(·), ûj(·)) +
∫ t+T

t

û>j Wuûj dτ

subject to: ˙̂xj = fAj (x̂`)ûj

x̂j(t) = xj(t)

x̂j(τ) ∈ Xj , ûj(τ) ∈ Uj , τ ∈ [t, t+ T ]

(9)

B. Obstacle avoidance

While collision avoidance could be implemented in the
MPC constraints, the optimal solution is in most cases on
the boundary of the available set and then if for some error
the state falls outside this set the problem becomes infeasible.
Although this could be solved with slack variables, we
propose a different approach that is to be particularly con-
venient in an experimental environment: this consists in the
introduction of an additional term in the cost function, which
avoids increasing the number of optimization variables.

Mobile robots are extended objects, so we consider a set
of K points defined on the robot as a function of the state
pi,k(xi) ∈ R3, e.g. pv , pe,i, directly extracted from the state,
or any link origin pj,i(xi), defined according the forward
kinematics. A set of M obstacles is defined by their positions
om ∈ R3 and a radius dm ∈ R defining the minimum
distance avoiding collision. We then define:

Ji,o(xi)=

K∑
k=1

M∑
m=1

Ci,k,me
−λi,k,m(‖pi,k(xi)−om‖+dm) (10)

where Ci,k,m is the desired cost value on the boundary of
the sphere defined by (om, dm) and λi,k,m determines the
decay rate of the cost. Note that due to the exponential, the
cost is negligible outside a radius defined by λi,k,m. Finally,
in (6) and (9) we replace Ji with Jfull = Ji + Ji,o, and the
same algorithm apply.

IV. SIMULATIONS AND EXPERIMENTS

The proposed framework is validated through a realistic
simulation (in Gazebo environment) and experimental results
with 2 heterogeneous robots, where the continuous time
formulation is discretized with a multiple shooting method.
A common implementation for both the simulation and the
experiment has been realized via a ROS network, that allows
a common input-output interface, so that the same algorithm
runs the on the two environment, as illustrated in Fig. 3.

The used heterogeneous robots consist of one ground
and one aerial vehicles, as shown in Fig. 5. The ground
robot is composed of an omnidirectional base, which is fully
actuated on the floor plane, whereas the aerial robot is a
planar hexacopter, both equipped with manipulators, of 4
and 2 revolute joints, respectively. The proposed framework
is implemented with the ground robot being the leader and
the aerial one being the follower.

To evaluate the performance of the algorithm, we consider
e` and eo, the position tracking error for the leader and

Gazebo Simulator

Experimental Environment

ROS Nodes

Leader
MPC

URDF
Models

Simulated
Sensors

(T̂ o
e,`)

−1T̂ o
e,j

Follower
MPC

Real
Robots

Encoders
Mo-cap

ROS Interface

ROS Interface

T ∗
e,`(·)

T ∗
e,i(·)

Fig. 3: The MPCs are implemented in ROS, allowing for a
common interface to both the simulation and laboratory.

the object, respectively derived from Te,`,ref and Te,o,ref
Moreover, we consider the respective orientation metrics θ`,
θo, defined as θ∗ = cos−1(2((q̃∗)>q̃∗,ref )2 − 1), with q̃
being the quaternion errors between the desired and the
actual attitude. Since the follower does not follow an explicit
trajectory but rather solves an optimization problem, we
assess the performance for the aerial vehicle by inspecting
the cost value of the MPC problem, which encodes the object
displacement from the initial condition and then it is propor-
tional to the internal forces, according to assumption (2).
Under ideal conditions, the MPC scheme should always be
able to keep it close to zero and, in practice, this should still
be bounded. We can assess the validity of the algorithm by
verifying that the value does not increase over time.

A. Lower level controllers

In both the simulation and experiment, the MPCs run in
different nodes on a off-board computer within the same
ROS network as the robots, at 10Hz and with an horizon
length of T = 1 s, producing a velocity setpoint for the joints
and the vehicle. In the case of the ground robot, these are
directly supplied to the (real or simulated) motor drivers.
The UAV relies on an attitude stabilization and a controller
that converts the MPC command to desired roll-pitch-yaw-
thrust. To increase robustness, the latter aims at tracking both
the computed velocity and the first sample of pose from the
trajectory predicted by the MPC.

B. Gazebo simulations

Gazebo is a multi-robot simulator based on Open Dynamic
Engine physics-engine that allows for realistic robot simu-
lations [22]. The two robots are simulated in Gazebo via
custom URDF models, as represented in Fig. 1. The dynamic
of all joints and the base of the ground robot are simulated
via ros control, while RotorS [23] is employed for n-
rotor flight simulation.

To launch the scenario, the UAV takes off and starts
hovering in a predefined position near the object, in the
grasp position. After this, the experiment starts (t = 0)
when the end effectors of ground and aerial robots are at
[0.39, 0.02 0.34]> [m] and [0.81, 0.00, 0.04]> [m]. Fig.
4 shows the results of a simulation where the algorithm is
tested with a constant setpoint in [0, 1.5, 0.3]> [m] and the



(a) Errors for ground (leader) end-effector

(b) Errors for the object estimate from aerial (follower) agent
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Fig. 4: Gazebo simulation results

same orientation as the initial state, with an box placed at
[0.0, 0.5, 0.0]> [m] Fig. 4 shows that both the ground and
the aerial robots are able to drive the object error to zero by
avoiding the obstacle. In particular, figure 4c shows that the
displacement of the follower with respect to the prescribed
object trajectory is bounded through the transportation and
eventually converges to zero, despite an initial peak due to
a delay in the reference tracking. The simulation example is
clearly illustrated in the accompanying video.

C. Experiments

The experiment, whose setup shown in Fig. 5, was con-
ducted at the Smart Mobility Lab1, at KTH Royal Institute
of Technology. A motion capture system was employed to
measure the quantities that are part of the state in (1), i.e.
the poses of ground base and end effector, and the vehicle
of the UAV. The latter’s end-effector, instead, was occluded
by the vehicle and was estimated via the open-loop forward
kinematics. In the initial configuration the robots are assumed

1https://www.kth.se/dcs/research/control-of-transport/smart-mobility-
lab/smart-mobility-lab-1.441539 - Accessed, March 1st, 2020.

Fig. 5: Experimental setup

to be already grasping the object, which is is a plastic bar,
0.85 m long, that allows for some elastic deformation.

The experiment starts with the UAV hovering, grasping
the object with its end-effector at [−0.42, 0.60, 0.15]> [m],
while the ground end-effector is at [0.42, 0.61, 0.2687]> [m]
and the bar at [0.09, 0.60, 0.2067] [m]. Two obstacles, one
traffic cone and one box, are placed at [1.00, − 0.61, 0.00]
and [1.00, − 0.61, 0.00]> [m], forcing the vehicles to
perform an avoidance maneuver. The results of a constant-
setpoint tracking experiment, where the goal position is set at
[−0.0175, −1.5652, 0.3000]> [m] and the goal orientation
is the same as the initial one, similar to simulation are
reported in Fig. 6a, 6b and 6c.

It can be noticed from Fig. 6 that, while the leader robot
is able to converge to its setpoint, the object has some error.
This means that the relative transforms between the robots
and the object, T oe,`(t) and T oe,j(t), are not exactly equal
to the initial condition T oe,`(0) and T oe,j(0). Fig. 6c shows
that while the cost is bounded, and then the displacements
are within the physical limits of object detachment, it is not
driven to zero, as in the gazebo simulations. This cannot
be attributed to the effects of the internal forces because,
intuitively, they would tend to push the follower to lower the
error. Instead, the degradation of performance can be caused
by saturation in the low level controller of the UAV, and
ground effects that arise since the latter is flying close to the
ground and the obstacles. Nevertheless, both the error and
the cost in Fig. 6c are bounded and the MPC scheme is able
to keep the system stable, even when at time t = 22 s, when
a fictitious external disturbance is simulated by applying a
short impulse to the ground vehicle arm joints commands. In
that case, the plots show that the algorithm is able to handle
the disturbance and keep the error bounded. The experiment
is clearly illustrated in the accompanying video, which shows
that the algorithm is able to complete the transportation task
without having the object detached or damaged.

V. CONCLUSION

In this work we proposed a decentralized algorithm to
coordinate a team of heterogeneous robotic agents that are
designed to transport an object to a prescribed target pose.
The procedure is designed to be robust to uncertainties and
unmodelled dynamics such as underactuation and non-ideal
tracking of the computed control inputs. The technique was



(a) Tracking errors for ground (leader) end-effector

(b) Tracking errors for the object
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Fig. 6: Experimental results

tested both in a realistic simulation framework and with a
laboratory experiment. In the former, the task was completed
with converging errors, whereas in the latter an error is
present at steady-state, mostly due to imperfect low-level
control tracking. Nevertheless, the system is still able to
keep the error bounded and react to unexpected external
disturbances. The main limitations of the algorithm are that
the inertia of the object and the ability of the followers to
actually cope with the dynamics of the computed trajectory
cannot be accounted. These aspects will be part of future
development of this work.
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