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Abstract— In this paper we present a novel adaptive co-
operative manipulation controller for multiple mobile robots
with rolling contacts. Whereas conventional cooperative ma-
nipulation methods require rigid contact points, our approach
exploits rolling effects of passive end-effectors and does not
require force/torque sensing. The removal of rigidity allows
for more modular grasping, increased application to more
object types, and online adjustment of the grasp. The proposed
approach is robust to uncertain dynamics of the object and
agents including object center of mass, inertia, weight, and
Coriolis terms. Furthermore, we present a novel closed-form
internal force controller that guarantees no slip throughout the
manipulation task. Also, the design of the adaptive controller
ensures boundedness of the estimated model parameters in
predefined sets. Numerical simulations validate the effectiveness
of the proposed approach.

I. INTRODUCTION

Recent technological advancements have led to the con-
cept of automated manufacturing where the ability to trans-
port objects/packages autonomously is key to the production
process. One popular, modular approach to perform object
transport is via cooperative manipulation, which entails the
transport/manipulation of an object by using multiple mobile
manipulators. Due to the different objects that must be
transported in such a setting, the cooperative manipulation
methods should be robust to uncertainties in object weight,
inertia, shape, and even center of mass location.

Existing methods in cooperative manipulation aim to track
a desired object reference trajectory using robotic manipu-
lators on mobile bases. Multiple robots allow for carrying
heavy loads and executing dexterous maneuvers. Early works
in cooperative manipulation focused on hybrid force/position
and impedance control schemes [1], [2]. Other approaches
focused on decentralization of the agents [3] and adaptive
controllers [4], [5]. However, those methods rely on the
assumption that each agent is rigidly fixed to the object,
allowing it to apply any force/torque at the contact point.
The rigidity assumption is highly restrictive as it only applies
to objects on which a rigid grasp can be formed, excluding,
e.g., objects with smooth surfaces or large boxes/spheres (e.g
packages), which cannot be rigidly grasped by a simple grip-
per. Furthermore, many existing approaches are dependent
on force/torque sensors mounted on each robot, which can
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be expensive or difficult to equip appropriately on a fleet of
mobile manipulators.

In this work we aim to remove the rigidity assumption
that is characteristic of current cooperative manipulation
approaches, and relax the dependency on tactile sensors
to contact location sensors only. We propose exploiting
natural rolling of a passive end-effector to accomplish the
cooperative manipulation objective. Non-rigid/rolling con-
tacts increase the number of objects that can be grasped,
increase the workspace of the system, and allow for modular
manipulation scenarios in which robots can be swapped
in/out to adjust the grasp online. Note that by employing
rolling contacts, the cooperative manipulation problem here
is similar to robotic grasping [6] albeit with moving “fingers.”

Despite advancements in the literature, existing methods
from cooperative manipulation and robotic grasping are not
applicable to the cooperative manipulation problem posed
here. The aforementioned works in cooperative manipulation
[1]–[5] are not applicable due to the dependency on rigid
contacts. Rolling contacts complicate the problem as each
contact may only apply a force that respects friction cone
constraints to prevent slip, instead of an arbitrary wrench
associated with rigid contacts [7]. Early robotic grasping
approaches required exact knowledge of the agent’s dynam-
ics [7], [8]. Other recent techniques are robust to model
uncertainties, but neglect rolling effects or dynamics [9]–
[11], while other more sensor-deprived approaches assume
the object is weightless [12], [13]. The approach from [14]
assumes a priori bounded states, which does not apply to
the mobile manipulators considered here. Adaptive control
schemes that have also been developed require force and
contact location sensing, and assume boundedness of the
uncertain parameter estimates [15], [16], or are limited to
set-point (constant reference) manipulation [17]. Thus, there
is no robust cooperative manipulation approach that ensures
stability to a reference trajectory with non-rigid, rolling
contacts and no force/torque sensing. Furthermore, for the
collaborative manipulation proposed here, it is critical to
ensure the object does not slip. This is neglected by most of
the aforementioned approaches, which assume either rigid
grasps or simply no slip without guarantees. Methods of
ensuring slip prevention are developed typically by solving
an optimization problem online [9], [18], [19]. However [9],
[19] neglect the dynamics of the system, which may perturb
the system and cause slip. The approach in [18] uses a
conservative bound on the dynamics, which overcompensates
the amount of force required to hold the object. Finally,
most related works (e.g., [1], [4], [5], [8], [13]) consider
accurate knowledge of the object center of mass, which
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can be difficult to obtain in practice, especially in cases of
complicated object shapes.

In this paper, we present a novel adaptive cooperative
manipulation control scheme for rolling contact points that
does not use force/torque sensing. The proposed controller
ensures asymptotic stability to a reference trajectory and
is robust to uncertain dynamic model parameters including
object/robot center of mass, inertia, and weight. Furthermore,
we propose a novel internal force controller that ensures
no slip during the manipulation motion without neglecting
nor overcompensating for the system dynamics. Numerical
simulations are used to validate the proposed approach.

The rest of the paper is organized as follows. Section II
describes the problem considered here. Section III introduces
the proposed control scheme, and a simulation example is
given in Section IV. Section V concludes the paper.

Notation: Throughout this paper, the notation vE indicates
that the vector v is written with respect to a frame E , and if
there is no explicit frame defined, v is written with respect
to the inertial frame, P . The operator (·)× denotes the skew-
symmetric matrix representation of the cross-product. SO(3)
denotes the special orthogonal group of dimension 3, and Sn

is the unit (n − 1)-dimensional sphere. The r × r identity
matrix is denoted by Ir and the r-dimensional vector of
zeros by 0r. The terms �,� denote element-wise vector
inequalities. The null space of a matrix B is denoted N(B),
and the interior of a set A is Int(A ).

II. PROBLEM FORMULATION

Consider N ∈ N robotic agents, consisting of a holonomic
moving base and a robotic arm, grasping a rigid object in
3D space. Let their generalized joint space variables and
respective derivatives be qi, q̇i ∈ Rni with ni ≥ 3,∀i ∈
N := {1, ..., N}. Here qi consists of the degrees of
freedom of the robotic arm as well as the moving base.
The overall joint configuration is then q := [qT1 , ..., q

T
N ]T ,

q̇ := [q̇T1 , ..., q̇
T
N ]T ∈ Rn with n :=

∑
i∈N ni. Each agent

has a smooth, convex “fingertip” (i.e. passive end-effector)
of high stiffness that is in contact with an object via a smooth
contact surface. Let the inertial frame be denoted by P , and a
fingertip frame, Fi, fixed at the point pfi ∈ R3 on each agent
end-effector. The translational and rotational velocities of Fi
with respect to P are denoted by vfi ,ωfi ∈ R3, respectively.
The rotation matrix from Fi to P is Rpfi := Rpfi(qi) ∈
SO(3). The contact frame, Ci, is located at the contact point,
pci ∈ R3 and defined as a Gauss frame [20] where one of
the axes is defined orthonormal to the contact plane. The
vector from Fi to Ci is pfci := pci − pfi ∈ R3. A visual
representation of the contact geometry for the ith agent is
shown in Figure 1.

The dynamics of agent i in the grasp is defined by [20]:

Miq̈i + Ciq̇i + gi = −JThifci + ui (1)

where Mi := Mi(qi) ∈ Rni×ni is the positive definite inertia
matrix, Ci := Ci(qi, q̇i) ∈ Rni×ni is the Coriolis/centrifugal
matrix, gi := gi(qi) is the gravity torque, fci ∈ R3 is the
contact force, ui ∈ Rni is the joint torque control input, and

Fig. 1: Two robotic agents in contact with an object.

Jhi := Jhi(qi,pfci) ∈ R3×ni is the agent Jacobian matrix,
defined by

Jhi(qi,pfci):=
[
I3 −(pfci)×

]
Jsi(qi),

where Jsi(qi) ∈ R6×ni is the manipulator Jacobian that
maps q̇i 7→ (vfi ,ωfi) [20]. The full hand Jacobian matrix
is Jh := diag{[Jhi ]i∈N } ∈ R3N×n. We emphasize that the
dynamical parameters (masses, moments of inertia) appear-
ing in the terms Mi, Ci, gi are considered to be unknown,
∀i ∈ N . The dynamics (1) can be written in vector form as

M q̈ + Cq̇ + g = −JTh fc + u, (2)

where M := M(q) := diag{[Mi]i∈N }, C := C(q, q̇) :=
diag{[Ci]i∈N } ∈ Rn×n, and g := g(q) := [gT1 , . . . , g

T
N ]T ,

fc := [fTc1 , . . . ,f
T
cN ]T , u := [uT1 , . . . ,u

T
N ]T ∈ Rn.

A common assumption in the majority of the related liter-
ature is that the object center of mass is accurately known,
which is typically not the case in practice. In this work,
we assume tracking of a traceable point po on the object
surface instead of the center of mass, whose information
is considered unknown. Note that appropriate sensor equip-
ment, e.g., cameras and markers, can accurately track such
points in practice. Hence, to remove the dependency on an
unknown object center of mass, we perform a standard rigid
body transformation to the conventional object dynamics as
follows. Let O be a reference frame fixed at po, which
is not coincident with the object center of mass. Let also
Rpo ∈ SO(3) be the respective rotation matrix, which maps
from O to P . Let xo := [pTo ,η

T
o ]T ∈ M := R3 × T,

vo := [ṗTo ,ω
T
o ]T∈ R6 denote the pose and generalized

velocity of the object frame, with ηo ∈ T an orientation
vector and T the associated domain. The position vector from
O to the respective contact point is poci := pci − po ∈ R3.

We denote the actual object center of mass location with
p̄o ∈ R3, and without loss of generality we align the object
body frame with O so that ηo = η̄o and ω̄o = ωo. Thus we
let x̄o := [p̄To ,η

T
o ]T∈M be the object pose with respect

to the inertial frame P and v̄o := [ ˙̄pTo ,ω
T
o ]T∈ R6. Let

p̄oci := pci − p̄o with poc := [pToc1 , ...,p
T
ocN ]T ∈ R3N .

The conventional object dynamics with respect to the object
center of mass are given by the Newton-Euler formulation:

M̄o ˙̄vo + C̄ov̄o + ḡo = Ḡfc (3)

where M̄o := M̄o(η̄o) ∈ R6×6 is the object inertia matrix,
C̄o := C̄o(η̄o, ω̄o) ∈ R6×6 is the object Coriolis and
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centrifugal matrices, Ḡ := Ḡ(p̄oc) ∈ R6×3N is the grasp
map, and ḡo ∈ R6 is the gravity acting on the object.

The grasp map, Ḡ, maps the concatenated contact force,
fc ∈ R3N , to the net wrench acting on the object center
of mass and is defined by Ḡ := [Ḡ1, ..., ḠN ] where Ḡi :=
Ḡi(p̄oci):=[I3,−(p̄oci)×]>∈ R6×3. We note that Ḡ is the
conventional grasp map commonly used in grasping [20].

To perform the rigid body transformation let
Ja:= Ja(η̄o) ∈ R6×6 be defined as:

Ja(η̄o) :=

[
I3 (Rpop

O
ōo)×

03 I3

]
(4)

where pOōo := pOo − p̄Oo , such that v̄o and vo can be related
via v̄o = Javo, which is derived by differentiating p̄o =
po +Rpo(p̄

O
o − pOo ). Note that pOōo is constant.

Substitution of v̄o = Javo and left multiplication by JTa
in (3) yields the adjusted object dynamics with respect to
po:

Mov̇o + Covo + go = Gfc, (5)

where Mo := Mo(η̄o) := JTa M̄oJa ∈ R6×6, Co :=
Co(η̄o,ωo) := JTa (M̄oJ̇a+ C̄oJa) ∈ R6×6, go := go(η̄o) :=
JTa ḡo ∈ R6, and G := JTa Ḡ ∈ R6×6, for which it holds
G = [G1, . . . , GN ], with

Gi = JTa Ḡi =

[
I3

−(Rpop
O
ōo)×+(p̄oci)×

]
=

[
I3

(poci)×

]
,

where we have used Rpop̄Oōo = pōo. Note that G = G(poc),
i.e., G is not dependent on p̄o. Note also by the relation
p̄o = po−RpopOōo, that Mo, Co, go are functions of η̄o = ηo,
ω̄o = ωo with dependency on the constant but unknown term
pOōo. We also note the following relation that will be needed
subsequently:

ḠTi v̄o =

[
I3

(pci − p̄o)×

]T [
I3 (Rpop

O
ōo)×

03 I3

]
vo = GTi vo

(6)

Similarly to the agents, the object dynamic parameters
appearing in the terms Mo, Co, go are considered to be
unknown.

Regarding the object orientation, we use the unit quater-
nion choice ηo := [φo, ε

T
o ]T ∈ T := S3, where φo ∈ [−1, 1]

and εo ∈ R3 are the scalar and vector part, respectively,
satisfying φ2

o + εTo εo = 1. Moreover, it holds that [5]

η̇o =
1

2
Eη(ηo)ωo ⇒ ωo = 2Eη(ηo)

T η̇o, (7)

where Eη : S3 → R4×3 is the matrix

Eη(η) :=

[
−εT

φI3 − (ε)×

]
, ∀η = [φ, εT ]T ∈ S3.

The more practical consideration of rolling contacts, as
opposed to a rigid grasp, requires no slip to occur between
the agents and object by ensuring that each contact force
remains inside the friction cone defined by:

Fci := {fCici ∈ R3 : fniµ ≥
√
f2
xi + f2

yi} (8)

where fCici = (fxi , fyi , fni) is the contact force at i written
in frame Ci with tangential force components fxi , fyi ∈ R
and normal force component fni ∈ R, and µ ∈ R>0 is the
friction coefficient. The full friction cone is the Cartesian
product of all the friction cones: Fc := Fc1 × ...×Fcn .

When the contact points do not slip, the grasp relation
Jhq̇ = ḠT v̄o holds [8], which, after substituting (6), be-
comes:

vc = Jhq̇ = GTvo, (9)

where vc := [vTc1 , . . . ,v
T
cN ]T ∈ R3n is the vector of contact

velocities.
The following assumptions are made for the grasp:

Assumption 1. The grasp consists of N ≥ 3 agents with
non-collinear contact points and N(G)

⋂
Int(Fc) 6= ∅.

Assumption 2. The matrix Jh(q) is non-singular, and the
contact points do not exceed the fingertip surface.

Remark 1. Note that N ≥ 3 agents with non-collinear
contact points ensures G is full row rank [20]. The condition
that N(G)

⋂
Int(Fc) 6= ∅ ensures the existence of a contact

force that lies within the friction cone and yields a desired
object wrench, which is called the force-closure condition
[8]. Force-closure depends on the initial grasp, and can be
ensured by existing high-level grasp planning methods [21].
Moreover, by incorporating optimization techniques, as e.g.
in [22], we can enforce prevention of excessive rolling of the
contacts and thus relax the respective part of Assumption 2.
Finally, the non-singular condition of Jh intuitively implies
that tracking the desired reference trajectory does not force
the agents through such singular configurations. This can
also be achieved by exploiting internal motions of redundant
agents (ni > 3).

Moreover, the following Lemma will be needed in the
subsequent analysis.

Lemma 1. [5] The matrices Mi(qi), M̄o(η̄o) are symmetric
and positive-definite, and Ṁi(qi) − 2Ci(qi, q̇i), ˙̄Mo(η̄o) −
2C̄o(η̄o, ω̄o) are skew-symmetric, ∀qi, q̇i ∈ Rni , i ∈
N , η̄o, ω̄o ∈M× R6.

In view of Lemma 1, one can verify that Mo is positive
definite and Ṁo − 2Co is skew-symmetric as well. We also
assume that the contact vectors pFifci and ṗFifci are measured
accurately online, ∀i ∈ N . This can be achieved either by
the use of appropriate tactile sensors or forward simulation
of the contact dynamics.

Let now a desired pose trajectory, pd : R≥0 → R3, ηd :=
[φd, ε

T
d ]T : R≥0 → S3, to be tracked by xo. To that end,

we define the position error ep := po − pd as well as the
quaternion product eη := ηd ⊗ η+

o , as an orientation error
metric [5], where η+ := [φ,−εT ]T denotes the quaternion
conjugate. The aim is then to regulate eη to [±1,0T3 ]T [5].
Moreover, we aim at ensuring that the fingers are always in
contact with the object and slipping is avoided. Formally, the
problem is defined as follows.
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Problem 1. Given a desired bounded, smooth object pose
trajectory defined by pd : R≥0 → R3, ηd : R≥0 → S3, with
bounded first and second derivatives, determine a control
law u in (2) such that the following conditions hold:

1) limt→∞
(
ep(t), eη(t)

)
=
(
03, [±1,0T3 ]T

)
2) fCici (t) ∈ Fci ,∀t > 0, i ∈ N .

III. PROPOSED CONTROL SCHEME

This section presents the proposed control scheme, which
employs adaptive control techniques for the compensation of
the uncertainties described in the previous section.

Without loss of generality, we assume that ni = 3,
∀i ∈ N , i.e., the agents are not redundant. The proposed
solution can be trivially extended to redundant cases, e.g.,
by following the analysis of [20, Chapter 6]. By combining
the agent and object dynamics (2), (5) as well as (9), we can
obtain the coupled dynamics

M̃ v̇o + C̃vo + g̃ = GJ−Th u, (10)

where M̃ := M̃(x̃) := Mo + GJ−Th MJ−1
h GT , C̃ :=

C̃(x̃, ˙̃x) := Co + GJ−Th (CJ−1
h GT + M d

dt (J
−1
h GT )), g̃ :=

g̃(x̃) := go + GJ−Th g, and x̃ := [ηTo , q
T ,pTfc,p

T
oc]

T ∈
T × Rn+6N . The following lemma, which can be derived
using Lemma 1, states useful properties of (10):

Lemma 2. [5] The matrix M̃ , is symmetric and positive-
definite, and ˙̃M − 2C̃ is skew-symmetric.

Next, the left-hand side of the object dynamics is linearly
parameterized with respect to the dynamic parameters as:

Mo(ηo)v̇o + Co(ηo,ωo)vo + go = Yo(ηo,ωo,vo, v̇o)νo,

where νo ∈ Rlo , lo ∈ N, is a vector containing unknown ob-
ject dynamic parameters as well as the term pOōo, introduced
in (4), and Yo : T × R18 → R6×lo is a known regressor
matrix.

Similarly, the part of (10) that concerns the robotic agents
can be linearly parameterized as:

MJ−1
h GT v̇o +M

(
∂

∂t
(J−1
h GT ) + CJ−1

h GT
)
vo + g =

Y (x̃, ˙̃x,vo, v̇o)ν,

where ν ∈ Rl, l ∈ N, is a vector of unknown dynamic
parameters of the agents, and Y : T × R2n+15N → R6N×l

is the respective known regressor matrix.
Therefore, the left-hand side of the coupled dynamics (10)

can be written as

M̃ v̇o + C̃vo + g̃ =

Yo(ηo,ωo,vo, v̇o)νo +GJ−Th Y (x̃, ˙̃x,vo, v̇o)ν
(11)

Let now ν̂ ∈ Rl, ν̂o ∈ Rlo , be the estimates of ν and νo,
respectively, by the agents, and the respective errors eν :=
ν̂ − ν, and eνo := ν̂o − νo.

Regarding the pose errors, as described in Problem 1, these
are ep = po − pd and eη = ηd ⊗ η+

o , which can be shown
to satisfy [5]:

eη =

[
eφ
eε

]
:=

[
φoφd + εTo εd

φoεd − φdεo + (εo)× εd

]
. (12a)

ėp = ṗo − ṗd (12b)

ėη =

[
ėφ
ėε

]
=

[
1
2e

T
ε eω

− 1
2 (eφI3 + (eε)× )eω − (eε)× ω̇d

]
,

(12c)

where eω := ωo − ωd ∈ R3 and ωd = 2E(ηd)η̇d,
similarly to (7). Note that, except for (ep, eη, eω) =
(03, [±1,0T3 ]T ,03) (the desired equilibirum), the point
(ep, eη, eω) = (03, [0, ẽ

T
ε ]T ,03) is also an equilibrium of

(12), for any ẽε ∈ S2. The latter represents an undesired
local minimum of the dynamics (12) and stems from topo-
logical obstructions of the orientation space [23]. Hence,
a continuous controller cannot achieve global stabilization
of (ep, eη, eω) to the desired equilibrium point. As will
be shown later, however, we will achieve almost global
stabilization, i.e., from all initial conditions other than the
aforementioned undesired local minimum configurations that
satisfy eφ(0) = 0, which form a lower-dimensional manifold.

We provide next the proposed control protocol. First,
we design the reference velocity signal vf ∈ R6 and the
associated velocity error ev as

vf := vd −Ke :=

[
ṗd
ωd

]
−

 kpep

−kη
eε
e3
φ

 (13a)

ev := vo − vf , (13b)

where K := diag{kpI3, kηI3} ∈ R3 is a positive definite
gain matrix, with kp, kη positive constants, e := [eTp ,−

eTε
e3φ

]T ,

and vd := [ṗTd ,ω
T
d ]T . As will be shown later, eφ(0) 6= 0⇒

eφ(t) 6= 0, ∀t ≥ 0, thus (13a) is well defined.
We design now the control protocol as

u =Yrν̂ + JTh (G∗fd + fint), (14)

where G∗ is the Moore-Penrose pseudoinverse of G, fd :=
Yor ν̂o − e − Kvev with Kv ∈ R6 a positive definite gain
matrix, Yr := Y (x̃, ˙̃x,vf , v̇f ), Yor := Yo(ηo,ωo,vf , v̇f ),
and fint is a term in the nullspace of G to prevent contact
slip, which will be designed later. Moreover, we design the
adaptation signals

˙̂ν = Proj(ν̂,−ΓY Tr J
−1
h GTev), (15a)

˙̂νo = Proj(ν̂o,−ΓoY
T
orev), (15b)

where Γ ∈ Rl×l,Γo ∈ Rlo×lo are positive definite constant
gain matrices, and Proj() is the projection operator, which
satisfies [24]:

(θ̂ − θ)T (W−1Proj(θ̂,Wz)− z) ≤ 0lz , (16)

for any symmetric positive definite W ∈ Rlz×lz , and
∀θ, θ̂, z ∈ Rlz , for some lz ∈ N. Moreover, by appropriately

4



choosing the initial conditions of the estimates ν̂(0), ν̂(0),
we guarantee via the projection operator that ν̂(t), ν̂o(t) will
stay uniformly bounded in predefined sets defined by finite
constants ¯̂ν, ¯̂νo, i.e., ‖ν̂(t)‖≤ ¯̂ν, ‖ν̂o(t)‖≤ ¯̂νo, ∀t ≥ 0.
Hence, we can achieve the boundedness of the respective
errors as

‖eν(t)‖ ≤ ēν := ¯̂ν + ‖ν‖ (17a)
‖eνo(t)‖ ≤ ēνo := ¯̂νo + ‖νo‖, (17b)

for finite constants ēν , ēνo . More details can be found in [24,
Chapter 11].

We design next the internal force component fint to
guarantee slip prevention. Slip is addressed by ensuring the
contact forces remain inside the friction cone as specified
in (8). The friction cone can be approximated as a pyramid
with ns ∈ N>3 sides, which results in a linear constraint
with respect to the contact forces [18], [25]: Λi(µ)RTpcifci �
0,∀i ∈ N , or in vector form,

Λ(µ)RTpcfc � 0, (18)

where Rpc := diag{[Rpci ]i∈N }, with Rpci ∈ SO(3) the
rotation matrices mapping the contact frames Ci to the
inertial frame P , Λ(µ) := diag{[Λi(µ)]i∈N }, with Λi(µ) ∈
Rns×3 define the pyramid matrices, and µ ∈ R>0 is the
friction coefficient.

The design of the internal force component, fint, to ensure
(18) is performed as follows. First, fint must be in the
nullspace of G, i.e., Gfint = 0. Second, the internal force
must satisfy (18) such that Λ(µ)RTpcfint � 0. Third, the
normal component of the internal force with respect to the
contact plane must always be positive (i.e. the manipulators
cannot “pull” on the contact point). To enforce this condition
we design1 finti = f ′intRpci`i, where `i := [`ix , `iy , `iz ]

T is
the internal force direction in the contact frame Ci, i ∈ N ,
and f ′int ∈ R>0 is a gain parameter to be designed. Without
loss of generality let `iz be aligned with the normal direction
of the contact frame such that `iz > 0, i ∈ N , ensures that
only pushing forces are applied at each contact. Satisfaction
of the aforementioned conditions is done by solving the
following convex quadratic program to define the internal
force controller

fint = f ′intRpc`
∗ (19a)

`∗ =argmin`

∑
i∈N

`2ix + `2iy + `2iz

 (19b)

s. t. (19c)
GRpc` = 06, (19d)
`iz > 0, ∀i ∈ N , (19e)
Λi(µ)`i � 0ns , ∀i ∈ N , (19f)

where ` := [`T1 , . . . , `
T
N ]T . Note that, since the contact points

form a force-closure configuration, (19) always has a feasible
solution.

1We use the notation fint = [fT
int1

, . . . ,fT
intN

]T .

Finally, to satisfy (18), fint must apply sufficient force
inside the friction cone to reject perturbations that will arise
during the manipulation motion that can push the contact
force outside of the friction cone. Rejection of these pertur-
bations is performed by designing the gain f ′int as follows.
For simplicity we define the terms k = Λ(µ)RTpcG

∗fd, l =
Λ(µ)`, and we denote by kj and lj the jth element of k and
l respectively for j ∈ {1, . . . , Nns}.

Noting that Λ(µ)` � 0 from (19), we define the decreasing
function κ : R→ R≥0 as

κ(x) :=


−x, if x ≤ −1,

q(x), if − 1 ≤ x ≤ 0,

0, if x ≥ 0

,

where q(x) ≥ 0, ∀x ∈ [−1, 0], is an appropriate polynomial
that ensures continuous differentiability of κ, for instance
q(x) = x3 + 2x2. Then one can verify that κ(x) + 1 ≥
−x, ∀x ∈ R. We now design the magnitude scaling for the
internal forces as

f ′int =
κ(minj{kj}) + 1 + ε

minj{lj}
, (20)

where ε ∈ R>0 is a tuning gain. The intuition behind (20)
is to upper bound elements of the control and the system
dynamics to prevent either from pushing the contact force
outside of the friction cone. The term κ(minj{kj}) + 1
cancels out any effects from fd. The term ε handles the
system dynamics, which is guaranteed to be bounded in the
following theorem.

Remark 2. The internal force control presented here ac-
counts for the dynamics of the system by appropriately
scaling f ′int, which rejects perturbations from causing slip.
However, as opposed to [18], we relax the condition that
ε must upper bound all of the dynamics terms by ex-
ploiting knowledge of the applied controller via the term
κ(minj{kj}). This reduces the amount of squeezing force
applied to prevent crushing the object.

The stability and slip prevention guarantees of the pro-
posed controller are presented in the following theorem.

Theorem 1. Consider N robotic agents in contact with
an object, described by the dynamics (2), (5), and suppose
Assumptions 1 and 2 hold. Let the desired object pose (pd,
ηd) : R≥0 → R3 × S3 be bounded with bounded first
and second derivatives. Moreover, assume that eφ(0) 6= 0
and fCici (0) ∈ Fci , ∀i ∈ N . Then, the control pro-
tocol (13a)-(20) guarantees that limt→∞

(
ep(t), eη(t)

)
=(

03, [±1,0T3 ]T
)
, as well as boundedness of all closed-loop

signals. Moreover, by choosing a sufficiently large ε in (20),
it holds that fCic (t) ∈ Fci ,∀t > 0, i ∈ N .

Proof. Consider the stack vector state χ :=
[eTp , e

T
ε , e

T
v , e

T
ν , e

T
νo ]

T ∈ X := R12+`+`o . Next, note
by (2), (3), and (9) that, when fCici (χ) ∈ Fci , each
fCici can be written as a function of the stack state, i.e.,
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fCici = fCici (χ), ∀i ∈ N . Consider also the set

U :={χ ∈X : ‖eε‖< ēε, ‖ep‖< ēp, ‖ev‖< ēv,

‖eν‖< ẽν , ‖eνo‖< ẽνo ,f
Ci
ci (χ) ∈ Int(Fci),∀i ∈ N },

for some positive constants ēε > 1, ēv , ēp satisfying
‖ev(0)‖< ēv , ‖ep(0)‖< ēp, and ẽν , ẽνo larger than ēν , ēνo ,
respectively, which were introduced in (17). Note that χ(0) ∈
U . Next, by using (14) and (15), one obtains the closed-loop
dynamics χ̇ = hχ(χ, t), where hχ : X × R≥0 → X is
a function that is continuous in t and locally Lipschitz in
χ. Then, according to Theorem 2.1.3 of [26], there exists
a positive time constant τ > 0 and a unique solution χ :
[0, τ)→ U , i.e., defined for [0, τ) and satisfying χ(t) ∈ U ,
∀t ∈ [0, τ). Hence, slip is prevented and the dynamics (10)
are well-defined, for t ∈ [0, τ).

Let now the Lyapunov function

V :=
1

2
eTp ep+

2

e2
φ

+
1

2
eTv M̃ev+

1

2
eTν Γ−1eν+

1

2
eTνoΓ

−1
o eνo .

Since eφ(0) 6= 0, it holds that V (0) ≤ V̄0 for a finite positive
V̄0. Differentiation of V results in:

V̇ = eT (vo − vd) +
1

2
eTv

˙̃Mev + eTv (−C̃vo − g̃ − M̃ v̇f

+GJ−Th u) + eTν Γ−1ėν + eTνoΓ
−1
o ėνo .

Exploitation of the skew symmetry of ˙̃M − 2C̃ system, use
of vo = ev +vf , use of (11), and substitution of the control
law (14) results in:

V̇ = −eTKe− eTvKvev + eTv (Yoreνo+GJ
−T
h Yreν)

+ eTν Γ−1ėν + eTνoΓ
−1
o ėνo

where we used the fact that Gfint = 06 through (19). Finally,
by substituting the adaptation laws (15), we obtain

V̇ = −eTKe−eTvKvev+e
T
ν

(
Γ−1Proj(ν̂,−YrTJ−1

h GTev)

+ΓY Tr J
−1
h GTev

)
+eTνo

(
Γ−1
o Proj(ν̂o,−Yor

Tev)+ΓoY
T
orev

)
which, by invoking the projection operator property (16)
becomes V̇ ≤ −eTKe−eTvKvev . Thus V̇ is negative semi-
definite, and V is bounded in a compact set as V (t) ≤ V (0),
∀t ∈ [0, τ). In addition, eφ(t) 6= 0, ∀t ∈ [0, τ). Hence,
the terms ep(t), eε(t), eφ(t) are bounded in a compact
set defined by V (0) and not dependent on τ , ∀t ∈ [0, τ).
Therefore, since pd(t) and ηd(t) are bounded and have
bounded derivatives, one concludes that po(t), ηo(t) vo(t),
and vf (t), v̇f (t) are also bounded in compact sets, ∀t ∈
[0, τ). This also implies boundedness of x̃, ˙̃x, as introduced
in (10), which, along with Assumption 2 and properties of
Euler-Lagrange systems [27], implies that Y (x̃, ˙̃x,vo, v̇o),
Yr, Yo(ηo,ωo, ev, ėv), Yor are also bounded in compact sets
that are independent of τ , ∀t ∈ [0, τ). We prove next the slip
prevention using the design of the internal force component

fint. By using (2), (5) and (9), one obtains the following
expression for the interaction forces:

fc = B−1

(
JhM

−1

[
u− g −

(
CJ−1

h GT+

M
d

dt
(J−1
h GT )

)
vo

]
+GTM−1

o (Covo + go)

)
where B := JhM

−1JTh + GTM−1
o G, which, by replacing

u, using vf = ev + vo and (11), adding and subtract-
ing B−1GTM−1

o fd = B−1GTM−1
o GG∗fo,d and adding

B−1GTM−1
o Gfint = 03N , becomes

fc = G∗fd + fint + h (21)

where h := B−1JhM
−1(Y (x̃, ˙̃x, ev, ėv)ν + Yreν) +

B−1GTMo(e+Kvev − Yo(eo,ωo, ev, ėv)νo − Yoreνo).
By combining the aforementioned expression with (18),

one obtains the following condition for slip prevention:

Λ(µ)RTpcfint � −Λ(µ)RTpcG
∗fd − Λ(µ)RTpch. (22)

Note that due to the aforementioned Lyapunov analysis,
as well as the adaptation laws (15) through the projection
operator, e, ev(t), ėv(t), eν(t), eνo(t) are bounded in
compact set independent of τ , ∀t ∈ [0, τ). By combining this
with the aforementioned analysis, we conclude that that h
is bounded for all ∀t ∈ [0, τ) in a compact set, independent
of τ . Hence, by denoting εh the maximum bound of the
elements of ±Λ(µ)RTpch and using the designed internal
force component fint = f ′intRpc`, a sufficient condition for
(22) to hold is for the jth element to satisfy

ljf
′
int ≥ −kj + εh,

∀j ∈ {1, . . . , Nns}. By substituting (20), the left side
satisfies

lj
κ(minj{kj}) + 1 + ε

minj{lj}
≥ κ(min

j
{kj}) + 1 + ε ≥ −kj + ε,

where we use κ(x) ≥ 0, κ(x) + 1 ≥ −x, ∀x ∈ R, and
κ(minj(kj)) > κ(kj), ∀j ∈ {1, . . . , Nns}, since κ() is de-
creasing. Hence, by choosing a large enough ε we guarantee
ε ≥ εh and hence contact slip is avoided ∀t ∈ [0, τ). In fact,
the internal forces analysis above and the fact that Λ defines
pyramid constraints imply that fCici ∈ F̄ci , where F̄ci is
a compact subset of Int(Fci), ∀i ∈ N . Therefore, since
eν and eνo are uniformly bounded through the projection
operator by ēν and ēνo , respectively, by choosing large
enough ēp and ēv in the definition of U , χ(t) belongs to
a compact subset Ū of U , ∀t ∈ [0, τ). Thus by invoking
the maximal solutions’ theorem (e.g., Th. 2.1.4 of [26]), it
follows that τ =∞.

Note, finally, that u(t), as designed in (14), is bounded,
∀t ≥ 0. Therefore, one can conclude that ėv(t) and thus
q̈(t) is bounded, ∀t ≥ 0. Hence, it follows that V̈ (t) is
also bounded, ∀t ≥ 0. Thus by invoking Barbalat’s lemma
(Lemma 8.2 of [28]), it follows that limt→∞ V̇ (t) = 0
and so limt→∞ e(t) → 06 and limt→∞ ev(t) → 06. This
implies that limt→∞ eε(t) → 03, which, given that eη is
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a unit quaternion and eφ(t) 6= 0, ∀t ≥ 0, ensures asymp-
totic stability of the pose error as limt→∞(ep(t), eη(t)) =
(03, [sgn(eφ(0)),0T3 ]T ).

Remark 3. Note that the bound εh of h in (21) can be
computed a priori. In practice, the terms ν, νo, which
concern masses and moments of inertia of the object and
the agents, can be known a priori up to a certain accuracy,
leading thus to respective bounds. Hence, one can compute
upper bounds for V (0) and hence for e, ev , eν , and eνo .
Since the structure of the dynamic terms is known, this can
also lead to a bound of the terms B−1, M−1, Mo, Y (·),
Yo(·), Yr, and Yor that appear in h. Hence, tuning of ε to
overcome εh can be performed off-line.

IV. SIMULATION RESULTS

The proposed control algorithm ensures asymptotic sta-
bility for cooperative manipulation with rolling contacts,
as well as no slip, while being robust to dynamic un-
certainties of the object-robot system. In this section, we
implement the proposed control scheme on three 6 DOF
mobile manipulators consisting of a 3 DOF, 3 kg base (X-Y
translation, rotation about Z) and a 3DOF manipulator with
3 identical links of length 0.3 m and mass of 0.5 kg each, as
depicted in Fig. 2. The objective is to transport a 2 kg box
along the desired reference trajectory defined by pd(t) :=
[0.1 sin(0.125t), 0.1 sin(0.125t), 0.1 sin(0.125t)]T , ηd(t) :=
[cos(0.1 sin(.125t)), 0, 0, sin(0.1 sin(0.125t))]T . The control
gains used are: kp = 1, kη = .5, Kv = diag[5, 5, 5, 2, 2, 2],
ε = 0.1, Γo = 0.5Ilo×lo, Γ = 0.5Il×l. The control
is implemented with 30% error in all uncertain parameter
(including the object center of mass), and the projection
operator enforces the following bounds on the uncertain
terms: ¯̂ν = 2.25, ¯̂νo = 1.5.

The simulation results are depicted in Figs. 3-7 for 50
seconds. More specifically, Figs. 3 and 4 show the re-
sulting error trajectories of the object-agent system, which
satisfy limt→∞ ep(t) = 03, limt→∞ eε(t) = 03, and
limt→∞ eφ(t) = sgn(eφ(0)) = 1 in the presence of rolling
effects. Fig. 5 illustrates the boundedness of the uncertain
parameters, ν̂, ν̂o that is enforced by the proposed control

scheme. Fig. 6 shows the required friction, µri :=

√
f2
xi

+f2
yi

fni
,

which denotes the minimum friction coefficient necessary
to prevent slip throughout the motion [18]. If the required
friction surpasses the true coefficient, then the contact point
will slip and the grasp is compromised. As shown in Fig.
6, however, the required friction for each contact is below
the true coefficient of µ = 0.9, which indicates that slip is
prevented as guaranteed by the proposed method. Finally,
Fig. 7 depicts the control inputs of the agents. As predicted
by the theoretical analysis, asymptotic error stability as well
as contact slip prevention are achieved.

V. CONCLUSION AND FUTURE WORK

This paper presented a control scheme for robust coop-
erative manipulation with rolling contacts. No information

Fig. 2: Initial configuration of the system that consists of
three mobile manipulators and a rigid object.

Fig. 3: The evolution of the position error, ep(t), ∀t ∈ [0, 50].

Fig. 4: The evolution of eφ(t), eε(t), ∀t ∈ [0, 50].

Fig. 5: The evolution of ν̂o(t), ν̂(t), ∀t ∈ [0, 50].
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Fig. 6: The required friction to prevent slip for the three
agents. The black dashed line represents µ = 0.9.

Fig. 7: The resulting inputs u(t) of the agents, ∀t ∈ [0, 50].

regarding the interaction object/agents forces was used, and
an adaptive control methodology was employed to compen-
sate for the unknown dynamic parameters as well as the
location of the object center of mass. Finally, a novel internal
force scheme was introduced for contact slip prevention.
Future directions will address grasp reconfiguration as well
as decentralization of the control protocol.

REFERENCES

[1] S. Erhart, D. Sieber, and S. Hirche, “An impedance-based control ar-
chitecture for multi-robot cooperative dual-arm mobile manipulation,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 315–322, 2013.

[2] F. Ficuciello, A. Romano, L. Villani, and B. Siciliano, “Carte-
sian impedance control of redundant manipulators for human-robot
co-manipulation,” IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2120–2125, 2014.

[3] A.-N. Ponce-Hinestroza, J.-A. Castro-Castro, H.-I. Guerrero-Reyes,
V. Parra-Vega, and E. Olguı́n-Dı́az, “Cooperative redundant omnidirec-
tional mobile manipulators: Model-free decentralized integral sliding
modes and passive velocity fields,” IEEE International Conference on
Robotics and Automation (ICRA), pp. 2375–2380, 2016.

[4] Y.-H. Liu and S. Arimoto, “Decentralized adaptive and nonadaptive
position/force controllers for redundant manipulators in cooperations,”
The International Journal of Robotics Research, vol. 17, no. 3, pp.
232–247, 1998.

[5] C. K. Verginis, M. Mastellaro, and D. V. Dimarogonas, “Robust
cooperative manipulation without force/torque measurements: Control
design and experiments,” IEEE Transactions on Control Systems
Technology, 2019.

[6] R. Ozawa and K. Tahara, “Grasp and dexterous manipulation of multi-
fingered robotic hands: a review from a control view point,” Advanced
Robotics, vol. 31, no. 19-20, pp. 1030–1050, 2017.

[7] J. Kerr and B. Roth, “Analysis of multifingered hands,” The Interna-
tional Journal of Robotics Research, vol. 4, no. 4, pp. 3–17, 1986.

[8] A. B. Cole, J. E. Hauser, and S. S. Sastry, “Kinematics and control
of multifingered hands with rolling contact,” IEEE Transactions on
Automatic Control, vol. 34, no. 4, pp. 398–404, 1989.

[9] Y. Fan, L. Sun, M. Zheng, W. Gao, and M. Tomizuka, “Robust
dexterous manipulation under object dynamics uncertainties,” IEEE
International Conference on Advanced Intelligent Mechatronics (AIM),
pp. 613–619, 2017.

[10] A. Caldas, A. Micaelli, M. Grossard, M. Makarov, P. Rodriguez-
Ayerbe, and D. Dumur, “Object-level impedance control for dexter-
ous manipulation with contact uncertainties using an LMI-based ap-
proach,” IEEE International Conference on Robotics and Automation
(ICRA), pp. 3668–3674, 2015.

[11] T. Wimböck, C. Ott, A. Albu-Schäffer, and G. Hirzinger, “Comparison
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