
IN DEGREE PROJECT ELECTRICAL ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2017

Cooperative Manipulation without
force/torque feedback:
Control Design and Experiments

MATTEO MASTELLARO

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Abstract

This thesis addresses the problem of the cooperative manipulation of a single object
by N robotic agents. In particular, we propose two different task-space decentralized
control protocols, in the sense that no online communication take places between the
agents. Moreover, no feedback on the contact forces/torques is required, therefore
the use of corresponding sensors is avoided. Load sharing coefficient between the
agents are employed to represent potential differences in power capabilities among the
agents. In the former approach, each agent utilizes information associated with its own
and the object’s dynamics and quaternions are employed for the object’s orientation,
avoiding thus potential representation singularities. The latter methodology utilizes a
model-free control protocol with prescribed transient and steady-state performance as
well boundedness on the input magnitude and rate. The results are verified through
realistic V-REP simulations and experimental studies with two WidowX robotic arms
in both methodologies.

Contents

1 Introduction 1

2 Mathematical Model 3
2.1 Preliminaries . 3
2.2 Kinematics . 4
2.3 Dynamics . 5

3 Quaternion-based Cooperative Manipulation without Force/Torque In-
formation 9
3.1 Preliminaries . 9
3.2 Non Adaptive Control Design . 10
3.3 Adaptive Control Design . 11

4 Prescribed Performance Control 13
4.1 Introduction to Prescribed Performance Control 13
4.2 Control design . 13
4.3 Control parameters design . 15

5 Hardware 17
5.1 WidowX mark II . 17
5.2 Servos Characteristics . 19

6 Simulation Environment 21

7 Code 23
7.1 Dynamic Matrices . 23
7.2 Driver . 26
7.3 Controllers . 29

8 Simulation Results 31
8.1 Quaternion based approach . 31
8.2 Prescribed Performance Control . 37

9 Experimental Results 41
9.1 Quaternion based approach . 42
9.2 Prescribed Performance Control . 46

10 Conclusions 49

Bibliography 51

3

Acknowledgments

All the work exposed in this thesis has been carried out during a semester abroad at KTH
Royal Institute of Technology in Stockholm.
When it comes to thanking the people that supported me during this period and made this
work possible I must cite my parents, for all the support they gave to me during all my
university career.
Another special thanks goes to Dimos Dimarogonas, my examiner, for welcoming me in
KTH and giving me this beautiful opportunity, and to Christos Verginis, my supervisor, for
encouraging and advising me during this entire experience.
Finally I want to express all my gratitude to Antonio, Massimiliano, Dario, Pedro, Umarand
Paul, for the friendship, and the good time spent together in Stockholm.

5

Chapter 1

Introduction

The problem of cooperative manipulation has occupied the research community for more
than two decades and there exist a large variety of related works. Early solutions de-
velop both centralized control architectures, as well as decentralized setups, where each
agent compute its own control signals, either by communicating with each other or with
no communication at all [1]- [7]. Impedance and force/motion control are the most used
methodology in the related literature [1], [8]- [15]. Most of the aforementioned works em-
ploy force/torque sensors in order to acquire knowledge of the manipulator-object contact
force/torques, wich however, may result to performance decline due to sensor noise or
mounting difficulties. Recently manipulator grippers that allow to rigidly grasp certain
object has made appearance in the research scene [16]. By employing grasping rigidity we
will see that such torque/force sensors are no more necessary.
In this thesis we are going to present three decentralized cooperative manipulation con-
trollers that employs grasp rigidity in order to avoid using dedicated sensors to retrieve
forces and/or torques. An important characteristic in robot manipulation is the representa-
tion of the agents and object orientation. Most common tools to represent orientations are
rotation matrices, Euler angles and the angle/axis convention. Due to difficulty in retrieving
an orientation error rotation matrices are rarely used in robotic problems. Moreover, as we
will see, the mapping from Euler angles and angles/axis to angular velocities can exhibit
singularity at certain points. For this reasons in the first controller implementation we will
use quaternions to represent orientations, without complicating the control design. In addi-
tion most of the works in the relate literature consider known dynamic parameters regarding
the object and the robotic agents. However, the accurate knowledge of such parameter (e.g.
masses or moments of inertia) can be a challenging issue in [3] and [17] adaptive control
schemes through gain tuning and robust pose regulation is applied to overcome the problem,
while in [19] a model free approach is developed. In light of that we are going to extend
our quaternion based approach to the adaptive solution and adapt, in another controller,
the formulation in [19] to the cooperative manipulation case. Moreover all proposed con-
trollers use load sharing coefficients in order to distribute the object payload according to
the potentially different capabilities of the agents.
Finally, simulation and experimental results using two WidowX Mark II robotic arms vali-
date the proposed methodologies.
Regarding the quaternion based controller and its extension to the adaptive case, the main
novelty of our approach is the combination of i) control design in task-space variables which
avoids explicit computation of inverse kinematics algorithms, ii) coupled object-agent dy-
namic formulation which does not require contact force/torque measurements, iii) the ex-

1

Chapter 1. Introduction

tension to an adaptive version, where the dynamic parameters of object and robots are
considered unknown and iv) the employment of unit quaternions for the object orientation
thus avoiding potential representation singularities.
Concerning the prescribe performance controller adaptation instead, to the best of the
authors’ knowledge, this is the first approach that integrates model-free cooperative manip-
ulation under bounded inputs with prescribed transient and steady state performance in an
experimental framework.

2

Chapter 2

Mathematical Model

2.1 Preliminaries

fOg
x

y

z

fIg x

y

z

fE1g
x

y

z

fE2g x

y

z

fB1g
x

y

z

fB2g
x

y

z

pE1

pO

pE2

pO=E2
pO=E1

Figure 2.1: Two robotic arms rigidly grasping an object.

Consider N agent rigidly grasping an object as in figure 2.1. The following notations
will be used:

• We will denote with qi ∈ Rni , i ∈ [1...N] := N the generalized joint-space variables
of each agent.

• With Ei and Bi we will denote the arm’s end effector and base link frames. With O
the object’s center of mass frame, and with I the inertial reference frame.

• The arms’ reference frames for links and joints are computed according to the Denavit-
Hartenberg convention [18].

• The vector connecting the origins of coordinate frames A and B expressed in frame
C coordinates in 3D space is denoted as pCB/A ∈ R3.

• We denote as φA/B ∈ T3 the Euler angles representing the orientation of B with
respect to A, where T3 is the 3D torus. We also define the set Mn = Rn × Tn.

• The rotation matrix from A to B is denoted as RB/A ∈ SO(3), where SO(3) is the
3D rotation group.

3

Chapter 2. Mathematical Model

• The angular velocity of frame B with respect to A, expressed in C, is denoted as
ωCB/A ∈ R3 and it holds that ṘB/A = S(ωAB/A)RB/A [18]. Where S(a) is the skew-
symmetric matrix defined according to S(a)b = a× b.

• Finally for notational brevity, when a coordinate frame corresponds to the inertial
reference frame I, we will omit its explicit notation. And all vector and matrix
dfferentiations will be with respect to the inertial frame I, unless otherwise stated.

2.2 Kinematics

The end effectors positions pBiEi (t) and orientations φEi/Bi are easily computed from the
agent’s joint-space variables qi(t). From the arm’s forward and differential kinematics, if
we denote with Ji : Rni → R6×6 the geometric Jacobian of agent i; with kpi : Rni → R3

and kφi : Rni → T3 its forward kinematics mapping, we will have that [18]:

pBiEi (t) = kpi(qi(t)) (2.1a)

φEi/Bi(t) = kφi(qi(t)) (2.1b)

vBiEi (t) =
[
ṗBiEi (t)

T ωBiEi (t)
T
]T = Ji(qi(t))q̇i (2.1c)

So:
pEi(t) = pBi +RBi(φBi)pBiEi (t) (2.2a)

φEi(t) = φEi/Bi(t) + φBi (2.2b)

vEi(t) = RBi(φBi)vBiEi (t) (2.2c)

Given the rigid grasping the vectors pEiEi/O and φEi/O are constant, thus they can be com-
puted offline and passed to each agent. From this value each arm can compute the object’s
pose and orientation with just the information in it’s joint-space variables:

pO(t) = pEi(t)−REi(qi(t))pEiEi/O (2.3a)

φO(t) = φEi(t)− φEi/O (2.3b)

Dfferentiation of (2.3a) along with the fact that, due to the grasping rigidity, it holds that
ωO = ωEi , allow us to compute the object velocity:

ṗO(t) = ṗEi(t)− ṘEi(qi(t))pEiEi/O
= ṗEi(t)− S(ωEi(t))REi(qi(t))pEiEi/O
= ṗEi(t)− S(ωEi(t))pO/Ei(qi(t))
= ṗEi(t) + S(pEi/O(qi(t)))ωEi(t)

Thus:

vo(t) =
[
ṗO(t)
ωO(t)

]
=
[
I3 S(pEi/O(qi(t)))

03x3 I3

] [
ṗEi(t)
ωEi(t)

]
= JiO (qi(t))vEi(t) (2.4)

Where vEi =
[
ṗTEi , ω

T
Ei

]T is the end effector’s linear and angular velocities and JiO : Rni →
R6×6 is a smooth mapping representing the agent-to-object Jacobian matrix.

4

2.3. Dynamics

Moreover if we define the vector xo(t) = [pTO(t), φTO(T)]T with φo(t) = [γo(t), θo(t), ψo(t)]T
being the Euler angle rapresentation of the opbject orientation, we will have:

ẋo(t) = J−1
or (xo(t))vo(t), (2.5)

where Jor : M→ R6×6 is the object representation jiacobian Jor (xo) = diag{I3, Jor,θ (xo)}
with:

Jor,θ (xo) =

1 0 sin(θo)
0 cos(γo) −cos(θo)sin(γo)
0 sin(γo) −cos(θo)cos(γo)

 (2.6)

Note that Jor (xo) is singular in θo = ± 1
2 , i.e. all the positions where the object is oriented

vertically w.r.t. the inertial reference frame, we will then avoid such configurations.

Remark 2.2.1. Notice that JiO is always full rank due to grasp rigidity, thus the object-
to-agent Jacobian matrix can always be directly derived from JiO :

JOi(qi) = J−1
iO

(qi) =
[
I3 −S(pEi/O(qi))

03x3 I3

]
=
[
I3 S(pO/Ei(qi))

03x3 I3

]
. (2.7)

2.3 Dynamics

Agents’ Dynamics

The joint-space dynamics of agent i can be computed using the Lagrangian formulation [18]:

Bi(qi)q̈i +Ni(qi, q̇i)q̇i + pi(qi) + fqi(qi, q̇i) + wqi(t) = τi − JTi λi (2.8)

Where Bi : Rni → Rni×ni is the joint-space positive definite inertia matrix, Ni : Rni×Rni →
Rni×ni is the joint-space Coriolis matrix, pi : Rni → Rni is the joint-space gravity vector,
fqi : Rni → Rni is a model field representing model uncertainties and wqi : R≥0 → Rni is
a bounded vector representing external disturbances. In the right side instead, λi ∈ R6 is
the generalized force vector that agent i exerts on the object and τi ∈ Rni is the vector of
generalized joint-space inputs, with τi =

[
λTBi , τ

T
αi

]T ,where λBi =
[
fTBi , µ

T
Bi

]T ∈ R6 is the
generalized force vector on the center of mass of the agent’s base and ταi ∈ R6 is the torque
inputs of the robotic arms’ joints.
Now, by inverting (2.8) and using (2.1c) and it’s derivative, we can obtain the task-space
agent dynamics [18]:

Mi(qi)v̇Ei + Ci(qi, q̇i)vEi + gi(qi) + fqi(qi, q̇i) + wqi(t) = ui − λi (2.9)

Where Mi : Rni → R6×6 is the positive definite inertia matrix, Ci : Rni × Rni → R6×6 is
the Coriolis matrix, gi : Rni → R6 is the task-space gravity term, fi ∈ R6 is the vector of
generalized forces that agent i exerts on the grasping point with the object and finally ui
is the task-space wrench acting as control input.
From the kineto-static duality [18] it possible to derive the input joint torques from ui as:

τi = JTi ui + (Ini − JTi (qi)JTi
†(qi))τi0 (2.10)

where the term τi0 has been introduced to take account of over actuated agents, and does
not contribute to the end-effector forces.

5

Chapter 2. Mathematical Model

Finally, given that qi is not a position of singularity for Ji(qi), the task-space matrices can
be directly derived form the joint-space ones:

Mi =
(
JiB

−1
i JTi

)−1 (2.11a)

Ci = Mi

(
JiB

−1
i Ni − J̇i

)
J−1
i (2.11b)

gi = MiJiB
−1
i pi (2.11c)

Object’s Dynamics
The following second order dynamics for the object can be derived based on the Newton-
Euler formulation:

Mo(xo)v̇o + Co(xo, vo)vo + go(xo) + wo(t) = λo (2.12)

where xo =
[
pTO, φ

T
O

]T : R≥0 → M, Mo : M → R6×6 is the positive definite inertia
matrix, Co : M × R6 → R6×6 is the Coriolis matrix, go : M → R6is the gravity vector,
wo : R≥0 → R6 is a bounded vector representing external disturbances and finally λo ∈ R6

is the vector of generalized forces acting on the object’s center of mass.
If λi, i ∈ N is the force that each agent exert on the object, exploiting as before the

kineto-static duality and considering the rigid grasping we have:

λo = GT (q)λ (2.13)

where λ =
[[
λTi
]
i∈N

]T
∈ R6N , G(q) =

[
JTo1

(q1),, JToN (qN)
]T , G : Rn → R6N×6 is the

grasping matrix, and q =
[[
qTi
]
i∈N

]T
∈ Rn, n =

∑
i∈N ni is the vector containing all

agents’ joint variables.

Remark 2.3.1. There might be internal forces λI ∈ R6N generated by the agents that
doesn’t contribute in the object movement, hence GT (q)λI = 0. If we denote with λM ∈ R6N

the forces that actually produces a movement for the object we will have [20]:

λ = λI + λM

λo = GT (q)λ = GT (q)(λI + λM)
= GT (q)λM

so:
λM = 1

N
G?(q)GT (q)λ (2.14)

and finally:

λI = λ− λM = λ− 1
N
G?(q)GT (q)λ =

(
I6N −

1
N
G?(q)GT (q)

)
λ. (2.15)

Where 1
NG

?(q) is a generalized inverse of GT (q) [20]:

G?(q) =

J
−T
o1

(q)
...

J−ToN (q)

 (2.16)

6

2.3. Dynamics

Coupled Dynamics
Our goal is now to compute a comprehensive dynamic equation for the entire system, i.e.
object plus agents. The agents dynamics (2.9) can be written in vector form as:

M(q)v̇ + C(q, q̇)v + g(q) + f(q) + w(t) = u− λ (2.17)

where, for simplicity, we omitted the disturbance and model uncertainties term, q and λ

are defined as in the previous section, v =
[[
vTi
]
i∈N

]T
∈ R6N , M = diag

{
[Mi]i∈N

}
∈

R6N×6N , C = diag
{

[Ci]i∈N
}
∈ R6N×6N , u =

[[
uTi
]
i∈N

]T
∈ R6N , g =

[[
gTi
]
i∈N

]T
∈ R6N ,

f =
[[
fTi
]
i∈N

]T
∈ R6N and w =

[[
wTi
]
i∈N

]T
∈ R6N .

We can now compute the overall dynamics. By substituting (2.17) in (2.13) we obtain:

λo = GT (q) (u−M(q)v̇ − C(q, q̇)v − g(q)) . (2.18)

By differentiation of (2.4) we get:

v̇i = J̇oi(qi, q̇i)vo(t) + Joi(qi)v̇o. (2.19)

Finally, by substituting (2.4), (2.19) and (2.12) in (2.18) we obtain the overall coupled
dynamics:

M̄(q, xo)v̇o + C̄(q, q̇, xo, vo)vo + ḡ(q, xo) + w̄(q, t) = GT (q)u, (2.20)

where:

M̄ = Mo +GTMG (2.21)
C̄ = Co +GTCG+GTMĠ (2.22)
ḡ = go +GT g +GT f (2.23)
w̄ = wo +GTw (2.24)

7

Chapter 3

Quaternion-based Cooperative
Manipulation without Force/Torque
Information

3.1 Preliminaries

In order to avoid representation singularities in (2.4) we are going to use quaternions to
express frames orientations. Given two frames {A} and {B} we define a unit quaternion
ξB/A =

[
ηB/A, ε

T
B/A

]T
∈ S3, where with Sn we denote the n dimension sphere, ηB/A ∈

R and εB/A ∈ S2. The quaternion subjects to the constraint η2
B/A + εTB/AεB/A = 1.

Given a rotation between two frames of θ degrees about the vector γ, ‖γ‖2 = 1, and the
corresponding rotation matrix RB/A = [rij] , i, j ∈ {1, 2, 3}, we can compute the quaternion
directly from θ and γ or from the rotation matrix as follow [18]:

ηB/A = cos

(
θ

2

)
= 1

2
√
r11 + r22 + r33 + 1 (3.1)

εB/A = sin

(
θ

2

)
γ = 1

2

sign(r32 − r23)
√
r11 − r22 − r33 + 1

sign(r32 − r23)
√
r11 − r22 − r33 + 1

sign(r21 − r12)
√
r33 − r22 − r11 + 1

 . (3.2)

For a given quaternion ξB/A =
[
ηB/A, ε

T
B/A

]T
∈ S3 it’s conjugate, that corresponds to

the orientation of frame {A} with respect to {B}, is ξ∗B/A = ξA/B =
[
ηB/A,−εTB/A

]T
∈ S3.

Moreover given two quaternions ξi =
[
ηi, ε

T
i

]T
, i ∈ {1, 2}, the quaternion product is defined

as:
ξ1 ⊗ ξ2 =

[
η1η2 − εT1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
, (3.3)

it’s time derivative as:
ξ̇B/A = 1

2E(ξB/A)ωAB/A, (3.4)

where:
E(ξ) =

[
−εT

ηI3 − S(ε)

]
, (3.5)

9

Chapter 3. Quaternion-based Cooperative Manipulation without Force/Torque
Information

and finally it can be shown that ET (ξ)E(ξ) = I3 and hence [18]:

ωAB/A = 2ET (ξB/A)ξ̇B/A. (3.6)

3.2 Non Adaptive Control Design

Given a bounded target position and orientation for the object, specified by pO,d(t) ∈ R3

and ξO,d(t) ∈ S3 with bounded first and second derivative, the goal is to find u in (2.20)
such that:

lim
t→∞

[
pO(t)
ξO(t)

]
=
[
pO,d(t)
ξO,d(t)

]
. (3.7)

First we will need to define the errors associated with the object pose and desired pose
trajectory.
Lets define as position error the vector ep : R≥0 → R3:

ep(t) = pO(t)− pO,d(t), (3.8)

since quaternion do not form a vector space we need to use its property to extract the
orientation error. If eξ =

[
eη, e

T
ε

]T : R≥0 → S3 is the quaternion describing the orientation
error, we will have that [18]:

eξ(t) =
[
eη(t)
eε(t)

]
= ξO,d ⊗ ξ?O(t) =

[
ηo,d(t)
εo,d

]
⊗
[
ηo(t)
−εo

]
=
[

ηo(t)ηo,d(t) + εTo εo,d
ηo(t)εo,d(t)− ηo,d(t)εo + S(εo)(t)εo,d(t)

]
(3.9)

By taking the time derivative of (3.8) and (3.9), employing (3.4) and (3.6) and certain
properties of skew-simmetric matrices it can be shown that [18]:

ėp(t) = ṗO(t)− ṗO,d(t) (3.10a)

ėη(t) = 1
2e

T
ε (t)eω(t) (3.10b)

ėε(t) = −1
2 (ηo(t)I3 + S(eε(t))eω(t)− S(eε(t))ωO,d) (3.10c)

where eω : R≥0 → R3, eω(t) = ωO(t)− ωO,d(t) and ωO(t) = 2ET (ξO)ξ̇O(t).
Notice that, considering the properties of unit quaternions, when ξO = ±ξO,d, eξ(t) =[
±1 01×3

]T , therefore our objective will be to have:

lim
t→∞

 ep(t)|eη(t)|
eε(t)

 =

03×1
1

03×1

 (3.11)

We can now define the reference velocity signal:

vro(t) =
[
ṗro(t)
ωro(t)

]
=
[
ṗo,d(t)− kpep(t)
ωo,d(t) + kεeε(t)

]
= vo,d(t)−Ke(t) (3.12)

where vo,d(t) = [ṗTo,d(t), ωTo,d(t)]T ∈ R6, K = diag{kpI3, kεI3} ∈ R6×6
≥0 , kε, kp ∈ R≥0

and e(t) = [eTp (t), −eTε (t)]T ∈ R3 × S.
We can now compute the velocity error ev : R≥0 → R6:

ev(t) = vo(t)− vro(t), (3.13)

10

3.3. Adaptive Control Design

and finally the decentralized control law for ui : R≥0 → R6, i ∈ N in (2.20):

ui(t) = µi(t) + fi,d(t) (3.14a)

µi(t) = gi +
(
CiJoi +MiJ̇oi

)
vro(t) +MiJoi v̇

r
o(t)− J−Toi (Kvev(t) + cie(t)) (3.14b)

fi,d(t) = ciJ
−T
oi (Mov̇

r
o(t) + Cov

r
o(t) + go) (3.14c)

where Kv = diag{kvi}i=1,2,..,6 ∈ R6×6
≥0 is a diagonal matrix gain.

As seen in section 2.3 in order to compute the Mi, Ci and gi matrices, i = 1, 2, O, we
will need all the dynamic parameters of robots and object (inertias moments, masses and
geometric parameters). Those values are not trivial to compute, and often only an approx-
imation can be retrieved. For this reason an adaptive version of the controller is presented
in the next section.

3.3 Adaptive Control Design

Let’s suppose to not know the dynamical parameters of robots and object. It can be
shown [18] that the system dynamics can be written in the form:

Mi(qi)v̇i + Ci(qi, q̇i)vi + gi(qi) = Hi(qi, q̇i, vi, v̇i)θi (3.15)
MO(xO)v̇O + CO(xO, ẋO)vO + gO(xO) = YO(xO, ẋO, vO, v̇O)θO (3.16)

Where θO ∈ RlO and θi ∈ Rl are vectors of unknown but constant dynamic parameters
of the object and agents respectively, and Hi ∈ R6×l, YO ∈ R6×lO are known regressor
matrices not depending on the dynamic parameters of agents and object. Notice that l and
lO are not unique and depends on the specific factorization method used.
Since, as seen in section 2.2, JOi does not depends on θi and θO from (3.14b) and (3.15)
we can write:

JTOiMiJOiv̇i +
(
JTOiMiJ̇Oi + JTOiCiJOi

)
vi + JTOigi = Yi(qi, q̇i, vi, v̇i)θi (3.17)

Where Yi ∈ R6×l is another regressor matrix independent of θi and θO. Hence from (3.14a),
(3.14b), (3.14c) and (3.17) we can write the new decentralized control law as:

ui(t) = J−TOi

(
Yi(qi, q̇i, vrO, v̇rO)θ̂i(t)− cie(t)− kviev(t) + ciYO(xO, ẋO, vrO, v̇rO)θ̂iO(t)

)
(3.18)

where θ̂i : R≥0 → Rl and θ̂iO : R≥0 → RlO are the estimates of θi and θO respectively. The
estimation is initialized with lO and l values computed for example assuming the center of
mass of each link to be in it’s middle, and updated using the following adaptation laws:

˙̂
θiO(t) = −γoY TO (xO, ẋO, vrO, v̇rO)ev(t) (3.19a)

˙̂
θi(t) = −γiY Ti (qi, q̇i, vrO, v̇rO)ev(t) (3.19b)

where γo ∈ R≥0 and γi ∈ R≥0 are two constant parameters that needs to be experimentally
calibrated and ev(t) is the signal defined in (3.13).

11

Chapter 4

Prescribed Performance Control

Even though the controller we talked about in the previous section works well in most sce-
narios, the computational level requested to implement it in complex scenes is significantly
high. Moreover errors in the dynamical parameters of the model may affect the controller
performance. A good alternative is that of prescribed performance control [19], which is
adapted in this work in order to achieve predefined transient and steady state response
bounds for the errors without relying on the specific state space model.

4.1 Introduction to Prescribed Performance Control

Prescribed performance control [19], describes the behavior where a tracking error e(t) :
R≥0 → R evolves strictly within a predifined region buonded by specific functions of time,
achieving prescribed transient and steady state performance. We will have then:

− ρL(t) < e(t) < ρU (t), ∀t ∈ R≥0, (4.1)

where ρL(t) and ρU (t) are smooth bounded decay functions of time satisfying lim
t→∞

ρL(t) > 0
and lim

t→∞
ρU (t) > 0, called performance functions. If we take for example the exponential

performance function we will have ρi(t) = (ρ0
i − ρ∞i)e−lit + ρ∞i with ρ0

i , ρ
∞
i , li ∈ R≥0, i ∈

{U,L}, appropriately chosen constants holding:

ρi(0) = ρ0
i

lim
t→∞

ρi(t) = ρ∞i .

The initial values ρ0
L and ρ0

U has to be chosen such that −ρ0
L < e(0) < ρ0

U . ρ∞L and ρ∞U
represent instead the errors bound at the steady state and finally lU and lL can be used to
tune the error speed of convergence.

4.2 Control design

Firstly we will need to define the errors associated with the object’s position ep = [ep1 , ep2 , ep3]T :
R≥0 → R3 and orientation eφ = [eφγ , eφθ , eφψ]T : R≥0 → T3 as:

ep(t) = pO(q(t))− pO,d(t) (4.2a)
eφ(t) = φO(q(t))− φO,d(t). (4.2b)

13

Chapter 4. Prescribed Performance Control

Remark 4.2.1. Note that, as stated in 2.2, if φO,d(t) = [γo,d, θo,d, ψ0,d]T , we will need to
have ψ0,d 6= ±π2 in order to avoid singularity positions for Jor (xo).

We will require an exponential convergence for the errors, hence we will employ the
following performance functions:

−ρsk(t) < epk(t) < ρsk(t), ∀ k ∈ {1, 2, 3}, (4.3a)
−ρφl(t) < eφl(t) < ρφl(t), ∀ l ∈ {γ, θ, ψ}, (4.3b)

where ρsk , ρφl : R≥0 → R>0, with:

ρsk(t) =
(
ρ0
sk
− ρ∞sk

)
e−lsk t + ρ∞sk , ∀ k ∈ {1, 2, 3}, (4.4a)

ρφl(t) =
(
ρ0
φl
− ρ∞φl

)
e−lφl t + ρ∞φl , ∀ l ∈ {γ, θ, ψ}, (4.4b)

are designer-specified, smooth, bounded, positive and decreasing functions of time with
lpk , lφl , ρ

∞
pk
, ρ∞φl , k ∈ {1, 2, 3}, l ∈ {γ, θ, ψ} positive parameters incorporating the desired

transient and steady state performance respectively.
Next we will define the stacked position error es : R≥0 →M:

es(t) =

ep1(t)
ep2(t)
ep3(t)
eφγ (t)
eφθ (t)
eφψ (t)

 = xo(q(t))− xd(t), (4.5)

and the performance functions matrix ρs : R≥0 → R6×6 :

ρs(t) = diag{ρs1(t), ρs2(t), ρs3(t), ρφγ (t), ρφθ (t), ρφψ (t)}. (4.6)

We will define now the normalized error ξs : R≥0 → R6:

ξs(t) =

ξs1(t)
...

ξs6(t)

 = ρ−1
s (t)es(t) (4.7)

and the two signals εs : R6 → R6 and rs : R6 → R6×6 as:

εs(ξs) =

εs1(t)
...

εs6(t)

 =

ln
(

1+ξs1
1−ξs1

)
...

ln
(

1+ξs6
1−ξs6

)
 (4.8)

rs(ξs) = diag

{[
∂εsm(ξsm)
∂ξsm

]
m∈{1,...,6}

}
= diag

[

2(
1− ξ2

sm

)]
m∈{1,...,6}

 . (4.9)

We can now compute the reference velocity vector vo,des : R6 × R≥0 → R6:

vo,des(ξs, t) =
[
ṗo,des(ξs, t)
ωo,des(ξs, t)

]
= −gsJor (xo)ρ−1

s (t)rs(ξs)εs(ξs)

= −gsJor (ρs(t)ξs + xd(t))ρ−1
s (t)rs(ξs)εs(ξs), (4.10)

14

4.3. Control parameters design

where gs ∈ R≥0 is a constant gain. We define now the velocity error ev : R6 × R≥0 → R6

as:

ev(ξs, t) =

ev1(ξs, t)
...

ev6(ξs, t)

 = vo(t)− vo,des(ξs, t). (4.11)

Similarly as what we’ve seen for the position and orientation error we will proceed now to
define the performance functions matrix ρv : R≥0 → R6×6, ρv(t) = diag{[ρvm(t)]m∈{1,...,6}}
where ρvm(t) =

(
ρ0
vm − ρ

∞
vm

)
e−lmt + ρ∞vm such that ρ0

vm > ‖evm(t)‖, lvm > 0 and ρ0
vm >

ρ∞vm > 0, ∀m ∈ {1, ..., 6}.
The normalized velocity error ξv : R6 × R≥0:

ξv(ξs, t) =

ξv1(ξs, t)
...

ξv6(ξs, t)

 = ρ−1
v (t)ev(ξs, t), (4.12)

and the signals εv : R6 → R6 and rv : R6 → R6×6 :

εv(ξv) =

εv1(ξv1)
...

εv6(ξv6)

 =

ln
(

1+ξv1
1−ξv1

)
...

ln
(

1+ξv6
1−ξv6

)
 (4.13)

rv(ξv) = diag

{[
∂εvm(ξvm)
∂ξvm

]
m∈{1,...,6}

}
= diag

[

2(
1− ξ2

vm

)]
m∈{1,...,6}

 . (4.14)

We are finally ready to design the distributed control input for each agent i ∈ N as ui :
R6 × R≥0 → R6:

ui(ξv, t) = −cigvJ−1
oi (q(t))ρ−1

v (t)rv(ξv)εv(ξv), (4.15)

and it’s stacked version:

ū(ξv, t) =

u1(ξv, t)
...

uN (ξv, t)

 = −G?(q)Cgρ−1
v rv(ξv)εv(ξv) (4.16)

where Cg = diag{[cigv]i∈N} ∈ R6N×6N and ci are the predefined load sharing coefficients
satisfying

∑
i∈N ci = 1 and 0 ≤ ci ≤ 1.

4.3 Control parameters design

We want gv such that ‖ui(t)‖ ≤ ū, ∀t ∈ R≥0 where ū ∈ R≥0 is the designed maximum
magnitude for the input. This procedure can be very useful in real scenarios when the
torque that each agent’s joint can produce is limited. As already stated in 2.2 the torque
can be related to the input forces through the kineto-static duality (2.10), so it’s possible
to design ū such that ū < ‖JTi (q)τ̄i‖, where τ̄i ∈ Rni is the maximum selected torque vector
for agent i.

15

Chapter 4. Prescribed Performance Control

The input forces are computed as in (4.15) thus we need to ensure:

‖ui(ξv, t)‖ = ‖cigvJ−1
oi (q(t))ρ−1

v (t)rv(ξv)εv(ξv)‖ ≤ ū, (4.17)

employng the properties of the matrix norm we will have:

‖ui(ξv, t)‖ = ‖cigvJ−1
oi (q(t))ρ−1

v (t)rv(ξv)εv(ξv)‖
≤ cigv‖J−1

oi (q(t))‖‖ρ−1
v (t)‖‖rv(ξv)‖‖εv(ξv)‖

≤ cigvJ̄−1
oi

1
ρ̄∞v

r̄v ε̄v,

where J̄−1
oi =

(
1 +maxi∈N {‖pEiO/Ei‖}

)
≤ ‖J−1

oi (q(t))‖, ρ̄∞v = min
m∈{1...6}

{ρ∞vm}, r̄v = max
m∈{1...6}

{rvm(ξvm)}.
From section 4.2 we know that:

‖εv(ξv(ξs(t), t))‖ ≤ ε̄v = max

‖εv(ξv(ξs(0), 0))‖,
B̄v max

m∈{1...6}
{ρ0
vm}

λmin
(
M̄−1

)
gv

where B̄v is a positive constant term satisfying:

B̄v ≥
∥∥∥∥ 1
m

[
C̄vO − ḡ − w̄

]
− v̇d − ρ̇vξv

∥∥∥∥
where m is such that m ≤ ‖M̄‖.

1) ε̄v =
B̄v max

m∈{1...6}
{ρ0

vm}

λmin(M̄−1)gv
:

If that’s the case we will have to guarantee:

ciJ̄
−1
oi

1
ρ̄∞v

r̄v

B̄v max
m∈{1...6}

{ρ0
vm}

λmin
(
M̄−1

) ≤ ū (4.18)

which does not depend on gv holding that we need to choose ū high enough to satisfy this
inequality, which make sence since we will need at least a minimum input just to overcome
gravity.

2) ε̄v = ‖εv(ξv(ξs(0),0))‖ :

In this case we need to guarantee:

cigvJ̄
−1
oi ‖r̄vεv(ξv(ξs(0), 0))‖ ≤ ū,

and if we solve it for gv we will have:

gv ≤
ūρ̄∞v

ciJ̄
−1
oi r̄v‖εv(ξv(ξs(0), 0))‖

. (4.19)

16

Chapter 5

Hardware

Figure 5.1: Two WidowX mark II arms grasping an object.

In order to perform experiments and simulations we will need to use two WidowX mark
II arms grasping a wood rectangular cuboid (14.5cm × 4.4cm × 2cm, weight: 62g), figure
5.1. The WidowX arm has 5 degrees of freedom but, due to the scene configuration, we will
be using just 3, resulting in the case of planar cooperative manipulation.

5.1 WidowX mark II

The WidowX mark II robotic arm (figure 5.2a) is a 5 d.o.f. robot manipulator with a
parallel pincher produced by Trossen Robotics [21]. The arm can lift up to 400g at 30cm
from the base and the gripper is able to hold up to 500g. It’s composed of 6 servos in total
produced by Robotis [22]:

• 2 Dynamixel MX-28T, figure 5.3b: the first is used to rotate the base link and the

17

Chapter 5. Hardware

latter as 4th joint. They provide a maximum torque of 2.5Nm, and a 4096 steps
position encoder.

• 2 Dynamixel MX-64T, figure 5.3c: this servos are used in the second and third joint
of the arm. They provide a maximum torque of 6Nm, and a 4096 steps position
encoder.

• 2 Dynamixel AX-12A, figure 5.3a: used to open and close the gripper and in the last
joint. They provide a maximum torque of 1.5Nm, and a 1023 steps position encoder.

Like anticipated we will be working with just 4 of this servos, the 2 MX-64T (second
and third joints) with the MX-28T (fourth joint) will provide the 3 d.o.f. needed for the
experiments, and the AX-12A will be used to control the gripper.

(a) A WidowX mark II arm. (b) The ArbotiX-M board.

Figure 5.2: The WidowX robotic arm and its ArbotiX-M control board.

(a) Dynamixel AX-12A. (b) Dynamixel MX-28T. (c) Dynamixel MX-64T.

Figure 5.3: Arm’s servos.

The servos come with an internal velocity and position PID controller. To send and
retrieve information to the servo it’s sufficent to access the data stored in it’s internal
register. To read and write on the register we will use an ArbotiX-M board (figure 5.2b),
the producer offers an useful .ino script that allow us to easily communicate with the servos
using python. Some useful entries of the register are:

• Current position and velocity of the rotor.

18

5.2. Servos Characteristics

• Goal position and velocity for the internal PID controllers.

• PID controller constants.

• Maximum current in terms of % w.r.t. the flowing current when the servo is stalled
at 12V .

• The motor sequential ID that allow us to identify the specific servo connected to the
board.

• A fixed delay applied before answering a request.

5.2 Servos Characteristics

The servos are not all capable to automatically set a given torque value. Instead it’s
possible to set a maximum value for the flowing current, hence we need to compute the
current-torque relation for each of the MX servos. From the producer page it’s possible to
download the servos datasheets, there is no explicit formula to compute the torques but an
useful table with current-torque values is given. In order to compute an usable relation we
performed, in Matlab, an LS estimation on the given data using a linear formulation for the
Dynamixel MX-64 and a quadratic formulation for the MX-28 (servos characteristics.m).
The estimation returned the following results (Figure 5.4):

IMX28 = 0.2258τ2 + 0.4850τ + 0.1514 (5.1)
IMX64 = 0.8606τ + 0.1047 (5.2)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

From Datasheet
LS estimation

(a) Dynamixel MX-64 characteristic.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

From Datasheet
LS estimation

(b) Dynamixel MX-28 characteristic.

Figure 5.4

19

Chapter 6

Simulation Environment

All simulations have been carried out using V-REP a virtual experimentation platform de-
veloped by Coppelia Robotics that offers some very useful APIs to interface the simulated
robots with the ROS framework [23].

In order to perform any kind of simulation a 3D model that allows the software to
compute the physics of the scene is needed. As presented in chapter 5 we are going to use
two WidowX Mark II robotic arms for our experiments. In the official V-REP repository
there is no 3D model for the arm we were going to use, fortunately the producer offers a
3D model compatible with STEP and Adobe Inventors formats (figure 6.1).

Figure 6.1: WidowX 3D STEP model.

Starting from the available model and following the Copellia Robotics guide [24] the
scene in figure 6.2 have been created. In order to stream the joints variables and retrieve
the torques values from the ROS frameworks a child script have been attached to each
robot. The script is composed by four parts:

1. Initialization: In this section all ROS topics and message variables are defined and
initialized. Joints position will be published in the ’/robot name/joints poses’ topic

21

Chapter 6. Simulation Environment

and joints velocityes will be published in the ’/robot name/joints vels’ topic. Torques
will be retrieved from the ’/robot name/torques’ topic.

2. Sensing: this section contains all the code needed to read and stream joints positions
and velocities.

3. Torque Callback: it’s actually a function and it’s called each time the controller
publishes a torque message in the topic. It takes the published values and apply
the desired torques at the joints. Similarly to the experimental case there is no
straightforward method to set a target torque in V-REP but it’s possible to limit the
joint maximum torques and set a speed goal. It’s then sufficient to limit the torque
at the desired values and make the joint rotate with a very high speed in the desired
direction.

4. Cleanup: this section is executed each time the simulation is stopped and it just delete
all the created topics.

Figure 6.2: Two WidowX mark II arms grasping an object in V-REP.

22

Chapter 7

Code

In this chapter we will present the code created in order to compute the dynamic matrices,
move the robots and implement the controllers.

7.1 Dynamic Matrices

The dynamic matrices computation is divided in three parts:

1. First the three link arm dynamics.m script computes the matrices for a generic three
link arm using only symbolic values.

2. Then the evaluate matrices 3links state space.m script substitutes all the generic pa-
rameters in the matrices with the WidowX values, leaving only the joint variables,
finally it computes the Jacobian matrix determinant to determine it’s singularity con-
figurations. Since it’s very simple a more in depth explanation is not needed.

3. Finally the computed matrices are copied in the widowx compute dynamics.py script
wich implements a class that allows to easily compute the matrices values taking the
joints variables as input.

three link arm dynamics.m

fB1 ≡ Ig
x

y

z

fB2g
x

y

z

fB1g
x

y

z

fE1g
x

y

z

fE2g
x

y

z

Figure 7.1: Bases (Bi), end effectors (Ei), object (O) and reference (I) frames.

As previously stated this script computes the dynamic matrices for a generic three link
arm. All matrices have been computed according to the Lagrangian formulation using the
Denavit-Hartenberg convention to place the joints and links frames [18], the inertial frame
coincides with the base frame of the first arm, a schematic representation of the most im-
portant frames is displayed in figure 7.1, as we can see the second robot is rotated of 180◦

23

Chapter 7. Code

along the y axis and translated along the x axis.

The script firstly defines all the needed symbolic variables:

• the links’ length, center of mass, weight and inertias;

• the joints’ position, velocity, gear reduction, weight and inertias;

• the second robot base offset w.r.t. the reference frame.

Then using the rotation matrix.m and translation matrix.m scripts we compute all the
transformation matrices between the links center of mass and motors.
From the transformation matrices just computed we will extract the position vectors of links
and joints as the first three elements of the last column of each matrix and the rotation
matrices as the first 3× 3 diagonal block. By differentiating the position vectors w.r.t. the
joint variables we compute the links (J (li)

L) and joints (J (mi)
L) linear jacobians. Since we

only have revolute joints the angular jacobian computation is straightforward:

J l1A =

0 0 0
0 0 0
1 0 0

 J l2A =

0 0 0
0 0 0
1 1 0

 J l3A =

0 0 0
0 0 0
1 1 1

Jm1
A =

 0 0 0
0 0 0
kr1 0 0

 Jm2
A =

0 0 0
0 0 0
1 kr2 0

 Jm3
A =

0 0 0
0 0 0
1 1 kr3

We can now compute the joint-space dynamical matrices as:

B(q) =
3∑
i=1

(
mliJ

(li)T
L J

(li)
L + J

(li)T
A RiI

i
liR

T
i J

(li)T
A +

+mmiJ
(mi)T
L J

(mi)
L + J

(mi)T
A RmiI

mi
miR

T
miJ

(mi)T
A

)
;

N(i,j)(q, q̇) =
3∑
k=1

1
2

(
∂B(i,j)(q)

∂qk
+
∂B(i,k)(q)

∂qj
+
∂B(j,k)(q)

∂qi

)
q̇k;

p(q) =
[
∂U
∂q1

∂U
∂q2

∂U
∂q3

]T
.

Where U is the potential energy in the Lagrangian equation. Then, in order to simplify
computations, all variables known to be zero are set as such and the state-space matrices
(M , C and g) are computed as in (2.11).
Now that we have the complete state space dynamical model we want to compute its
regression matrices as described in section 3.3. The (3.17) equation is computed and through

24

7.1. Dynamic Matrices

a simple inspection the following dynamic parameters are extracted:

θi =

l2cx,1m1
lcx,1m1
l2cy,1m1
lcy,1m1
Ic1

Ir1

l2cx,2m2
lcx,2m2
l2cy,2m2
lcy,2m2
m2
mr2

Ic2

Ir2

l2cx,3m3
lcx,3m3
l2cy,3m3
lcy,3 ∗m3

m3
mr3

Ic3

Ir3

(7.1)

where Ici ∈ R≥0 and Iri ∈ R≥0 are the links and motors inertias values, mi ∈ R≥0 and
mri ∈ R≥0 are its masses, lcx,i ∈ R≥0 and lcy,i ∈ R≥0 the coordinate of links’ center of
masses w.r.t. the frame they’re attached. Finally the elements in the vector are collected
from the equation and stored in the regression matrix.
If we apply the same procedure for the equation (3.16) we will obtain:

θO =
[
mO

IzO

]
. (7.2)

widowx compute dynamics.py
After computing in Matlab the Mi, Ci and gi, i = 1, 2, matrices we implemented them in
this script creating a class named ”WidowxDynamics” that allows us to easily include the
dynamic computation in the ROS nodes we will be using to control the robots. The class
includes the following methods:

• compute ee pos(self, r1 array poses): it takes the joints positions numpy array as
input and returns the end effector position as a numpy array for the robot with the
inertial frame attached to its base.

• compute ee pos(self, r2 array poses, ambient): it takes the joints positions numpy
array and a string ”ambient” as inputs and returns the end effector position as a
numpy array for the robot shifted from the inertial frame. The ”ambient” parameter
can be set to ”sim” or ”exp” in order to take in to account of different offsets between
experiments and simulations without changing the class. To set the offset variables
one can change the ”x off” and ”x off sim” parameters in the class declaration.

25

Chapter 7. Code

• compute jacobian1(self, r1 array poses) and compute jacobian2(self, r2 array poses):
they take the joints positions numpy array as input and return the end effector jaco-
bian as a numpy matrix for the first and second robot respectively.

• compute M1(self, r1 array poses) and compute M2(r2 array poses): they take the
joints positions numpy array as input and return the inertia matrix as a numpy matrix
for the first and second robot respectively.

• compute C1(self, r1 array poses, r1 array vels) and compute C2(self, r2 array poses,
r2 array vels): this methods take the joints positions and velocities numpy arrays as
inputs and return the Coriolis matrix as a numpy matrix for the first and second robot
respectively.

• compute g1(self, r1 array poses) and compute g2(self, r2 array poses): they take the
joints positions numpy array as input and returns the gravity vector as a numpy array
for the first and second robot respectively.

• compute Mo(self, Ro): it takes the object rotation matrix as input and returns its
inertia matrix as a numpy matrix.

• compute Y1(self, r1 array poses, r1 array vels, v o r1, v o r dot1) and compute Y2(self,
r2 array poses, r2 array vels, v o r2, v o r dot2): they take the joint variables and the
velocity and acceleration reference signals numpy arrays as inputs and return the re-
gression matrix for the first and second arm respectively.

• compute Yo(self, v o r dot): using the reference velocity signal as input returns the
object regression matrix.

7.2 Driver

Each motor includes a register where all joints variables and target signal are stored, the
comunication happens through a serial to USB port, and the needed communication pro-
tocol is implemented in the ros.ino script, preuploaded by the producer in the ArbotiX-M
board. To access each register an useful python class, implemented in the arbotix python
package (src/arbotix.py), is provided by the producer [21].
From the beginning we encountered some problems with the registers access speed. If we
tried to read all joint variables or write all the torque goals the communication frequency
were limited at 30Hz. In order to speed up readings and writings some additional meth-
ods have been implemented: syncSetTorque(torques, position), syncGetPos(self, IDs) and
syncGetVel(self, IDs). Those methods allow us to read and write on multiple motors at
the same time, in this way we can achieve n times the standard update frequency where
n is the number of servos we are using. In our case with the standard version we could
achieve a transfer rate of 30Hz for the readings of all 6 joint variables (12 bytes), with the
new methods we increased that value up to 180Hz. Finally by decreasing the delay time
that each servo takes to answer a register call we have been able to increase the reading
frequency of about 20Hz, reaching 200Hz, a more than suitable value for our purpose.
The values returned by the ArbotiX class are unsigned integers of 1 or 2 bytes length. All
the conversions are reported in the servos datasheets [22] and the useful ones have been
reported in the servos parameters.py file for an easy access in the driver. We now have
some specifications we want to meet with our software:

26

7.2. Driver

• It has to limit the maximum applicable joints torques: the MX-64 and MX-28 have a
stall torque of 6Nm and 2.5Nm respectively, in order to not overheat the servos we
limited that value at 50% of its maximum.

• It has to check for jacobian singularity positions that may result in unstableness for
the controllers.

• It needs to implement some functions that allow us to easily shut everything down,
setting all torques to zero.

• It has to continuously publish in a topic the joints variables with a refresh rate of at
least 60Hz.

• Finally it needs to be able to listen and apply the torques published from a controller
in a topic. As stated in section 5.2, the servos are not all capable to automatically
set a given torque value. Instead it’s possible to set a maximum value for the current
circulating in the servo, since we have the torque-current relation, it’s possible to setup
a simple workaround. From the desired torque we will compute the current needed to
achieve our goal and use this value as upper limit in the servo, then the only thing we
need to do is send a position message to the servo in order to make it move according
to the desired direction and if the goal is far enough from the current position it will
move using all the available torque/current.

The class implementing all this functions is contained in the widowx state space driver.py
file of the widowx driver package, and the driver can be launched using the coop driver.launch
file with a roslaunch command.

widowx state space driver.py

The driver is implemented trough the WidowxNode class and inherits the ArbotiX class. It
contains the following methods:

• init (self, serial port, robot name): the initialization method takes two strings as
input, the robot’s name (robot name) and the serial port the robot is connected to
(serial port, usually /dev/ttyUSBK where K is a sequential positive integer). Firstly
the method sets up the connection with the ArbotiX-M board using the init method
of the ArbotiX class giving the serial port name as input, after that it waits 10 seconds
in order to allow all the servos to connect. Once all motors are connected it resets its
maximum velocity and PID registers in order to be sure that no residual values have
remained from previous experiments, then the robot is placed at it’s initial position
and after 3 second the gripper is closed (Figure 5.1). Maximum velocity and PID
register are then set to the values specified in the launch file and the ROS topics
setup starts. The node initializes 2 publishers, 2 listeners and a service:

– pos pub and vel pub are the publishers for joints positions and velocities re-
spectively, the topics are named ’/widowx 3links robot name/joints poses’ and
’/widowx 3links robot name/joints vels’, Float32MultiArray is used as message
format;

– toruqe sub is the subscriber for the torque messages sent by the controller, the
topic needs to be named ’widowx 3links robot name/torques’, Float32MultiArray
is used as message format;

27

Chapter 7. Code

– gripper sub is the subscriber for the gripper position, Bool is used as mes-
sage format, if True the gripper will close, the topic needs to be named ’wid-
owx 3links robot name/gripper’ ;

– sec stop server is the service handler for the security stop service, if called it will
shut down the driver. The service is called ’widowx 3links robot name/security stop’

Finally it calls the publish() method.

• publish(self): in this method it’s implemented all the sensing code for the joints vari-
ables. It retrieves the joints positions and velocities register values, checks for error
in the process, if something went wrong it notifies the user with a message in the
terminal and tries again to retrieve the data. Once a good value is recieved, position
and velocity register values are converted in [rad] and [rad/s] respectively. Then it
checks if the configuration is of ”near singularity” for the WidowX jacobian matrix.
Its determinant is 0.0213cos(q2 − 1.246) so the only reachable Jacobian singularity
is in q2 = −0.24rad. If the second servo position is approaching the singularity the
driver notifies the user and if it’s nearer than 0.125rad it shuts down the node. Finally
joints position and velocities are published.

• compute currents(self, torques, directions): the method takes two lists as inputs, the
desired torques and the rotating direction of the joint (the direction can be any nuber
different from 0, it just need to be positive for counterclockwise rotations and negative
for clockwise rotations), the values in the two lists are ordered from the fist joint to the
end effector. The method applies 5.1 and 5.2 to compute the current needed to obtain
the desired torque. A corrective gain is added to the constant value in order to take
in to account internal friction of the motors, to compute it’s sign the moving direction
is needed. This value is not included in the datasheets and has been estimated from
the minimum amount of torque needed to make the rotor move. It returns a list
containing the computed values ordered as the inputs.

• torque callback(self, msg): handles the callbacks from the torques topic. The desired
torques are stored in the first three positions of the msg.data field, in the positions
from 4 to 6 the desired rotating direction is stored, it will be a positive number if
counterclockwise, negative otherwise. The method apply a saturation on the torque
values and computes the index values corresponding to the currents returned from
compute currents(self, torques, directions). If saturation occurs a message in the

terminal is displayed and finally it applies the torques using the ArbotiX class.

• gripper callback(self, msg): handles the callbacks from the gripper subscriber. It uses
the ArbotiX class to move the servo that opens and closes the gripper.

• sec stop(self, req): handles the security stop service, it takes as request a string
containing an explanation for the forced shut down and simply stops the node.

• tourn off arm(self): this method sets all torques to zero stopping the arm. It’s called
automatically anytime the node is shut down.

coop driver.launch
In this file is reported an example on how to launch the driver for two robots. It’s possible
to upload in the ROS parameter server the robot name, the serial port where the arm is
connected, the maximum allowed velocity for the joints, the values of the motors internal
PID and finally the arm initial positions in terms of the index value of each joint.

28

7.3. Controllers

7.3 Controllers

In this section we are going to explain the code that implements the controllers designed in
chapters 3 and 4. The controllers used for simulations and experiments are coded in the wid-
owx controller ROS package, more precisely the widowx cooperative state space sim 3links
controller.py, widowx cooperative state space sim 3links adaptive.py and widowx PPC sim.py
scripts contain the code used for simulations. Experiments’ controllers instead can be found
in the widowx cooperative state space 3links controller.py, widowx cooperative state space
3links adaptive.py and widowx PPC.py scripts. The two implementations are very simi-
lar. A difference resides in the control parameters: the real model is, for obvious reasons,
different from the simulated one therefore they require ad-hoc calibration of the control
constants. Another difference is the presence of a synchronization exploit needed to make
the controller wait for V-REP to publish the new joints variables during simulations. All
controller are implemented as a python class, can be run as a stand-alone executable and
contains the same methods:

• init (self): initialize the controller defining all control variables, matrices and sig-
nals. It subscribes to the topics to listen to joint variables and desired trajectory and
starts up the topic top publish the desired torques message. It creates the Comput-
eDynamics class object and finally initializes the security stop service handler. By
leaving this operation at the end we ensure to always have the driver running when
the control computation starts, in fact the controller will wait for the driver to startup
the security stop service before terminating the initialization.

• r1 pose callback(self, msg), r2 pose callback(self, msg), r1 vel callback(self, msg)
and r2 vel callback(self, msg): are all the callback methods that handles the messages
published in the joints velocity and position topics. Once a message is published the
method copy its value in a class variable that is then going to be used in the control
law.

• target callback(self, msg): every time a message is published in the target trajectory
topic this method is called. It stores the desired position velocity and acceleration in
three different global variables for further use.

• compute torques(self): is called at the end of the initialization process and cyclically
computes the torques that needs to be applied for the given joint variables and desired
trajectory following the control laws described in chapters 3 and 4.

29

Chapter 8

Simulation Results

In this chapter we are going to present the simulations results obtained running the coded
controllers in the V-REP environment. The robots are required to cooperatively move the
object following a designed trajectory:

xo,d(t) = 0.35 + 0.05sin(ωt) (8.1a)

yo,d(t) = 0.15− 0.05cos(ωt) (8.1b)

ψo,d(t) = − π

20sin(2ωt) (8.1c)

ω = 2π
T

(8.1d)

T = 15s (8.1e)

the trajectory has been designed to move all joints at the same time, avoiding Jacobian
singularity configurations while spacing in all the three degrees of freedom of the robot.
In order to make the results comparable the same trajectory have been used for every
controller. Finally the following load sharing coefficients have been applied:

c1 = 0.75
c2 = 0.25.

8.1 Quaternion based approach

As stated in chapter 5 all simulations are going to be performed using just three degree
of freedom producing a movement confined in the (x, y) plane with rotations only along
the z axis. This allow us to reduce the dimensions of the vectors representing position
and orientations and consequentially of all the control signals used to compute the output

31

Chapter 8. Simulation Results

torques. We will have:

pO =
[
px
py

]
∈ R2,

φO = ψO ∈ T,

ep =
[
ex
ey

]
: R≥0 → R2,

eξ =
[
eη
eε

]
: R≥0 → S,

eω = ψ̇O − ψ̇O,d : R≥0 → R,
ui : R≥0 → R3, i = 1, 2,
K = diag{kx, ky, kε} ∈ R3×3

≥0 ,

Kv = diag{kvx, kvy, kvω} ∈ R3×3
≥0 .

and thus our goal will be to have:

lim
t→∞

 ep(t)|eη(t)|
eε(t)

 =

02×1
1
0

While for the non-adaptive part we were able to run the simulations at 60Hz the same was
not possible for the adaptive implementation. Here we need to compute a 3 × 22 matrix
instead of the 3× 3 matrices of the dynamical model adding an non indifferent complexity
to the program that forced the simulation to run at 20Hz.

Non Adaptive
In its basic implementation this controller heavily relies on the computed dynamical model.
Since no more accurate information was available in order to compute inertias and center
of mass of the arm’s links they have been approximated to a bar, this obviously introduces
some estimation error in the model computation that negatively afflict the experiments. As
we can see in figure 8.1 the trajectory of the object presents a marked delay and a loss in
amplitude with respect to the target trajectory. This results in relative errors of about the
10% in position and orientation, figures 8.2 and 8.3.
The gain matrices have been set as follow:

K =

100 0 0
0 100 0
0 0 30

 ;Kv =

3 0 0
0 3 0
0 0 1

 (8.2)

This revealed to be a good compromise in order to minimize the errors while avoiding to
introduce instability in the controller. Lower values will, in fact, increases the delay of the
trajectory and thus the errors, while higher values leads overshooting and thus shaking in
the two arms movements.

32

8.1. Quaternion based approach

0 5 10 15 20 25 30
0.25

0.3

0.35

0.4

0.45

(a) x(t).

0 5 10 15 20 25 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b) y(t).

0 5 10 15 20 25 30
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(c) ψ(t).

Figure 8.1: Executed and desired trajectories.

0 5 10 15 20 25 30

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(a) ex(t).

0 5 10 15 20 25 30

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) ey(t).

Figure 8.2: Position errors.

0 5 10 15 20 25 30
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) eεx(t).

0 5 10 15 20 25 30

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

(b) eη(t).

Figure 8.3: Orientation errors.

By looking at the torques in figure 8.4 it’s evident the action of the load sharing co-
efficients that shifts the load on the first arm, notice that the torques are almost always
inside the bounds we setted for the two WidowX arms servos, saturation occurs only for
very limited periods of time and only marginally affect the simulation results, we ca in fact
see that when saturation occurs the errors temporarily increase.

33

Chapter 8. Simulation Results

0 5 10 15 20 25 30
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 8.4: Torques inputs for both robots.

Adaptive
As expected by using the adaptive version of the same controller we have been able to
significantly reduce both position and orientation errors. We initialized the θO and θi, i =
1, 2 dynamical parameters vector with the estimated values used in the previous section
and then applied the differential equations 3.19 to update the estimation. If we look at the
figures 8.5, 8.6 and 8.7 it’s possible to notice how at the beginning of the simulation the
trend is similar to the non-adaptive case, but then by updating the dynamical parameters
vector we are able to halve the errors by almost completely removing the trajectory delay
and amplitude error. Moreover we have been able to achieve this results with lower control
parameters, increasing the output smoothness and magnitude, figure 8.8, again the load
sharing coefficients allowed us to shift most of the work to the first robot.
We used the following control matrices and constants:

K =

15 0 0
0 10 0
0 0 20

 ;Kv =

5 0 0
0 2 0
0 0 0.1

 (8.3)

γ1 =γ2 = 0.0005 (8.4)
γO = 0.001 (8.5)

34

8.1. Quaternion based approach

0 5 10 15 20 25 30
0.25

0.3

0.35

0.4

0.45

(a) x(t).

0 5 10 15 20 25 30
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b) y(t).

0 5 10 15 20 25 30
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(c) ψ(t).

Figure 8.5: Executed and desired trajectories.

0 5 10 15 20 25 30

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(a) ex(t).

0 5 10 15 20 25 30

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) ey(t).

Figure 8.6: Position errors.

0 5 10 15 20 25 30
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) eεx(t).

0 5 10 15 20 25 30

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

(b) eη(t).

Figure 8.7: Orientation errors.

35

Chapter 8. Simulation Results

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 8.8: Torques inputs for both robots.

36

8.2. Prescribed Performance Control

8.2 Prescribed Performance Control

As seen in the previous section the quaternion based controller suffers from the approx-
imations in the dynamical parameters of the system, by using the adaptive formulation
we can overcome this problem, but it comes with a consistent increment in computational
complexity that may cause severe problems if we want to apply the same controller in more
complex scenes.
We are now going to present the results obtained running the prescribed performance con-
troller in the V-REP environment, this approach does not rely on the system model, and
only the end effector Jacobian computation is needed. This allowed us to keep the update
frequency for the simulation at the desired 60Hz.

Similarly to section 8.1 it’s possible to introduce some simplifications:

ep =
[
ex
ey

]
: R≥0 → R2,

eφ = eψ : R≥0 → T,

es =
[
ep
eφ

]
=

exey
eψ

 : R≥0 → R2 × T,

ρk = diag{ρkx , ρky , ρkψ} : R≥0 → R3×3,

ξk : R≥0 → R3,

εk : R3 → R3

rk : R3 → R3×3

k = s, v,

ui : R3 × R≥0 → R3, i = 1, 2.

We applied the following performance functions:

ρsx(t) = ρsy (t) = (0.04− 0.01) e−0.5t + 0.01
ρψ(t) = (0.5− 0.05) e−0.5t + 0.05
ρvx(t) = (7− 4) e−0.5t + 4
ρvy (t) = ρvψ (t) = (10− 5) e−0.5t + 5

and control parameters:

gs = 0.05
gv = 7

where gv has been computed employing (4.19) with ū = 4 and thus ‖τ‖ = 4.42Nm =
‖[1.25Nm, 1.25Nm, 1.25Nm]‖ which is the maximum applicable torque for each of the three
joints.
As we can see from figures 8.9, 8.10 and 8.11 after the transient part is over the object
follows almost perfectly the desired trajectory, moreover the errors mimics very well the
performance functions transient and steady state trend. Finally, except for an initial spike

37

Chapter 8. Simulation Results

due to the fact that in the beginning of the simulation the arms tends to fall for gravity,
the computed torques never reach the saturation value, figure 8.12. As before it’s possible
to notice the effect of the load sharing coefficients in the computed torques.

0 5 10 15 20 25 30
0.25

0.3

0.35

0.4

0.45

(a) x(t).

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

(b) y(t).

0 5 10 15 20 25 30
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(c) ψ(t).

Figure 8.9: Executed and desired trajectories.

0 5 10 15 20 25 30
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(a) ex(t).

0 5 10 15 20 25 30
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(b) ey(t).

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

0.2

(c) eψ(t).

Figure 8.10: Position errors with associated performance functions.

0 5 10 15 20 25 30
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

(a) evx(t).

0 5 10 15 20 25 30
-10

-8

-6

-4

-2

0

2

4

6

8

10

(b) evy (t).

0 5 10 15 20 25 30
-10

-8

-6

-4

-2

0

2

4

6

8

10

(c) evψ (t).

Figure 8.11: Velocity errors with associated performance functions.

38

8.2. Prescribed Performance Control

0 5 10 15 20 25 30
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 8.12: Torques inputs for both robots.

39

Chapter 9

Experimental Results

In this chapter we are going to present the experimental results obtained running the two
WidowX Mark II arms with the driver and controllers documented in chapter 7. The
object’s desired trajectory is as follows:

xo,d(t) = 0.301 + 0.05sin(ωt) (9.1a)

y0,d(t) = 0.16− 0.05cos(ωt) (9.1b)

ψo,d(t) = − π

20sin(2ωt) (9.1c)

ω = 2π
T

(9.1d)

T = 35s (9.1e)

as before it allows to move all joints at the same time, avoiding Jacobian singularity configu-
rations while spacing in all the three degrees of freedom of the robot. Since not all controller
could perform the trajectory with the same period as the one used for simulations we had
to raise it and set T = 35s. Moreover a longer period will generate lower joints speed and
thus lower torques minimizing the risk to damage the servos. As before, to make the results
comparable the same trajectory have been used for every controller and finally the following
load sharing coefficients have been applied:

c1 = 0.75
c2 = 0.25.

Note that all the simplifications exposed in the simulations results chapter for position,
orientation and control signals vectors and matrices holds for experiments too and will be
given for granted. We will see that the trajectory described by the object during experiments
is not as smooth as the simulated one, this is due to the difficulty in applying the desired
torques at the servos and noise in the joints variable readings. Without a feedback on
the applied load it’s not possible to verify and adjust the input signal on a driver level.
Moreover noise in the joint variable readings results in noise in the computed torques.
Future implementations may introduce some low pass filters in order to smooth the joint
variables signals removing part of the reading noise.

41

Chapter 9. Experimental Results

9.1 Quaternion based approach

As seen while running simulations the adaptive version of the controller is limited by its
computational complexity, during experiments we don’t have to run V-REP, this results in
more available resources that allowed us to work at 30Hz. For the non adaptive and PPC
versions all experiments run at 120Hz.

Non-Adaptive
The slower trajectory allow us to compensate for imprecisions in the dynamical model. As
we can see in the figures 9.1, 9.2 and 9.3 the object follow the desired trajectory with less
than 1% of relative error. As before in figure 9.4 we can see the effect of the load sharing
coefficients and notice that the torques of each joint never overcome the 1.25Nm limit. This
results have been obtained with the following control matrices:

K =

50 0 0
0 50 0
0 0 80

 ;Kv =

3.5 0 0
0 0.5 0
0 0 0.5

 . (9.2)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.2

0.25

0.3

0.35

0.4

(a) x(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b) y(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(c) ψ(t).

Figure 9.1: Executed and desired trajectories.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(a) ex(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) ey(t).

Figure 9.2: Position errors.

42

9.1. Quaternion based approach

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) eεx(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

(b) eη(t).

Figure 9.3: Orientation errors.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 9.4: Torques inputs for both robots.

43

Chapter 9. Experimental Results

Adaptive
During experiments with the adaptive version of the controller, we didn’t see the the same
expected behavior, while the x trajectory is followed with very low error we can’t say the
same for the y and ψ ones, figure 9.5. Errors still have low values but they do not diminish
with time, figures 9.6 and 9.7. This strange behavior is probably caused by the low updating
frequency: the controller can correct deviations from the desired trajectory, but it can’t do
it fast enough, resulting in occasional overshoots. By looking at figure 9.8, we can again
confirm the boundedness of torques and the effect of the load sharing coefficients. Moreover
we can see how this approach allow us to compute again a smoother output signal.
These results have been obtained with the following control matrices and constants:

K =

50 0 0
0 50 0
0 0 80

 ;Kv =

3.5 0 0
0 0.5 0
0 0 0.5

 (9.3)

γ1 =γ2 = 0.0005 (9.4)
γO = 0.001 (9.5)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.2

0.25

0.3

0.35

0.4

(a) x(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.1

0.12

0.14

0.16

0.18

0.2

0.22

(b) y(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(c) ψ(t).

Figure 9.5: Executed and desired trajectories.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(a) ex(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) ey(t).

Figure 9.6: Position errors.

44

9.1. Quaternion based approach

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) eεx(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005

(b) eη(t).

Figure 9.7: Orientation errors.

0 20 40 60
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 9.8: Torques inputs for both robots.

45

Chapter 9. Experimental Results

9.2 Prescribed Performance Control

The experiments confirmed again the goodness of this approach revealing low tracking er-
rors (figure 9.9) and torques (figure 9.12). By looking at figure 9.10 we can still notice the
similarity between position error and performance functions trends. Speed errors does not
really follow the performance function, but they’re aniway bounded by it, wich is all we
need in order to ensure the effectiveness of the controller, figure 9.11. Finally, as always by
looking at figure 9.12 we can se the boundedness of torques and the effect of load sharing
coefficients.
This results have been obtained with the following performance functions and control pa-
rameters:

ρsx(t) = ρsy (t) = (0.05− 0.02) e−0.2t + 0.02
ρψ(t) = (0.4− 0.2) e−0.2t + 0.2
ρvx(t) = (10− 5) e−0.2t + 5
ρvy (t) = (15− 10) e−0.2t + 10
ρvψ (t) = (7− 3) e−0.2t + 3

gs = 0.05
gv = 6.8

where we decided to take a lower gv for safety reasons.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.2

0.25

0.3

0.35

0.4

(a) x(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0.05

0.1

0.15

0.2

0.25

(b) y(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(c) ψ(t).

Figure 9.9: Executed and desired trajectories.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

(a) ex(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

(b) ey(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(c) eψ(t).

Figure 9.10: Position errors with associated performance functions.

46

9.2. Prescribed Performance Control

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

-9

-6

-3

0

3

6

9

(a) evx(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-15

-12

-9

-6

-3

0

3

6

9

12

15

(b) evy (t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

-6

-3

0

3

6

(c) evψ (t).

Figure 9.11: Velocity errors with associated performance functions.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 9.12: Torques inputs for both robots.

47

Chapter 10

Conclusions

We proposed three novel control protocols for the decentralized cooperative manipulation
of an object without employing any force/torque measurements. The first controller em-
ploys unit quaternions in order to avoid singularities in the object angular velocity mapping.
Starting from that the controller has been extended employing an adaptive formulation to
estimate the dynamical parameters of arms and object. Finally a model-free approach has
been adapted form [19]. All controllers use load sharing coefficients to take in to account
of possible differences in the arms strength.
Suitable software have been developed in order to validate the proposed approaches through
simulations and experiments, confirming the results obtained in the theory. More precisely
we have been able to i) confirm the effectiveness of the load sharing coefficients, ii) con-
firm the problems generated by a non perfect parametrization of the dynamical model, and
hence iii) to develop an adaptive formulation in order to estimate in real time the model’s
dynamical parameters and iv) to provide a model-free approach with desired transient and
steady state performance for the cooperative manipulation of an object.
Regarding the quaternion based approach, future efforts will be devoted toward incorpo-
rating kinematic uncertainties associated with the location of the object’s center of mass,
external disturbances, non rigid grasps as well as singularity avoidance.
Concerning the prescribed performance implementation future efforts will be devoted to-
wards adressing non-rigid grasping and kinematic singularity avoidance.
Finally future efforts in the code developing could extend the driver to be used for joint
position and velocity control in order to fully exploit the arm potential, moreover a filtering
function can be added to mitigate reading noises.

49

Bibliography

[1] S. A. Schneider and R. H. Cannon. Object impedance control for cooperative ma-
nipulation: Theory and experimental results. IEEE, Transactions on Robotics and
Automation, 1992.

[2] Y.-H. Liu, S. Arimoto, and T. Ogasawara. Decentralized cooperation control: non-
communication object handling. ICRA,, 1996.

[3] Y.-H. Liu and S. Arimoto. Decentralized adaptive and nonadaptive position/force con-
trollers for redundant manipulators in cooperations. IJRR, vol. 17, no. 3, pp. 232–247,
1998.

[4] M. Zribi and S. Ahmad. Adaptive control for multiple cooperative robot arms. CDC,
pp. 1392–1398, 1992.

[5] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal. Decentralized coop-
eration between multiple manipulators. International Workshop on Robot and Human
Communication, 1996.

[6] F. Caccavale, P. Chiacchio, and S. Chiaverini. Task-space regulation of cooperative
manipulators. Automatica, 1996.

[7] J. Gudino-Lau, M. A. Arteaga, L. A. Munoz, and V. Parra-Vega. On the control of
cooperative robots without velocity measurements. TCST, vol. 12, no. 4, pp. 600–608,
2004.

[8] F. Caccavale, P. Chiacchio, A. Marino, and L. Villani. Six-dof impedance control of
dual-arm cooperative manipulators. Transactions On Mechatronics, 2008.

[9] D. Heck, D. Kosti´c, A. Denasi, and H. Nijmeijer. Internal and external force-based
impedance control for cooperative manipulation. ECC, 2013.

[10] S. Erhart and S. Hirche. Adaptive force/velocity control for multirobot cooperative
manipulation under uncertain kinematic parameters. IROS, 2013.

[11] J. Szewczyk, F. Plumet, and P. Bidaud. Planning and controlling cooperating robots
through distributed impedance. JRS, 2002.

[12] A. Tsiamis, C. K. Verginis, C. P. Bechlioulis, and K. J. Kyriakopoulos. Cooperative
manipulation exploiting only implicit communication. IROS, 2015.

[13] F. Ficuciello, A. Romano, L. Villani, and B. Siciliano. Cartesian impedance control of
redundant manipulators for human-robot comanipulation. IROS, 2014.

51

Bibliography

[14] A. Ponce-Hinestroza, J. Castro-Castro, H. Guerrero-Reyes, V. Parra-Vega, and E.
Olguyn-Dyaz. Cooperative redundant omnidirectional mobile manipulators: Model-free
decentralized integral sliding modes and passive velocity fields. ICRA, 2016.

[15] W. Gueaieb, F. Karray, and S. Al-Sharhan. A robust hybrid intelligent position/force
control scheme for cooperative manipulators. Transactions on Mechatronics, 2007.

[16] M. Ciocarlie, F. M. Hicks, R. Holmberg, J. Hawke, M. Schlicht, J. Gee, S. Stanford,
and R. Bahadur. The velo gripper: A versatile single-actuator design for enveloping,
parallel and fingertip grasps. The International Journal of Robotics Research, 2014.

[17] Caccavale, F., Chiacchio, P., and Chiaverini, Task-space regulation of cooperative
manipulators. Automata, 2000.

[18] L. V. G. O. Bruno Siciliano, Lorenzo Sciavicco. Robotics: Modelling, Planning and
Control. 1439-2232. Springer, 2010.

[19] G. A. R. Charalampos P. Bechlioulis. A low-complexity global approximation-free
control scheme with prescribed performance for unknown pure feedback systems. Auto-
matica, 50(4):1217–1226, 2014.

[20] T. H. Robert G. Bonitz. Force decomposition in cooperating manipulators using the
theory of metric spaces and generalized inverses. IEEE, 1994.

[21] WidowX Mark II arm web page:
http://www.trossenrobotics.com/WidowxRobotArmMK2

[22] Robotis’ Dynamixel series web page:
http://en.robotis.com/index/product.php?cate code=101010

[23] Copellia Robotics web page:
http://www.coppeliarobotics.com/index.html

[24] Coppelia Robotics: Building a V-REP clean model tutorial:
http://www.coppeliarobotics.com/helpFiles/en/buildingAModelTutorial.htm

52

www.kth.se

	1 Introduction
	2 Mathematical Model
	2.1 Preliminaries
	2.2 Kinematics
	2.3 Dynamics

	3 Quaternion-based Cooperative Manipulation without Force/Torque Information
	3.1 Preliminaries
	3.2 Non Adaptive Control Design
	3.3 Adaptive Control Design

	4 Prescribed Performance Control
	4.1 Introduction to Prescribed Performance Control
	4.2 Control design
	4.3 Control parameters design

	5 Hardware
	5.1 WidowX mark II
	5.2 Servos Characteristics

	6 Simulation Environment
	7 Code
	7.1 Dynamic Matrices
	7.2 Driver
	7.3 Controllers

	8 Simulation Results
	8.1 Quaternion based approach
	8.2 Prescribed Performance Control

	9 Experimental Results
	9.1 Quaternion based approach
	9.2 Prescribed Performance Control

	10 Conclusions
	Bibliography

