
Non-linear Model Predictive Control for
Aerial-Ground Cooperative Robotics

Nicola Lissandrini

Corso di laurea in Ingegneria dell’Automazione

Relatore Prof. Angelo Cenedese
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Padova, Padua, Italy

Correlatore Prof. Dimos Dimarogonas
Department of Automation and Control
KTH Royal Institute of Technology, Stockholm, Sweden

Supervisori Christos Verginis e Pedro Roque

8 Aprile 2019
Padova

KTH Royal Institute of Technology

Università degli Studi di Padova

Corso di Laurea in Ingegneria dell’Automazione

Non-linear Model Predictive Control for
Aerial-Ground Cooperative Robotics

Nicola Lissandrini

Reviewers Prof. Angelo Cenedese
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Padova, Padua, Italy

Prof. Dimos Dimarogonas
Department of Automation and Control
KTH Royal Institute of Technology, Stockholm, Sweden

Supervisors Christos Verginis and Pedro Roque

April 8, 2019

Nicola Lissandrini

Non-linear Model Predictive Control for Aerial-Ground Cooperative Robotics

Master Thesis, April 8, 2019

Reviewers: Prof. Dimos Dimarogonas and Prof. Angelo Cenedese

Supervisors: Christos Verginis and Pedro Roque

KTH Royal Institute of Technology

Department of Automation and Control

School of Electrical Engineering and Computer Science

Brinellvägen 8, 114 28 Stockholm, Sweden

SE-100 44 STOCKHOLM

Università degli Studi di Padova

Corso di laurea in Ingegneria dell’Automazione

Department of Information engineering

Via Giovanni Gradenigo, 6, Padua, Italy

35100

Abstract

Cooperative robotics is a trending topic in nowadays research as it makes
possible a number of tasks that cannot be performed by individual robots,
such as heavy payloads transportation or challenging manoveurs. In this
thesis we address the problem of cooperative transportation by etherogeneous
mobile robots. Specifically we consider a generic number of robotic agents
simultaneously grasping an object, which is to be transported to a prescribed
set point while avoiding obstacles. The procedure is based on a distributed
leader-follower structure, where the designated leader agent is responsible
of generating a trajectory compatible with its dynamics. The followers must
compute a trajectory for their own manipulators that aims at minimizing
the internal forces and torques that might be applied to the object by the
different grippers.

The Model Predictive Control is well suited to solve such kind of problem for
two reasons. First, it provides both an optimal control law and a technique
to generate trajectories, that can be shared among the agents. The second
reason is that the control comes from an optimization problem, so the solution
to the above problem comes naturally with the definition of optimal control
problem.

The proposed algorithm is implemented on a system of a ground and aerial
robot. The former is composed of an omnidirectional mobile base equipped
with a 4-dof manipulator while the latter of an hexarotor with a 2-dof arm
mounted beneath the base. The two robots and the control algorithms will
be tested with a Gazebo simulation, to which will follow a preliminary phase
of experiments with the real robots.

v

Sommario

La robotica cooperativa è un ambito sempre più centrale nella ricerca scen-
tifica. Con essa, molte attività che risultano impossibili con singoli robot
diventano realizzabili, come ad esempio il trasporto di carichi pesanti o
l’esecuzione di manovre complesse. In questa tesi viene affrontato il prob-
lema del trasporto cooperativo eseguito da robot eterogenei. Nello specifico,
si considera un numero generico di agenti che stanno tenendo la presa
sull’oggetto che dovrà essere trasportato in una posizione target desiderata
evitando la collisione con gli ostacoli. La tecnica si basa su una struttura
distribuita "leader-follower", in cui l’agente con ruolo di leader ha il compito
di generare una traiettoria compatibile con la sua dinamica e che eviti gli
ostacoli. I follower calcolano di conseguenza una traiettoria per i propri ma-
nipolatori con l’obiettivo di minimizzare le forze/momenti interni applicati
sull’oggetto da parte dei vari agenti.

Il Model Predictive Control si adatta perfettamente a questo tipo di problemi
per due ragioni. Come prima cosa, offre contemporaneamente una legge di
controllo ottimale e una tecnica per generare traiettorie prive di collisioni,
che possono facilmente essere condivise nella rete di agenti. Per secondo,
il controllo deriva da un problema di ottimizzazione che dunque può allo
stesso tempo risolvere il problema di minimizzazione delle forze assegnato ai
follower.

L’algoritmo proposto è implementato su un sistema di robot a terra e aerei. Il
primo è composto da una base omnidirezionale dotata di un manipolatore
a quattro giunti mentre il secondo è un esacottero che monta un braccio
a due gradi di libertà sotto la base. I due robot assieme agli algoritmi di
controllo verranno testati in una simulazione Gazebo, alla quale seguirà una
fase preliminare di esperimenti su robot reali.

vii

Sammanfattning

Kollaborativ robotik är ett centralt ämne i dagens forskning eftersom den
möjliggör en rad arbetsuppgifter som inte kan utföras av individuella robotar,
såsom tunga lyft och komplexa manövrar. I den här uppsatsen kommer prob-
lemet med kooperativ transport av heterogena mobila robotar att undersökas.
Närmare bestämt undersöks ett generiskt antal robotar, som samtliga greppar
ett objekt som i sin tur skall transporteras till en bestämd punkt medan de
undviker hinder. Tekniken är grundad på en fördelad struktur, en så kallad
”leader-follower”, vari ledarroboten har i uppgift att skapa kompatibel bana
med hjälp av sin dynamiska samt undviker hindren. Follower-robotarna
måste räkna ut en bana för deras egna ”manipolatori” för att minimera
kraften som möjligen appliceras på objektet av de olika gripklorna.

Predictive Control modellen är väl lämpad att lösa dessa problem av två
anledningar. För det första är den utrustad med både en ”optimal control
law” och en teknisk metod för att framställa banor utan kollisioner, som
kan delas mellan agenterna. För det andra kommer kontrollen från ett
optimeringsproblem som löses naturligt från minimeringen av kraften när
den tilldelas follower-robotarna.

Den förslagna algoritmen är implementerad på ett system av mark- och
flygrobotar. Den första består av en ”omnidirectional mobile base” med en
”4-dof manipulator” medan den andra är en ”hexarotor” med en ”2-dof arm”
monterad under basen. De två robotarna och kontrolalgoritmen kommer att
testas i en Gazebo simulation, vilket kommer följas av en preliminär fas av
experiment med riktiga robotar.

ix

Contents

1 Introduction 1
1.1 State of the art . 2
1.2 Thesis Structure . 3
1.3 Model Predictive Control . 5

2 The Cooperative Manipulation Algorithm 7
2.1 Problem Formulation . 7
2.2 MPC for individual geometric control 10
2.3 MPC for cooperative manipulation: a robust approach 12
2.4 Control strategy for obstacle avoidance 17

2.4.1 Mathematical definition 18
2.4.2 Robust obstacle avoidance with MPC 19

3 Kinematic Robots Modeling and Simulation 23
3.1 Ground Robot Modeling . 23

3.1.1 Direct Kinematics . 24
3.1.2 Differential Kinematics 26

3.2 Aerial Robot Modeling . 27
3.2.1 Direct Kinematics . 28
3.2.2 Differential Kinematics 29

3.3 Pure kinematic simulation . 30
3.3.1 Individual control . 30

3.4 Cooperative Algorithm Simulation 36
3.4.1 Obstacle Avoidance Test 41

4 Simulation Environment Setup 43
4.1 Introduction to ROS . 43

4.1.1 Gazebo . 44
4.2 Building the Gazebo models 45

4.2.1 URDF format . 45
4.2.2 Case-study models . 47
4.2.3 Gripper simulation with EasyGripper 51

xi

5 The Universal MPC Wrapper for ROS 53
5.1 Matlab problem definition with ACADO 53

5.1.1 ACADO OCP definitions 55
5.2 MPC Wrapper implementation 58

5.2.1 ACADO generated code interface 58
5.2.2 MPC Wrapper inner layer 59
5.2.3 MPC Wrapper Outer Layer 63

6 Experiment Implementation and Results 69
6.1 Ground and Aerial MPC interfaces 69

6.1.1 Aerial Robust Control 71
6.2 The Task Commander . 73
6.3 Gazebo simulation results . 77

6.3.1 Initialization and rendez-vous 77
6.3.2 Cooperative manipulation experiments 81

6.4 Experimental results . 91
6.4.1 Experimental setup . 91
6.4.2 Individual control experiments 93

6.5 Conclusions . 96

Bibliography 99

xii

1Introduction

„Industry 4.0 is less of a fourth revolution and more of
an evolution in many small steps that will truly change
how manufacturing and industry does business

— Paul Carreiro
EMEA at Infor

Automating repetitive task have always been an ambition for human beings.
Nowadays robotics is a key factor in industry, as it makes possible to execute
repetitive tasks with an efficiency that was impossible before the industrial
revolution. However, the human contribution is still essential in the manu-
facturing processes as robots, until last years, have been always able to just
reproduce an action programmed by a person. In this way, the efficiency of
production have been able to increase exponentially.

With Industry 4.0 the world of robotics is coming to a paradigm shift. From
tasks of passive reproduction of scheduled movements, robots are becoming
able to operate into unknown or partially known environments and smartly
adapt to unexpected conditions. This was made possible by an extraordinary
development that has been recently realized in all fields of Information Tech-
nology: from fast wireless communications to intelligent systems and control
algorithms. Optimization, in particular, has a key role in this context: it is
the fundamental concept behind machine learning and artificial intelligence
techniques, as well as the most advaned control techniques, the nonlinear
Model Predictive Control, which will be extensively used in this work.

However, even though those innovations are extremely promising, their
implementation in the productive systems is slow as they have an important
drawback: they often lack of reliability. Intelligent algorithms, for instance,
are based on an heuristic that most of the times provides excellent results but
it is impossible to predict how bad are they will behave the times that fail
nor the reasons of errors. Furthermore, it is often uncertain how the given
task will be accomplished. For instance, consider a mobile agent that has
to compute a path to overcame an unknown obstacle: even if the algorithm

1

ensures that the task will be accomplished, it is in general impossible to
predict how the agent will achieve the goal, whether to pass on the right
or left side. This issue is particularly critical in applications where multiple
robots are assigned to collaborate to achieve the same task.

At the same time, multi-agent systems are a decisive ingredient of the new
industrial revolution. It is not difficult to imagine applications that must in-
volve more than one agent to be accomplished, like handling heavy payloads
or large areas patrolling. Nevertheless, even if a task could be performed by
a single agent, it might be more efficient or even cheaper to implement it
with multiple, smaller robots.

Summing up, coordination among multiple agents has fundamental impor-
tance in the new productive systems. In this thesis, we will exploit the latest
technologies of optimization and control to address a particular instance
of this problem: the cooperative manipulation. Specifically, the problem
will involve etherogeneous robots, ground and flying, trying to take the best
from the two worlds: the strenght of ground robots allowing to manipu-
late heavy payloads and the mobility of flying vehicles that permit to reach
configurations that are otherwise impossible.

1.1 State of the art

Multi-agent robotics is a trending topic in the recent research activities.
Strong results have been demonstrated on the control of single and multiple
flying systems [16, 7]. Recently, a lot of effort have been made to allow
phyiscal interaction among these systems and the environment, i.e. aerial
manipulation, [12, 8, 24]. Essential is also the development of estimation
techniques to allow for robust control, for the vehicle it self as well as the
payload [3]. Cooperative transportation among aerial agents, either with
cables or with manipulators, have been studed in multiple works [13, 15, 17,
14].

As regards ground and aerial cooperation, [19] provides for fundamental
mathematical definitions. Further tests have been made in [23], where the
ground vehicle is tasked to deploy the object to a certain position and the
aerial vehicle adjusts its inclination, or in [18] where a team of ground robots
is used to stabilize the aerial vehicle.

2 Chapter 1 Introduction

1.2 Thesis Structure

After this introductive chapter which includes a brief presentation of the
MPC principles, in Chapter 2, we provide the mathematical formulation
and solution to the problem: first, we define the problem settings for a
generic number of agents. Then, after introducing the general models for
the considered agents to be employed in the MPC formulation, we define the
multi-agent algorithm, based on [20] and improved to allow for an online
implementation. A robust collision avoidance technique, alternative to that
proposed in [20], is then presented.

In chapter 3 we define the differential kinematics models for the case-
study implementation of the generic algorithm, involving a ground and
an aerial robot. After that, a pure kinematic simulation environment with
Matlab/Simulink is provided to test the MPC technique. First the agents end-
effector is individually controlled in both position and orientation and then
the cooperative algorithm is simulated, along with the collision avoidance
technique.

Chapter 3 is about the definitions of the Gazebo simulation environment. Af-
ter a short introduction to the basic ROS and Gazebo concepts, we report the
procedure according to which the models for the robot have been designed
in the simulator. Furthermore, the realizion of a Gazebo plugin that provide
an easy simulation of the grasp is presented.

Chapter 4 contains one of the major contribution of the work: a flexible tool
that allows for the implementation of the MPC control by means of a ROS
node capable to deal with any problem definition and dynamical constraints,
based on the ACADO code generation tool [9, 1, 10]. First the essential tools
from ACADO to define the mathematical problem are outlined. Then the
implementation of the MPC tool is presented. The MPC tool is designed to
work in two modes: synchronous and asynchronous: the former allows for
handling input packets loss by exploiting the MPC predictions, whereas the
latter provides a simpler implementation.

In chapter 6 the MPC Wrapper tool is employed in the case study and in-
terfaced with the rest of the ROS network. Also, a robust low-level control
technique for the aerial control is provided. After that, the main cooperative

1.2 Thesis Structure 3

algorithm implementation is presented, that includes a preliminary phase
of agents rendez-vous. Finally, the Gazebo simulation results of the entire
experiment are reported, along with a preliminary phase of experiments with
real robots.

4 Chapter 1 Introduction

1.3 Model Predictive Control

Model Predictive Control (MPC) is an advanced control technique that can
be formulated as the repeated solution of a finite horizon open-loop optimal
control problem subject to system dynamics and input and state constraints
[6].

The basic concept is to use a dynamic model to predict the system evolu-
tion and to compute the control inputs that optimize a given cost function.
Formally, consider a generic continuous time system:

ẋ = f(x,u) (1.1)

Ideally, the optimal control problem is about finding u(·) that minimizes the
following cost function defined over an infinite horizon:

J∞(x,u(·)) =
∫ ∞

0
V (x(t),u(t)) dt (1.2)

given the initial condition x(0) = x0. If ū(·) is a solution to this optimal
problem, it is possible to prove that if V (·) is positive definite and both
f and V are regular enough, then ū(·) stabilizes the origin of the system
ẋ = f(x, ū), i.e.:

lim
t→∞

x(t) = 0 (1.3)

for initial conditions in a neighborhood of x0. In principle, one may look for
a closed solution, but this in general does not exist. On the other hand, this
specific kind of problem is not suitable to be solved numerically, because first
the solution space U = {u(·)} is infinite dimensional and, second, the time
interval of interest [0,∞) is also infinite. Also, the computed control input is
open loop and represent a solution to the exact model defined by f , which is
always an inexact representation of the actual system. On the contrary, we
are looking for a closed loop system that is robust to model errors.

To this aim, we will simplify the problem allowing for an approximated
numerical solution. First, the system (1.1) needs to be discretized to a
corresponding sampled time system

xk+1 = fd(xk,uk) (1.4)

1.3 Model Predictive Control 5

Then, we restrict the interval of interest to a finite set of samples of length
N , referred to as control horizon. To address the third issue, at each sample
time the cost is defined over the interval from time k to time k +N and the
system is initialized with the last measured state x̂k. The optimal problem is
then resorted to:

min
u0,...,uN

N−1∑
k=0

V (xk,uk) + Vf (x(N))

subject to: xk+1 = fd(xk,uk)
x0 = x̂0

(1.5)

where the term Vf (·) penalizes the termial state of the considered window
is referred to as terminal cost, whereas V (·) is called running cost in this
context. In this way the optimal problem is defined over a finite dimensional
set u ∈ RN so that it is suitable to be solved numerically. Also, it is important
to point out that each sample time a different control problem is solved,
accounting for the last time measurement and thus making the control
scheme closed-loop. Most of the solvers are also able to solve constrained
problems, allowing to consider state and input constraints of the type:

U = {u ∈ Rm : umin ≤ u ≤ umax}
X = {x ∈ Rn : xmin ≤ x ≤ xmax}

(1.6)

Summarizing, the MPC scheme works as follows:

1. Obtain state estimate
2. Compute the optimal input by minimizing the cost function
3. Apply the first part of the optimal input until the next sample time

...

Figure 1.1: Principle of MPC, [2]

6 Chapter 1 Introduction

2The Cooperative
Manipulation Algorithm

In this section we will provide a mathematical description of the considered
setup. First, we define the general setting with general assumptions regarding
the number and the geometry of each robot. Next, we will introduce a
geometric control technique of the end-effector on SE(3) based on the theory
of nonlinear model-predictive control. Finally, we derive the multi-agent
algorithm, along with a technique which exploits the power of MPC to
perform collision avoidance.

2.1 Problem Formulation

In this section we consider a generic setup where N robotic agents are
grasping the same object. The robots are composed of a mobile base and a
manipulator, which can both have an arbitrary number of degrees of freedom.
The base can be either a ground vehicle, e.g. fully actuated with holonomic
wheels with 2 d.o.f., or a UAV. The aim of the agents is to transport the object
along a reference trajectory minimizing the internal forces and avoiding
obstacles.

In the following, we denote by pv,i, pe,i ∈ R3 the position of the base and of
the end effector, while. Let qi ∈ Rni be the vector of joints variables describing
the configuration of each manipulator, where ni is the corresponding number
of degrees of freedom. We assume to be able to supply velocity inputs to the
system, and then the kinematics of each end effector, which is the objective
of the control algorithm, is described by the following non-linear system:

Agent i:

ṗe,i = Apuv,i + JP,i(qi)uq,i
ωe,i = Aωuω,i + JO,i(qi)uq,i
Ṙe,i = S(ωe,i)Re,i

q̇i = uq,i

ṗv,i = Apuv,i

Ṙv,i = S(Aωuω,i)Rv,i

(2.1)

7

where:

• pv,i, pe,i ∈ R3 are the position of the base and the end-effector of the
i-th agent, respectively.

• Rv,i, Rei
∈ SO(3) refer to the corresponding rotation matrices relative

to a fixed world frame {W}.

• uv,i, uω,i ∈ R3 are the linear and angular input velocities applied at the
base.

• uq,i are the joint velocities, which we assume to be able to control with
zero error.

• Ap, Aω ∈ R3×3 allow to model constraints on the input velocity (e.g.
reference frame transform or anholonomic constraints)

• ωe,i is the angular velocity of the end effector in the world frame.

• JP,i, JO,i ∈ R3×ni are, respectively, the position and orientation Jaco-
bian matrices, which depend on the structure of the manipulator.

Finally, for compactness of notation, we define the full state and input:

xi =
[
pe,i re,i pv,i qi

]>
∈ Rni , ui =

[
uq,i uv,i uω,i

]>
∈ Rpi (2.2)

where the lower case re,i refers to a column-major vector representation of
the rotation matrixRe,i, s.t. [Re,i](h,k) = [re,i](3k+h). We can then rewrite (2.1)
with the compact notation:

ẋi = Ai(xi)ui (2.3)

where Ai(xi) collects all the control-affine terms and can be easily inferred
by the equation. Then, the tracking error is defined as:

ei = βp
∥∥∥pe,i − pe,i,des∥∥∥2

+ βo d2
SO(3)(Re,i,Re,i,des) (2.4)

where d(·, ·) : SO(3)× SO(3)→ R+ is a suitable distance in SO(3) and βo, βp
are weight factors that we may want to consider.

In this work we address two problems: the first is to derive a control law to
track a reference trajectory lying in SE(3) for each agent separately. The sec-
ond is to define an algorithm that allows multi-agent coordination minimizing

8 Chapter 2 The Cooperative Manipulation Algorithm

the internal forces applied on the object. We provide a formal definition in
the following:

Problem 2.1 For each agent, find a feedback control law ui = fi(xi)
such that the tracking error dynamics is locally asymptotically stable:

lim
t→∞

ei(t) = 0, for ei(0) ∈ Ri (2.5)

with Ri ⊆ Rni an open set representing the region of attraction.

Assuming to be able to control Te,i = (pe,i,Re,i) ∈ Mi ⊆ SE(3), whereMi

is the reachable submanifold of SE(3) according to the robot structure, we
define the following coordination problem.

Problem 2.2 Given a reference trajectory for the object:

{ξo,ref (t) : R→ SE(3) : t 7→ ξ(t) =
(
po,ref (t),Ro,ref (t)

)
, t > 0}, (2.6)

define a multi-agent algorithm, based on full and constant communica-
tion graph with reliable transmission, that tracks such trajectory and it
is such that each end-effector maintain a pose relative to the object with
minimum error, i.e. the following quantity:

E(t) =
N−1∑
i=0

d2
SE(3)

(
Te,i(t)T̂ e,i

o (t), ξo(t)
)
, (2.7)

with the usual products defined on the group SE(3) and:

d2
SE(3)[(p1,R1), (p2,R2)] = βp‖p1 − p2‖2 + βo d2

SO(3)(R1,R2) (2.8)

and where ξo(t) is the actual path tracked by the object and T̂ e,i
o (t) ∈

SE(3) is the estimated relative transform from each agent’s end-effector
to the object.

A few remarks on the latter problem:

• At t = 0 we assume that the objects and the agents are still, and we are
able to know all the initial relative positions T̂ e,i

o (0). In this configura-
tion T̂ e,i

o (0) expresses exactly the physical transformation between the
gripper and the object.

• By this assumption, it holds:

T̂ e,i
o (0) = T e,i

o (2.9)

2.1 Problem Formulation 9

• For t > 0, T̂ e,i
o (t) must be modelled in an appropriate way. As an

example, if we assume that the grasp from each agent is rigid, then the
relative position is constant T̂ e,i

o = T̂ e,i
o (t) = T̂ e,i

o (0), ∀t ∈ R+. However,
this assumption is critical and strongly depends on the implementation
of the system.

• The actual quantities we’re able to control are not (po,Ro) but rather
(pe,i,Re,i), so for each agent we shall consider a reference trajectory
transformed in its reference frame, as follows:

ξe,i(t) = ξo(t)
(
T̂ e,i
o (t)

)−1
(2.10)

2.2 MPC for individual geometric control

In this section we setup the MPC controller implemented with the ACADO
library, which solves discrete time nonlinear model predictive control of the
following form:

min
x0, . . . ,xN
u0, . . . ,uN−1

N−1∑
k=0

∥∥∥h(xk,uk,dk)− yref,k
∥∥∥2

Wk

+
∥∥∥hN(xN)− yref,N

∥∥∥2

WN

subject to: x0 = x̂0

xk+1 = F (xk,uk), k = 0, . . . , N − 1
xk,min ≤ xk ≤ xk,max, k = 0, . . . , N
uk,min ≤ uk ≤ uk,max, k = 0, . . . , N

(2.11)

where: N is the number of samples of the prediction horizon, xk ∈ Rnx

denotes the state vector, uk ∈ Rnu the control input, dk ∈ Rnod representes a
general purpose online data, F (·, ·) is a discretized version of the continuous
time model of the case, x̂0 is the currently measured state and h(·, ·, ·) ∈ Rny

is the output function of the system we want to consider. Note that all the
quantities involved have to be defined over the whole time window.

10 Chapter 2 The Cooperative Manipulation Algorithm

Definition of the Cost function

The most critical element to consider in (2.11) is the output function h(·, ·, ·)
along with yref . Recalling that the goal is to control the position and orienta-
tion, we want to find the minimum norm linear error between the current
and the goal position. We recall the definition of state and goal trajectory:

xi(t) =
[
pe,i re,i pv,i qi

]>
∈ Rnx

ξi(t) = (pe,des(t),Re,des(t)) ∈ SE(3)
(2.12)

In the following, we will drop the index i, as everything is valid for both
agents in the exact same way. Also, we pass straight to sampled time quanti-
ties. The trajectory must be sampled and considered within the prediction
horizon, i.e. ξk = ξ(t0 + kTs), k = 1, . . . , N . The first part of the output
function is straightforward to model:

h1:3(xk,uk,dk) = pe(k)− pe,des(k) (2.13)

To define the orientational error, we must choose a proper error metrics on
SO(3). One may be tempted to consider the Riemaniann geodesic metrics:

d2
R(Re,Rdes) :=

∥∥∥log(R>e Rdes)
∥∥∥2

F
(2.14)

where ‖ · ‖F denotes the Frobenius matrix norm. However, computing the
matrix logarithm is not straightforward and thence increments the calculus
load for each computation step. Also, the optimiziation is numerical, so we
are not exploiting the smoothness properties that comes from working in
the Riemaniann tangent manifold. We then consider the first order Taylor
expansion of the matrix logarithm, which also has the meaning of deviation
of the rotation difference from identity:

d2
I(Re,Rdes) := ‖R>e Rdes − I‖2

F (2.15)

Since this relation cannot be expressed as a regular difference, we employ
the online data vector to represent the desired rotation matrix:

[dk]3k+h = [Rdes]h,k (2.16)

2.2 MPC for individual geometric control 11

and, if we denote the 3× 3 corresponding matrix Dk

h4(xk,uk,dk) =
3∑

h=1

3∑
k=1

[
R>e,kDk − I

]2
h,k

[yk,ref]4 = 0
(2.17)

Then, the remaining components of h account for the minimization of the
input energy, which grants the stability of the controller:

h5:5+p(xk,uk,dk) = uk

[yk,ref]5:5+p = 0p
(2.18)

where p is the number of the control inputs for the specific robot.

2.3 MPC for cooperative manipulation: a
robust approach

In the last section we solved the first of the two problems. Here we address
the latter, whose goal is to control the object to a prescribed pose in a
cooperative way among multiple agents. This could be solved in a centralized
way [20] by deriving a coupled model of the agents. This would need to
make strong assumptions about the rigidity since the coupled MPC needs the
full model to make predictions. Here we present a technique which has two
advantages:

• It is decentralized: each agent computes its own inputs to control the
end effector with separate MPCs. This allows for lighter models, which
would become exponentially more complex as the number of agents
increases, and it is naturally suited for distributed computing.

• It does not require strong assumption on the rigidity of the grasps: as
we will see, we want to minimize the internal forces and torques but
we cannot require that they are exactly zero. We will rather achieve
this goal by defining a minimization problem. In this way, even if there
is small difference in the grasps w.r.t. the rest condition the algorithm
will converge to the minimum displacement physically realizable.

The proposed is a leader-follower strategy in which one agent, that takes the
role of the leader is designed to generate the trajectory all the other agents
will follow. Recall the definitions:

12 Chapter 2 The Cooperative Manipulation Algorithm

• Te,i, To refer to the pose of the i-th end effector and the object, respec-
tively.

• T e,i
o (t) is the actual relative transform from the end-effector of agent i

and the object pose at time t.

• T̂ e,i
o (t) is the relative pose of the object w.r.t. the end-effector as ex-

pected from agent i, with the property:

T̂ e,i
o (0) = T e,i

o (2.19)

We will also refer to the leader agent with the index ` ∈ [1, . . . , N], and the
other followers with j 6= `. Specifically, the algorithm is schematized as
follows:

1. Handshake

Before the cooperative task is started, all agents perform a handshake
in which they share information regarding the relative pose of each
end effector w.r.t. the object. Based on (2.19), we can retrieve the the
relative transform from the object to each agent.

T̂ e,i
o (0) = To

(
Te,i

)−1
(2.20)

2. Transform estimation

The trajectory of the object ξo(t) ∈ SE(3) must be converted to a
trajectory of the leader end effector. The conversion is performed via
the estimates T̂ e,`

o (t). It is now needed to make some assumptions on
that transform: we don’t want to assume rigidity assumption since it
is unrealistic and does not allow the rolling-pitching rotations of the
flying agents. However, we will assume that the displacement from the
initial position is bounded in norm, i.e.:

dSE(3)
(
T̂ e,i
o (t), T̂ e,i

o (0)
)
≤ κi (2.21)

If κi are small, we assume that the internal forces and torques are
correspondingly small and below a tolerance threshold, although we
cannot model this relation explicitly as the models account only for
the first order kineamtic. This is certainly the case when the overall
dynamics is slow. In this case, in particular the rolling and pitching

2.3 MPC for cooperative manipulation: a robust approach 13

movements of the drones (which, we recall, are not taken in to account
in the model) produce internal torques that are tolerable. In view of
(2.21) the best estimate T̂ e,i

o (t) is:

T̂ e,i
o (t) = T̂ e,i

o (0), for t > 0, i1, . . . , N (2.22)

We will then drop the dependance of t.

3. Trajectory conversion

Under those assumption, the desired trajectory for the object, which
must be converted into the corresponding desired trajectory for the end
effector, is given by:

ξe,`(t) = ξo(t)
(
T̂ e,`
o

)−1
(2.23)

4. Leader control and prediction

For each time step, the leader will exploit the MPC to track the trajec-
tory. Along the control input u`(tk), it will compute the corresponding
predicted trajectory within the time windw NTs:

{ξ̂e,`(tk), tk = kTs, k = 0, . . . , N} (2.24)

5. Follower tracking

The followers must now guarantee that the displacement error, defined
as in (2.21), is minimized. First, the predicted trajectory is converted to
the trajectory of the corresoponding follower end effector, which under
the considered assumpitons can be derived as:

ξe,j(t) = ξ̂e,`(t)T̂ e,`
e,j

= ξ̂e,`(t)T̂ e,`
o

(
T̂ e,j
o

)−1 (2.25)

Note that, because of (2.9), it holds:

Te,j(0) = ξe,j(0) (2.26)

14 Chapter 2 The Cooperative Manipulation Algorithm

One first solution, proposed in [20], is to force (2.26) to hold over
the whole prediction window with an additional constraint on the
MPC formulation of the agents, which would then be of the form, in a
continuous time formulation:

min
xj(·),uj(·)

∫ T

0
xj(t)>Wxxj(t) + uj(t)>Wuuj(t) dt

+ x>j (T)WTxj(T)
subject to: xj(0) = x̂j(0)

ẋj = Aj(xj)uj
...

(pe,j(t),Re,j(t)) = ξe,j(t), ∀t ∈ [0, T]

(2.27)

The problem with the last constraint is mathematically feasible in the
continuous formulation due to (2.26). However, in the discrete time
implementation it must be converted into a small threshold, for each
component. However, this has several problems:

• The threshold should be large enough to allow errors due to noisy
measurement and not perfect tracking of the low-level controller,
but a larger threshold entails worse performances in terms of
displacement errors and the consequent internal forces/torques.

• Furthermore, the behavior within the threshold is defined by the
cost function, which is necessary to grant stability but it does not
aim at minimizing the error and, in general, is unclear. As instance,
in many experiments the error turned out to tend to the boundary
of the tolerance region. Although this is not proven to happen
anytimes, this is certainly an undesirable behavior.

• On the other hand a small threshold may result in exponentially
high computational load, which, for real time applications, cannot
be accepted.

• In the case that the error is higher than the threshold, the dynamics
is also undefined. This could happen not only due to possible
phyisical disturbances, in which case the optimization problem is
unsolvable, but even if it is not the case the solver may happen to
find a suboptimal solution which does not meet that constraint.
In such circumstance, which happens expecially in a limited-time

2.3 MPC for cooperative manipulation: a robust approach 15

context, the result is unpredictable and in many experiments the
produced solution had a really high error.

To overcome these issues, we will formulate the following task as a
minimization problem, rather than a constraint. The leader MPC, in the
previous step, predicted the trajectory ξ̂o(t) = ξ̂e,`(t)T̂ e,`

o that approach
the reference ξo,ref (t) according to its dynamic constraints and weights.
Then, according to the predicted trajectory, the cooperative task is
accomplished by minimizing

Ê(t) =
N−1∑
i=0

d2
SE(3)

(
Te,i(t)T̂ e,i

o (t), ξ̂o(t)
)

= d2
SE(3)

(
Te,`(t)T̂ e,`

o (t), ξ̂o(t)
)

+
∑
j 6=`

d2
SE(3)

(
Te,i(t)T̂ e,i

o (t), ξ̂o(t)
) (2.28)

Under the assumption dSE(3)(T e,`
o (t),T e,`

o) ≤ κ`, the first term is a posi-
tive quantity smaller than κ`, so we will find a suboptimal solution by
individually minimizing the terms in the sum:

d2
SE(3)

(
Te,i(t)T̂ e,i

o , ξ̂o(t)
)

(2.29)

in which we exploited again the bound given by (2.21). By suboptimal
we mean that the solution found may differ from the optimal by a
quantity proportional to a linear combination of κi. We can rewrite:

d2
SE(3)

(
Te,i(t)T̂ e,i

o , ξ̂o(t)
)

= d2
SE(3)

(
Te,i(t), ξ̂o(t)

(
T̂ e,i
o

)−1
)

= d2
SE(3)

(
Te,i(t), ξ̂e,`(t)

(
T̂ e,i
o

)−1
) (2.30)

Then, the task is formally achieved by finding control input for the fol-
lowers that minimzes the total error over the whole prediction window,
i.e.:

min
xj(·), j 6= i

∫ t+T

t

∑
j 6=i

d2
SE(3)

(
Te,i(t), ξ̂e,`(t)T̂ e,`

o T̂
e,`
e,j

)
dt

subject to: ẋj = Aj(xj)uj, ∀j 6= i

(2.31)

By the linearity of the integrator it is easy to show that it is equivalent
to solve the minimization problems separately for each agent. By the
definition of dSE(3) we considered, it is immediate to see that this is an
optimal control problem whose discretized version can be solved each

16 Chapter 2 The Cooperative Manipulation Algorithm

time step via the MPC controller we introduced in the previous section
(2.11) for each agent, once defined the reference trajectory in (2.12)
as:

ξj(t) = ξe,`(t)T̂ e,`
e,j (2.32)

6. Control actuation

Every agent wait until all of them have finished the computations to
apply synchronously the control input ui(t). In this way, for real time
applications it is needed that the

Ts > Tc,` + max
j 6=`

Tc,j (2.33)

where Tc,i is the computation time of each agent.

Remarks The result from (2.31) that the problem is solvable separately
is not trivial and proves that the problem can be actually solved with a dis-
tributed scheme. The solution provided is also inherently robust: suppose that
all the correct initial transformations T̂ e,i

o are known. Then the convergence
to the minimum error E(t) is ensured by the MPC for any initial configuration
Te,i(t0), rather than for those into the small threshold above mentioned. This
is important especially when the robotic system is etherogeneous and com-
posed by robots with different dynamical properties, like those, in particular,
composed by underactuated flying vehicles, which non-negligible errors in
the low-level controller are structural.

2.4 Control strategy for obstacle
avoidance

In most practical cases agents are moving in presence of obstacles, so we
may require that the generated trajectory is such to avoid collision among
agents with obstacles and agents with each other. By modifying the model
in the MPC formulation, as shown in this section, it is easy to implement
such feature. However, the individual nature of the MPC in the distributed
algorithm, makes some issues arise. Assume that the leader generates a
trajectory which avoid itself to collide with the obstacles. It is possible that

2.4 Control strategy for obstacle avoidance 17

such path leads to unavoidable collision for some followers, since it has
no information about the dynamics of the followers and it cannot make
prediction on them. Designing an algorithm that accounts for the collision
of all the agents requires a structural revision of the whole multi-agent
procedure, and it is saved for future works. For now we concentrate on the
design of an MPC which grants individual collision avoidance, and assume
that the described condition does not occur.

2.4.1 Mathematical definition

We consider a set ofM obstacles described by its bounding ellipsoid, identified
by the pair:

Oi = (c, A) ∈ R3 × R3×3 (2.34)

where c ∈ R3 is the center of the ellipsoid and A is a matrix whose eigen-
vectors represent the principal axes of the ellipsoid e1, e2, e3 and whose
eigenvalues are the inverse squared length of each axis. In general, A can be
always written as:

A =
[
e1 e2 e3

]>

1/a2

1/b2

1/c2

 [e1 e2 e3

]
(2.35)

Then the equation describing the boundary of the ellipse is:

gA(x) = (x− c)>A(x− c)− 1 = 0 (2.36)

We could also define bounding ellipsoid for each link and phyisical element of
the robots and then define the collision avoidance with the distance between
ellipsoid. However, computing such distance is not trivial, and needs to
be performed each optimization step, resulting in very high computational
burden. What it is immediate to derive is to check whether a point x0 ∈ R3

is outside the ellipsoid, which occurs if and only if:

gA(x0) > 0 (2.37)

18 Chapter 2 The Cooperative Manipulation Algorithm

Exploiting this relation, we consider a set of keypoints on each agent:

K = {ki ∈ R3, i = 1, . . . , K} (2.38)

Then, we enlarge the obstacles isotropically by a factor r, i.e. a′ = a + r,
b′ = b+ r, c′ = c+ r, and consider the ellipsoid described by A′ with the same
eigenvector as A and eigenvalues a′, b′, c′. In this way the condition:

g′A(x0) = 0 (2.39)

means that x0 is at distance r from the original ellipsoid (c, A). In this way
we are considering a sphere of radius r around ki which must not intersect
the obstacle ellipsoid. We choose the set of keypoints K to be sufficiently
spread over the volume of each agent, i.e. the union of such spheres should
approximately cover the whole robot, if we want to ensure the obstacle
avoidance. However, unless pathological cases, it can be sufficient to place
the keypoints into a few points: the wheels or the fans, each joint and the end
effector. In case of very long links it could be appropriate to insert additional
keypoint equally spaced throughout the link. In the specific case of the small
ground and aerial robots we are considering, though, the keypoints, for the
base, joints and end-effector are sufficient.

2.4.2 Robust obstacle avoidance with MPC

The simplest approach is to add the collision avoidance constraint in the
MPC, i.e. add to (2.11) a constraint of the form:

subject to: [. . .]
gi(kj) > 0, for i = 1, . . . ,M and j = 1, . . . , K

(2.40)

However, usually the optimal trajectory lies on the boundary of such con-
straint. If for a drift in the actual model or a small external disturbance
one keypoint ends up inside the enlarged obstacle, the constraints are not
met for the initial condition of the next MPC step, in which the problem
becomes unsolvable. We then avoid such constraint by adding a cost term in
the minimization function. Indeed, note that the function gi(x) is a quadratic
function in x, and it is positive definite since the eigenvalues of A are positive.
Then, it is monotonically decreasing for x approaching the c and positive

2.4 Control strategy for obstacle avoidance 19

outside the boundary of the ellipsoid. We can then define, for each obstacle
i = 1, . . . ,M the following term:

χi(x) = Cie
−λi

√
gi(x) (2.41)

where Ci is the desired value of the cost at the boundary ofthe ellipsoid, λi
are decay factors which is convenient to define as:

λi = − log(ε)/mi (2.42)

with ε > 0 small and mi > 0 so that the exponential function takes the value
ε when gi(x) = mi, so that mi defines the margin around the obstacle where
the cost becomes negligible.

As an example, consider the simplest case in which A = I3, so that the
obstacle is a unitary sphere centered in c. Then, consider the enlarged
obstacle with A′ = I3

1
(1+r)2 , then the quadratic function corresponds to:

gA′(x) = (x1 − c1)2 + (x2 − c2)2 + (x3 − c3)2

(1 + r)2 − 1 (2.43)

It is clear that the boundary g(x) = 0 describes a sphere of radius 1 + r, then
it becomes:

χ(x) = Ce−λ/(1+r)(‖x−c‖−r) (2.44)

From (2.44) we understand that function χ is an exponential that decays with
the distance of x from c, with a margin r. Figure 2.1 provides an example of
the trend of χ as a function of the distance d :=‖x− c‖.

Then, we can add to the MPC problem in (2.11) a term that accounts for
each keypoint kj, j = 1, . . . , K a cost proportionalto the distance to each
obstacle i = 1, . . . ,M :

hq+1(xk,uk,dk) =
M∑
i=1

K∑
j=1

χi(kj) (2.45)

where q is the size of the output function h previously considered and the
information about the obstacles are encoded in the online data dk. The
keypoints values can be either computed online as a function of the joints or
can be supplied externally as online data dk.

20 Chapter 2 The Cooperative Manipulation Algorithm

0 1 2 3 4 5
0

0.5

1

1.5

2

Figure 2.1: Example of χ(d) with r = 1, m = 3, ε = 0.1

As an example, consider the case of one obstacle. The cost function resulting
from the weighted sum of the contribute for obstacle avoidance and for the
distance to the reference tracking, considered on the plane xy, looks like in
figure 2.2

0
3

20

2

C
os

t t
er

m

40

1

60

50 4321-1 0-1

Figure 2.2: Example surface plot of the cost function of generic points on a plane
considering both the cost for reference tracking and obstacle avoidance.

2.4 Control strategy for obstacle avoidance 21

3Kinematic Robots
Modeling and Simulation

In this work we will consider a specific implementation with N = 2 heteroge-
neous agents: one ground and one aerial. As anticipated in the introduction,
the ground robot is composed of an omnidirectional base, which is fully
actuated on the plane, equipped with a 4 d.o.f. arm. The aerial robot is an
underactuated hexacpoter comes with a 2 d.o.f. arm. In the following we
will provide a model of the kinematics of the two robots. Since the purpose
is to adopt it in an MPC, we choose to provide a first order model, as the
full second-order dynamics would require an high control rate and a high
calculation complexity at the same time, which would require an exponen-
tially more computational power. For notation convenience, hereafter instead
of the indexed notation for the agents i = 1, 2, we will refer to a quantity
relative to the ground robot with a subscript g and to the aerial robot with a
subscript a

3.1 Ground Robot Modeling

We start by defining the constraints on the inputs and the involved quanti-
ties:

• Rv,g ∈ SO(3), the orientation of the vehicle w.r.t. the world frame,
constrained in velocity by:

ωv,g = uω,ψ,gzg (3.1)

where zg = z is the z-axis of the vehicle frame, which correspond to
the same axis of world frame: zg = [0, 0, 1]>. This means that only
one angle is enough to representate Rv,g, so we will consider without
representation issues a dynamics on the angle:

ψ̇v,g = uω,ψ,g (3.2)

23

and Rv,g = Rz(ψv,g), with Rz indicating a rotation on z. Also, in the
model (2.1), we have the linear velocity input as ωv,u = [0, 0, uω,ψ,g]>.

• pv,g ∈ R, the position of the ground vehicle w.r.t. the world frame,
constrained in velocity by:

ṗv,g = uv,x,gxg + uv,y,gyg, uv,g =
[
uv,x,g, uv,y,g

]>
(3.3)

where xg and yg are the versor of x and y axis in the ground vehicle
frame, that are the first two columns of the matrix Rv,g, i.e:

xg =

cos(ψv,g)
sin(ψv,g)

0

 , yg =

− sin(ψv,g)
cos(ψv,g)

0

 (3.4)

The dynamics on the z component of pv,g is trivially zero, so it results
pv,g,x = zg, where zg is a fixed parameter wich depends on the geometry
and on the world reference fame. We then will consider zg = 0.

• qg =
[
ϑ1, ϑ2, ϑ3, ϑ4

]>
∈ R4 is the vector of joints variable. For the

considered manipulator, they are 4 angles representing the position of
revolute joints.

From the constraints we can define the constraint matrices from (2.1) as:

Ap,g =
[
xg yg 0

]
Ao,g =

[
0 0 zg

] (3.5)

In order to derive the expression of the position and orientation jacobians,
we need to first compute the direct kinematics. In the next sections we will
drop the g subscript, as we only deal with the ground robot.

3.1.1 Direct Kinematics

To find the transform from the world frame to the end-effector we consider
the kinematic chain given by the product of relative transformation between
the successive links:

T w
e = T w

b (pv, ψv)T b
0T

0
1 (ϑ1)T 1

2 (ϑ2)T 2
3 (ϑ3)T 3

e (ϑ4) (3.6)

24 Chapter 3 Kinematic Robots Modeling and Simulation

where ϑi are the joint variables, s.t. q = [ϑ1, . . . , ϑ4]> and:

T w
b (pv, ψv) =

Rv(ψv) pv

0 1

 (3.7)

The reference frames are set according to the Denavit-Hartenberg convention
and the transformations can be expressed as follows:

• The first transform accounts for possible position and rotation offset
between the body frame and the first link of the manipulator. In the
specific case, we consider no rotation offset, and:

Rb
0 = I3, ob0 =

`b,x

`b,y

`b,z

 , T b
0 =

I3 ob0
0 1

 (3.8)

where `b,x, `b,y, `b,z are known constants, reported in appendix.

• The second transform defines the rotation of the shoulder joint about
the axis z of the body frame. There is no displacement between the two
links and we consider a rotation about the x axis to align the frame to
the next link.

R0
1 = Rz(ϑ1)Rx(π2), o0

1 = 0, T 0
1 =

R0
1 o0

1

0 1

 (3.9)

• The transformation regarding the first non-zero link is splitted in two
parts, due to its "L" shape:

R1
2′ = Rz(ϑ2), o1

2′ = `1,aR
1
2′x

R2′

2 = Rz(−π2), o2′
2 = `1,bR

2′
2 x

T 1
2 =

R1
2′R2′

2 o1
2′ +R1

2′o2′
2

0 1

 (3.10)

where `1,a and `2,b are the lenghts of the longest and the shortest
segment, respectively.

3.1 Ground Robot Modeling 25

• The derivations for the last two links are straightforward:

R2
3 = Rz(ϑ3), o2

3 = `2R
2
3x, T 2

3 =
R2

3 `2R
2
3x

0 1

R3
e = Rz(ϑ4), o3

e = `2R
3
ex, T 3

e =
R3

e `3R
3
ex

0 1

 (3.11)

where `2, `3 are the known lenghts of the last two links.

From the kinematic chain we can then find a closed form definition for pbe
and Rb

e, whose expression is cumbersome and it is not reported.

3.1.2 Differential Kinematics

After having derived an expression for pe(q), we can find the position and
orientation Jacobians, defined as:

JO =
[
∂pe
∂ϑ1

, . . . ,
∂pe
∂ϑ4

]
JP =

[
ω0,1, . . . , ω3,e

] (3.12)

where ωi−1,i are the relative angular velocities between links.

If we denote the by JPh
the h-th column of the positional Jacobian, since all

joints are revolutes, it holds:

JP1 = zb × (pe − pv)
JP2 = z1 × (pe − p0)
JP3 = z2 × (pe − p1)
JP4 = z3 × (pe − p2)

(3.13)

where zh = Rhz is the z-axis versor of the h-th reference frame, defined by
(ph, Rh) which can be easily derived from (3.6) by stopping the multiplica-
tion at the h-th term.

Deriving the orientation Jacobian is straightforward:

JO =
[
zb, z1, z2, z3

]
(3.14)

26 Chapter 3 Kinematic Robots Modeling and Simulation

We now have provided a closed form definition of every symbol in (2.1) so
the ground agent model is well defined by:

ẋg = Ag(xg)ug (3.15)

with the notation already introduced in the previous section.

3.2 Aerial Robot Modeling

As for the ground robot, we will model the first order kinematic of the UAV.
However, the assumption to be able to control the velocity is more critical
since the vehicle is underactuated: this implies that not only the velocity
input is not tracked with zero error, but to achieve that movement there
is an additional dynamics on the vehicle roll and pitch attitude which may
introduce significant errors on the tracking of the end effector. This behavior
is impossible to model with a first order differential relation as it depends on
the low-level dynamics of the vehicle. On the other hand, with a full dynamics
modeling it would be hard for the MPC to compute the control within the
even shorter time step a flying robot requires. In this implementation we will
assume that the overall dynamics is slow, so that these errors are negligible
and we can model the vehicle with 4 un coupled integrators. Moreover,
having a good velocity controller is crucial and not as easy to tune as for the
ground robot. We will in any case employ a first order model in the MPC
and try to integrate it with the low-level controller in a smart way which
will overcome both issues. We will discuss about this in the subsequent
sections.

We proceed by defining the variables and the constraints affecting the aerial
robot:

• Rv,a ∈ SO(3), the orientation of the vehicle in the world frame. We
model the constraint on the angular velocity as:

ωa = uω,ψ,aza (3.16)

where za is the versor of the z-axis of the vehicle frame. We stress the
fact that, despite this modeling, the low-level controller will provide
angular velocities components to roll and pitch. The errors caused by
breaking this assumptions will be assessed experimentally. As with

3.2 Aerial Robot Modeling 27

the ground vehicle, we will represent this rotation and its dynamics
through the yaw angle only, obtaining:

ψ̇v,a = uω,ψ,a (3.17)

being Rv,a = Rz(ψv,a)

• pv, a ∈ R3, the position of the aerial vehicle in the world frame, con-
strained in velocity according to:

ṗv,a = uv,x,gxa + uv,y,gya + uv,y,gza (3.18)

where
[
xa, ya, za

]
= Rv,a.

• qa =
[
ϑ1,a, ϑ2,a

]
is the vector of variables representing the angular

position of the two revolute joints.

The constraint matrices are then:

Ap,a = Rv,a

Aω,a =
[
0 0 za

] (3.19)

In the next sections we will drop the a subscript, as we only deal with the
aerial robot.

3.2.1 Direct Kinematics

In the same way as for the ground manipulator, we consider a chain of
reference transformations:

T w
e = T w

b (pv, ψv)T b
0T

0
1 (ϑ1)T 1

e (ϑ2) (3.20)

where:

T w
e (pv, ψv) =

Rv(ψv) pv

0 1

 (3.21)

where the transformation are defined as follows:

28 Chapter 3 Kinematic Robots Modeling and Simulation

• The first transformation is to align z-axis with the axis of rotation of
the first joint, accounting also for the in an offset:

Rb
0 = Rx(π2)Rz(−π2), ob0 =

`b,x

`b,y

`b,z

 , T b
0 =

Rb
0 ob0

0 1

 (3.22)

where `b,x, `b,y, `b,z are known constant parameters.

• The second transformation, alike the corresponding one in the ground
robot, is composed into two parts to account for the "L"-shaped link:

R0
1′ = Rz(ϑ1), o0

1′ = `1,aR
0
1′x

R1′

1 = Rz(π2), o1′
1 = `1,bR

1′
1 x

T 0
1 =

R0
1′R1′

1 o0
1′ +R0

1′o1′
1

0 1

 (3.23)

where `1,a and `2,b are the lengths of the longest and the shortest
segment, respectively.

The closed form definition for pe, can be derived from the kinematic chain
just like in the previous case.

3.2.2 Differential Kinematics

The expressions for the positional and orientational Jacobian are straightfor-
ward:

JP1 = z0 × (pe − pv)
JP2 = z1 × (pe − p1)

(3.24)

where zh, pb1 can be easily retrieved from the chain of transformation, prop-
erly truncated. We now have defined all elements of (2.1), so we have the
aerial vehicle kinematic model:

ẋa = Aa(xa)ua (3.25)

3.2 Aerial Robot Modeling 29

`

Ai(q)
1

s

T w
e,i(q, `)

Params

Input matrix

Direct Kinematics

ui(t) q̇(t) q(t)

pe,i

Re,i

Figure 3.1: Kinematic simulation block diagram.

3.3 Pure kinematic simulation

In order to quickly validate the algorithm we set up a simulation environment
in Simulink. To do so, we employ the kinematics model of the robots, which
means that we are simulating the ideal case in which the robots are able to
track velocity inputs with zero error and there are no second order dynamics
effects on the structure. This is certainly a hard assumption and we are not
able to predict how the results will differ from the reality and this means that
such simulation is not enough to assess the performance of the algorithm.
Nevertheless, this is useful to test the MPC for individual control and make
some preliminary considerations on the cooperative algorithm.

3.3.1 Individual control

In Fig. 3.1 the simulink block diagram of the kinematic simulation for a
generic agent i is reported. For the numerical computation, the integrator is
discretized by Simulink via Euler method. Note that for the robot simulation
we are using the direct kinematics, while in the MPC the Jacobian is used.
This allows for an additional consistency check between the two.

Regarding the implementation of the MPC solver, ACADO generated code
is wrapped in an s-function which provides a ready-to-use simulink block
which is then inserted in a classical feedback loop by stacking the output
of the simulation in Fig. 3.1, pe,i, Re,i and qi in a single vector to obtain
xi ∈ R19. The ACADO code generation is described in detail in the next
chapter.

30 Chapter 3 Kinematic Robots Modeling and Simulation

0
0

y

0.1

-0.20

0.2

z

x

0.3

0.2

0.4

-0.4

0.5

0.4

(a) Initial

0
0

y

0.1

-0.20

0.2

z

x

0.3

0.2

0.4

-0.4

0.5

0.4

(b) Final

Figure 3.2: Ground robot representation

Ground Robot Control

In this section we briefly present the pure kinematics result for the ground
robot, whose model derived in the previous section is used for the MPC, so
that to control the pose of the end effector. We consider a starting position
defined by pvv, 0 = 0, qg,0 =

[
0, π2 , 0, 0

]
which is represented in Fig. 3.2a.

Then, we set a constant reference pose with a small position displacement
and a rotation of π

2 about the z axis of world frame, which, in the frame of
end effector, is represented by the pose:

pe,g,des = pe,g,0 + [−0.25, 0,−0.2]
Re,g,des = Re,g,0Ry(π2)

(3.26)

where (pe,g,0,Re,g,0) = T w
e,g(qg,0). Note that a rotation about z in the world

frame correspond to a rotation about y in the initial end-effector frame.

Since we cannot assess the performances and we are only interested in testing
the stability of the controller, the choice of the cost matrices is not relevant
and we set an unitary weight to the pose error penalty while 0.1 for the cost
on the controls. As regards the sample time and prediction horizon, the
computing time does not represent a limitation in Simulink as the simulation
is not real time, and the computation can be as long as needed. On the
other hand, it appeared during the experiments that a wider time window

3.3 Pure kinematic simulation 31

0 1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

(a) Position error

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

(b) Orientation error norm dSE(3)

0 2 4 6 8 10
0

0.5

1

1.5

(c) Joints values

Figure 3.3: MPC control test for ground end-effector

32 Chapter 3 Kinematic Robots Modeling and Simulation

does not improve the performances. This is reasonable since all the model
assumptions are met in such simulation. However, to keep consistency to the
gazebo and experiments, we choose a quite slow control with Ts = 0.1 s and a
prediction horizon N = 10 samples, which means a time window Tp = 1 s.

The results are reported in Fig. 3.3. The MPC is able to stabilize the error
dynamics on the end effector, both in position and orientation. From the
graphs we note that the slowest component is on the z axis. This is due to the
fact that, while linear and rotational movements are directly achievable with
some inputs (either the base or the first joint velocities), the movement along
z requires the joints to properly perform coordinated movements in order to
avoid increasing the error on rotation. As a result, such kind of movements
have an higher cost in the optimal problem and are then slower.

Aerial Robot Control

In the pure kinematic simulation, testing the aerial model is completely
analogous, since no underactuated dynamics is taken into account. The main
difference is that the manipulator has few degrees of freedom whereas the
vehicle has a lot more mobility. This means that almost every configurations
are achieved by moving the vehicle rather than the joints. Here we will test

-0.5
0.5

0z

y

0

0.5

0

x

-0.2
-0.4

-0.6-0.5

(a) Initial

-0.5
0.5

0z

y

0

0.5

0

x

-0.2
-0.4

-0.6-0.5

(b) Final

Figure 3.4: Aerial robot representation

3.3 Pure kinematic simulation 33

0 1 2 3 4 5 6 7
-0.2

-0.1

0

0.1

0.2

(a) Position error

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

(b) Orientation error norm dSE(3)

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

(c) Joints values

Figure 3.5: MPC control test for aerial end-effector

34 Chapter 3 Kinematic Robots Modeling and Simulation

both the vehicle and the joints by considering an initial configuration defined
by pv,a,0 = 0, Rv,a,0 = I3 and qa,0 = 02, with setpoint:

pe,a,des = pe,a,0 + [−0.25, 0,−0.2]
Re,a,des = Re,a,0Rz(π2)

(3.27)

where (pe,a,0,Re,a,0) = T w
e,a(qa,0) in the same way as the ground controller.

Note that in the end effector the z axis is the rotation axis of the joints. The
initial and final configurations are depicted in figure 3.4a and 3.4b.

The simulation results are reported in 3.5. The same time window and
sample time as the ground case have been used and we note that it is able to
stabilize the error dynamics with comparable performances as as the ground
MPC. Note that by setting the same weight to the two joints control input the
rotation of π

2 is obtained with a displacement of around π
4 for each joint so

the control effort is equally shared among the two joints.

3.3 Pure kinematic simulation 35

3.4 Cooperative Algorithm Simulation

We can directly employ the two MPCs to implement the multiagent algorithm
in Simulink. The overall scheme is reported in Fig. 3.6. Obstacle avoidance
will also be tested afterwards. We assume the object is positioned as To =
([0, 0, 0.25], I3). Preliminarly, we exploit the individual controllers to find a
configuration such that the end effectors are aligned along the y axis:

Te,g = ([0,−0.1, 0.25],Rg,y)
Te,a = ([0, 0.1, 0.25],Ra,−y)

(3.28)

where Rg,y and Ra,y are rotations in each end-effector frame that align the
frame with y with positive and negative direction respectively. The initial
configuration is depicted in Fig. 3.7a. Then, we simulate phases 1 (Hand-
shake) and 2 (Transform estimation) by computing the relative transform from
ground to leader T e,g

e,a , which we will use as constant estimate throughout the
prediction, i.e.

T̂ e,g
e,a (t) = T̂ e,g

o (t)
(
T̂ e,a
o (t)

)−1
≡ T e,g

o (0) (T e,a
o)−1 (0) (3.29)

Leader

Follower

Obstacle
Detector

Reference
Trajectory

T̂ e,g
o

(
T̂ e,a
o

)−1

T e,g
o T e,a

o

T e,g
o T e,a

o

Ground
MPC

Ground
Kinematics

ẋg = Ag(xg)ug

Aerial
MPC

Aerial
Kinematics

ẋa = Aa(xa)ua

Object
Error

{
ξo,ref (n, t)

}N
n=1

{
(cm, Am)

}M
m=1

ug(t) xg(t)

xg(t)

{
ξ̂g(n, t)

}N

n=1

{
ξ̂a(n, t)

}N

n=1
ua(t)xa(t)

xa(t)

Figure 3.6: Block diagram of the overall system.

36 Chapter 3 Kinematic Robots Modeling and Simulation

0.5

0
0

y

0

z
0.5

x

0.5 -0.5
1

(a) t = 0 s

0.5

0
0

y

0

z

0.5

x

0.5 -0.5
1

(b) t = 1 s

0.5

0
0

y

0

z

0.5

x

0.5 -0.5
1

(c) t = 4 s

0.5

0
0

y

0

z

0.5

x

0.5 -0.5
1

(d) t = 7 s

Figure 3.7: Coopertive transportation snapshots showing different tracking errors.
Yellow dots are the two object estimates from the agents.

According to the algorithm (phase 4, Leader control and prediction), given as
object trajectory a constant set-point, the ground robot, which is designated
to be the leader agent, convert it to the corresponding pose of its end effector,
defining its own desired trajectory, which will track employing its MPCs. As
said, the MPC other than providing the control input, it yields the predicted
trajectory for its end effector, which will be supplied to the aerial robot (the
follower), transformed by T̂ e,g

e,a (phase 5, Follower Tracking). The aerial robot
will then compute a prediction that minimize the tracking error with its
MPC.

To test the algorithm we set an object reference with the same orientation
and centered in po,des = [1, 0, 0.25]. Figure 3.7 shows the robot configuration
in four time instants and the results graph are reported in Fig. 3.8. From
both figures we can notice that the follower is able to track the leader with
an error. To improve the tracking accuracy, in this experiment the ground
maximum velocity is limited by a constraint in the MPC to 0.3 m/s, as can be
noticed in Fig. 3.8a in the slope of the x error component.

3.4 Cooperative Algorithm Simulation 37

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

(a) Leader position error

0 1 2 3 4 5 6 7
0

0.05

0.1

(b) Leader orientation error

0 1 2 3 4 5 6 7
-0.05

0

0.05

0.1

(c) Follower tracking error

0 1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

(d) Follower orientation error

Figure 3.8: Cooperative manipulation error results

38 Chapter 3 Kinematic Robots Modeling and Simulation

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

Figure 3.9: Follower tracking error comparison with different weights for control
input, fixed the error weight as unitary.

In this pure kinematic simulation the tracking error can be made almost
arbitarily small (with limitations given by sample time) by tweaking the
control input cost weight, say β. In Fig. 3.9 are reported the tracking errors
with different values for β while mantaining unitary the weight on the error
cost. Note that by halving from 0.6 to 0.3 the difference is much higher than
from 0.1 to 0.05 and this suggests the presence of a limit in the minimum
achievable error, for which however is not really interesting to investigate
since the theoretical minimum is surely way less than what is practicable in a
real environment.

By comparing Fig. 3.9 with Fig. 3.10 we notice that the error is correlated
with both velocity and acceleration. In the first instants, the ground MPC
controller supplies to the system a non-zero velocity which is istantaneously
tracked by the system, producing an impulse in the acceleration. The fol-
lower’s MPC, to satisfy the optimal control problem, will apply a velocity
which is similiar to that of the ground robot according to the weights on
the cost function. However, the assumptions on the control input in the real
robot are not met and a too high control input may cause instabilities and
undesired oscillations, so the weights cannot be too small. Also, the initial
impulsive acceleration has no effects in this simulation since second order
dynamics is not considered. However, it will have a critical impact in the
experiments, as described in the next sections.

3.4 Cooperative Algorithm Simulation 39

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

(a) Ground end effector velocity

0 1 2 3 4 5 6 7

0

1

2

3

4

(b) Ground end effector acceleration

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

(c) Aerial end effector velocity

0 1 2 3 4 5 6 7

0

1

2

3

4

(d) Aerial end effector acceleration

Figure 3.10: Velocity and acceleration comparison for ground and aerial robot

40 Chapter 3 Kinematic Robots Modeling and Simulation

0.20

0.2

0

0.4
z

0.6

0 -0.2

yx

-0.40.5 -0.6-0.81

(a) t = 0 s

0.20

0.2

0

0.4

z

0.6

0 -0.2

yx

-0.40.5 -0.6-0.81

(b) t = 1.5 s

0.20

0.2

0

0.4

z

0.6

0 -0.2

yx

-0.40.5 -0.6-0.81

(c) t = 3 s

0.20

0.2

0

0.4

z

0.6

0 -0.2

yx

-0.40.5 -0.6-0.81

(d) t = 10 s

Figure 3.12: Coopertive transportation snapshots showing different tracking errors.
Yellow dots are the two object estimates from the agents. The black
circle represents a view of the obstacle

3.4.1 Obstacle Avoidance Test
Here we will present the results of the collision avoidance strategy presented
above. We consider a spherical obstacle centered in c = [0.5,−0.1, 0.2]
with radius r = 0.15 and we run the cooperative transportation algorithm
with high cost for tracking error and with the same setpoint as before
po,des = [1, 0, 0.25], as depicted in Fig. 3.12.

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

Figure 3.11: Distance between object and
obstacle center.

From that figure, along with 3.11,
we notice that the algorithm is able
to overcome the obstacle by passing
over it. Finally, figure 3.13 shows
that the algorithm is slow, due to the
vertical movement which is expen-
sive and also the controller is able to
keep the tracking error bounded but
not small during the overtake.

3.4 Cooperative Algorithm Simulation 41

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

(a) Leader position error

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

(b) Leader orientation error

0 1 2 3 4 5 6 7
-0.05

0

0.05

0.1

(c) Follower tracking error

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

(d) Follower orientation error

Figure 3.13: Cooperative manipulation error results with an obstacle

42 Chapter 3 Kinematic Robots Modeling and Simulation

4Simulation Environment
Setup

The Simulink tests are an useful tool at the design stage that allows to validate
the algorithm without accounting for side effects and thus to discern between
theoretical and practical problems. However, the assumption to have perfect
actuators that tracks the velocity input with zero error is rather harsh and the
models employed in the MPCs need to be tested in a more realistic simulation
to actually validate the algorithm. This is crucial for the aerial robot in
particular, in which we neglected the underactuated dynamics. To this aim,
the algorithm is implemented in C++ with a ROS interface and tested in
Gazebo, a robot dynamics simulator. The flexibility in the implementation
provided by ROS allows to directly perform the experiment in a flying arena
with physical robots by only changing the input-output connections.

4.1 Introduction to ROS

The Robotic Operating System is a framework for robot software development.
Besides a set of libraries, it provides services for communication between
processes which is transparent with respect to the medium so that they can
interact regardless being in the same physical device or across the network. In
particular, this allows for hardware abstraction by providing a standardized
communication format with wich processes communicate with devices.

The framework is characterized by a graph architecture, where processes are
represented by the nodes, which can send and receive messages to and from
other processes or devices through abstract communication channels referred
to as topics. A topic is a stream of messages with a defined type that carry
data of any kind, such as sensor data and actuation input values as well as
internal messages between processes.

Topics implement a publish/subscribe communication mechanism in which
nodes, before the transmission, open a topic by declaring its name and
message type. Then they can start to send (publish) data on the topic. Nodes

43

ListenerListener

0)
ad

ve
rti

se
Se

rv
ic
e

(“b
ar

”,f
oo

:1
23

4)

1) lookupS
ervice

(“bar”)

2) {foo:3456}

4) request data (args)

5) reply data

TCP

Talker
XML/RPC: foo: 1234
ROSRPC: foo: 3456

Talker
XML/RPC: foo: 1234
ROSRPC: foo: 3456

ROS MasterROS Master

XML/RPC

Figure 4.1: ROS mechanics scheme

that want to receive those messages can subscribe to that topic and then the
will receive all the messages sent to that topic. The network is governed
by a master node, the roscore, that manages the connections. Topics are
anonymous, in the sense that the sender does not need to know which nodes
are going to receive its mesages and receivers do not know the source of
messages.

Figure 4.2: Typical screenshot of the Gazebo simulator [22]

4.1.1 Gazebo

Gazebo is a 3D dynamics simulator that allows for robot simulation. It uses
the Open Dynamics Engin for rigid-body physics, in which object are assumed
to be incompressible. While this assumption drastically improves the com-
putational performance, it requires a set of tricks to solve inconsistencies
that may be caused by approximations. In most of the cases this will result
in a physically plausible behavior and quite accurate results. The coopera-
tive manipulation task presented in this thesis, however, would require the

44 Chapter 4 Simulation Environment Setup

simulation of the effects of the internal forces on the object caused by each
manipulator. However, the latter can only be simulated with a rigid grasp, so
we will validate the algorithm by looking at the displacement error on the
follower with the object detached from the robot.

4.2 Building the Gazebo models

The model for Gazebo are defined with Unified Robot Descripion Format
(URDF), an XML format that allow to respresent the kinematic and dynamic
description of the robot, along with its visual and collision representation.

4.2.1 URDF format

An URDF file consists in a root node that contains all the robot definitions:

<robot name="[model_name]">
...

</robot>
The robot is described via the tags <link> and <joint>

Link

The <link> tag defines a single link of a robot. It can describe its visual,
collision and dynamics properties and is structured as follows:

<link name="[link_name]">
<visual> ... </visual>
<collision> ... </collision>
<inertial> ... </inertial>

</link>
Specifically:

• <visual> defines how the link will be visualized in Gazebo. It could be
a geometric shape defined directly with a XML tag or a mesh. It is not
accounted in the physics computations

• <collision> defines the collision shape. Although in general it should
be equal to the visual, to simplify the calculations it is usually a simpler
shape, such as a bounding box or ellipsoid, that approximate the visual.

4.2 Building the Gazebo models 45

Figure 4.3: Link properties

• <inertial> defines the dynamic properties: the mass, inertia matrix
and center of mass.

Joint

The <joint> tag represents a robot joint between two links. It describes the
kinematics and dynamics and also specifies safety limits. The tag must be
defined as follows:

<joint name="[joint_name]"
type="[joint type]">

<parent link="[parent_link]" />
<child link="[child_link]" />

<axis xyz="[joint axis]" />
<origin xyz="..." rpy="..." />
<dynamics ... />
<limit ... />

</joint>

Specifically:

• type specifies the joint type, which can be revolute, prismatic, fixed, etc.

• <parent> and <child> specify the two links that the joint connects.

• <axis> specifies the joint axis in the joint frame.

• <dynamics> defines physical properties of damping and friction.

• <limit> defines the joint limit values in position, effort and velocity.

46 Chapter 4 Simulation Environment Setup

Figure 4.4: Joint properties

4.2.2 Case-study models

The file format described above can be employed to define the robot models
to be simulated in Gazebo.

Ground robot model

The ground robot is composed of a prism-shaped base with four omnidi-
rectional wheels (RB-Nex-03 from Nexus Robot). To define the model, we
first consider a link that defines the base with the same size as the real
one, base_link. Then, the omnidirectional wheels are simulated with two
overlaid (continuous) revolute joints, each accounting for either a movement
on x or y axis.

As regards the arm, the WidowX arm from Trossen, the joints are simply
defined providing the geometric characteristics and by using a mesh obtained
from the manufactorers. The arm has an additional wrist joint which is
not considered in this work and is then substituted with a fixed joint. The
resulting URDF tree is schematized in figure 4.5. Figure 4.6 shows the Gazebo
rendering of the model here defined.

4.2 Building the Gazebo models 47

base_link

caster_link_bl

caster_joint_bl

caster_link_br

caster_joint_br

caster_link_fl

caster_joint_fl

caster_link_fr

caster_joint_fr

ground_shoulder_link

ground_joint_1

wheel_link_bl

wheel_joint_bl

wheel_link_br

wheel_joint_br

wheel_link_fl

wheel_joint_fl

wheel_link_fr

wheel_joint_fr

ground_biceps_link

ground_joint_2

ground_forearm_link

ground_joint_3

ground_wrist_1_link

ground_joint_4

ground_wrist_2_link

ground_joint_5

ground_end_effector_link

ground_joint_6

Figure 4.5: Ground robot URDF hierarchy tree

Figure 4.6: Ground robot Gazebo Rendering

48 Chapter 4 Simulation Environment Setup

Aerial robot model

The aerial robot used in the experiments is a costum assembled drone avail-
able in the Smart Mobility Lab in KTH, with six propellers. Since the control
design is at high level and does not account for particular dynamics proper-
ties, for the simulations an existing URDF description of a similiar hexacopter
is used. The used model is from rotorS, a gazebo simulator package, which
will be employed for the flying dynamics simulation.

Similiarly to that of the ground robot, the URDF model file defines a base_link
that accounts for all the aerial body structure, to which the six rotors are
attached via continuous revolute joints. To the base frame also the two-joints
arm is attached with a fixed joint. All the meshes for the vehicles are taken
from the rotorS package, while the arm is the same used for the ground.

In figure 4.7 is schematized the tree strucuture of the URDF file, while the
Gazebo rendering is shown in 4.8.

Low-level control and sensors

After having defined the robots description, it is necessary to set up the
control and sensor interface with Gazebo that shall accept inputs and pro-
vide feedback via ROS topic messages, which is made possible by several
plugins:

• The ground mobile base is controlled with the Gazebo Planar Move
plugin, which accept a geometry_msgs/Twist message type. The plugin
also provides the state information on pose and velocity with message
nav_msgs/Odometry.

• The arms, both for ground and aerial robot, are controlled in velocity
thanks to the Gazebo ROS Control plugin, which accept each joint veloc-
ity in a different topic. The same plugin provides the joint state informa-
tion via other topics. The real robot interface reads all joints inputs and
provides state outputs both in topic of type std_msgs/Float32MultiArray
for all joints, so a simple ROS node to interface between the two mes-
sages type has to be written in order to mantain compatibility.

• The package rotorS contains a Gazebo controller plugin to simulate
and control the flying vehicle. Experimental tests showed that con-

4.2 Building the Gazebo models 49

trolling the latter in velocity results in poor performances, so we will
control the roll-pitch-yaw-thrust of the vehicle with message of type
mav_msgs/RollPitchYawrateThrust, as will be explained in details
later.

• Feedback data about the aerial vehicle pose and velocity is provided by
rotorS Gazebo Odometry plugin with a nav_msgs/Odometry message
type. The same plugin is employed to obtain the pose of the ground
robot end effector. The one of the aerial robot cannot be acquired in a
compatible way in the real environment, as explained later, so the end
effector pose is derived by direct kinematics in a dedicated ROS node
that has been purposely written.

This is the input-output message interface which is chosen to be the same in
the simulation and with the real robots, so that switching from one to the
other does not require changing the ROS node but only the configuration
files.

Figure 4.7: Aerial robot URDF hierarchy tree

50 Chapter 4 Simulation Environment Setup

Figure 4.8: Aerial robot Gazebo Rendering

4.2.3 Gripper simulation with EasyGripper

It is well known in the online community that Gazebo is not able to properly
simulate the physics of grasps. Also, defining or adapting an algorithm to
perform grasps with the case-study grippers is a work that is out of the scope
of this project since the initial assumption is that the agents are already
grasping the object. However, is convenient to be able to programmatically
attach and detach the object to and from the end effectors. To this aim
EasyGripper has been written, a Gazebo plugin that is able introduce or
remove a fixed joint between two links upon request.

The request can be sent on a configurable topic (/easy_gripper/command by
default) according to the following costum message:

easy_gripper/GripCommand:
string gripper_link
string object_link
int8 command

4.2 Building the Gazebo models 51

where

• gripper_link is the string identifying the end-effector link, as defined
in the URDF file.

• object_link is the string identifying the object link, as defined in the
URDF file.

• command is an integer specifying the command, which can be:

– 0, command_attach: to introduce a fixed joint between gripper_link
and object_link. EasyGripper will keep track of such joint by stor-
ing a pair defined by the two strings. Note that this pair must be
unique.

– 1, command_detach: to remove the joint between gripper_link
and object_link. The pair must be previously stored with a
previous command_attach or an error will occur.

– 2, command_print: this will print out the list of active grasps on
the terminal the plugin is originally run. This is meant for debug
only.

The plugin will compute the relative pose of the two links at the moment
of request, which will be then onward kept constant. The simulated joint
is perfectly rigid: this may cause inconsistencies when two rigid bodies are
attached to the same object. This is caused both by an intrinsic problem of
coherence between two bodies exerting a force on a common one and by the
inaccuracies in the simulation that Gazebo introduces to keep the simulation
simple.

The specific case of implementation is particularly critical since the aerial
robot will not be able to roll and pitch. For this reason, the grasp on the
ground robot side only will be simulated to assess the performances. However,
once verified the performances of the algorithm by considering the position
error, both grasps can be simulated. This will produce internal forces on the
object, which the simulator is not able to properly report, but it is possible to
check visually if there are inconsistencies in the simulation. However, some
results may be altered by simulation inaccuracies introduced by Gazebo so
the behavior must be carefully analyzed each time.

52 Chapter 4 Simulation Environment Setup

5The Universal MPC
Wrapper for ROS

Nowadays, most of the MPC implementations have an application-specific
design. This means that almost each time the model is modified the code has
to be updated. Here we will present a flexible MPC implementation in ROS
that is suitable to be used with every possible model defined with ACADO, a
dynamic optimization library whose generation tool the software relies on.
The versatility lies in the standardized I/O ROS messages that is applicable
to any kind of input and outputs

The working principle is the following:

• First, the problem is defined in MATLAB employing the library provided
by ACADO.

• Then, the tool will produce C code that solves the problem.

• The C++ code for the ROS node is designed to work with every possible
code generated by ACADO.

• Finally, the ROS code is compiled together with the ACADO generated
code that is placed in a predefined directory.

This procedure will produce a ROS node that accepts in an input topic all
the data needed for each computation step and provides in output all the
computed data.

5.1 Matlab problem definition with
ACADO

ACADO Toolkit is a software environment and algorithm collection written
in C++ for au- tomatic control and dynamic optimization. It provides a
general framework for using a great variety of algorithms for direct optimal
control, including model predictive control as well as state and parameter
estimation.

53

The ACADO Code Generation tool allows to export C code to solve nonlinear
model predictive control of the form:

min
x0, . . . ,xN
u0, . . . ,uN−1

N−1∑
k=0

∥∥∥h(xk,uk,dk)− yref,k
∥∥∥2

Wk

+
∥∥∥hN(xN)− yref,N

∥∥∥2

WN

subject to: x0 = x̂0

xk+1 = F (xk,uk, zk), k = 0, . . . , N − 1
xk,min ≤ xk ≤ xk,max, k = 0, . . . , N
uk,min ≤ uk ≤ uk,max, k = 0, . . . , N
rk,min ≤ rk(xk,uk) ≤ rk,max. k = 0, . . . , N − 1
rN,min ≤ rk(xN) ≤ rN,max

(5.1)

where:

• xk ∈ RNx is the differential state

• uk ∈ RNu is the control input

• zk ∈ RNz is a vector of algebraic variables

• x̂0 ∈ RNx is the current state measurement

Reference functions h(·, ·, ·) ∈ RNy and h(·, ·) ∈ RNy,N are the output refer-
ence functions. Running and terminal weighting matrices are denoted with
Wk ∈ RNy×Ny and WN ∈ RNy,N×Ny,N . Variables ỹk ∈ RNy and ỹN ∈ RNy,N de-
note time varying references. [xk,min,xk,max] and [uk,min,uk,max] are the state
and control inputs ranges, that might change along the horizon. The last two
terms define path and point constraint, respectively, with constraint functions
rk ∈ RNr,k and rN ∈ RNr,N . Function F (x,u, z) defines a discretized ODE,
automatically generated by ACADO given the continuous time system.

ACADO Implemented Algorithms

The exported C code solves nonlinear MPC problems by means of the real-
time iteration scheme with Gauss-Newton Hessian approximation. Discretiza-
tion of the continuous time ODE is done via shooting techniques [11]. The
resulting quadratic problem is solved with qpOASES [4, 5].

54 Chapter 5 The Universal MPC Wrapper for ROS

5.1.1 ACADO OCP definitions

The problem definition is coded in a MATLAB script. As a general example that
explains the ACADO syntax, in the following we will present the description
of the ground robot, following the definition provided in sec. 3.1. The aerial
one is completely analogous.

First, differential states and controls are to be declared.

DifferentialState p_e(3) R_e_vec(9);
DifferentialState th1 th2 th3 th4 x_v y_v psi_v;
Control uth1 uth2 uth3 uth4 ux uy upsi;

where p_e is a 3D vector representing the end effector position and R_e_vec
is a 9-components vector containing the components of its rotation matrix.
In the second line we define the joints variables and the pose of the vehicle,
with clear reference to what defined in sec. 3.1. Finally, the third line defines
the control input.

ACADO allows to define online data, which is a vector as long as the prediction
window and is supplied at each computation step. We will use this to input
the obstacle data and optionally the keypoints as well as the reference end-
effector orientation, since computing the error requires a computation that
cannot be resorted to a difference as in (5.1).

OnlineData R_e_des_vec(9);
OnlineData v_o_1(3) r_1;
OnlineData v_o_2(3) r_2;
OnlineData keypts(3*K);

where R_e_des_vec is the reference rotation matrix of the end-effector frame,
v_o_1, v_o_2 and r_1, r_2 defines the center and the radius of two obstacles.
keypts is the array of K keypoints to be considered, with K hardcoded.

By exploiting the MATLAB Simbolic Toolbox, it is possible to derive the para-
metric functions needed to define the differential equation describing the
kinematics of the end effector pose:

• [J_P, J_O] = getJacobian (q, groundParams) returns the position
and orientation Jacobians of the ground model, as defined in sec. 3.1,
given q, containing the current joint state and vehicle pose, and the
set of link lenghts and geometric displacement in the ground robot in
groundParams.

5.1 Matlab problem definition with ACADO 55

• B = getInputMatrix (q) represents the input matrixAp,g defining the
input constraints as in (3.5).

When dealing with matrix it is necessary to account for the conversion from
a 3× 3 matrix to its 9-D vector representation. In the following we assume
this conversion implicit by considering a variable with _vec appended, and
viceversa. The rotational dynamics can then defined through the auxiliary
variables:

omega_e = J_O * u;
R_e_dot = skew (omega_e) * R_e;

where omega_e is the instantaneous angular acceleration given the input
u, which contains all the control variables, and skew which yield the skew
symmetric matrix.

The overall agent dynamics is defined in the ACADO library syntax by means
of the function dot, which informs the processor that the expression in the
argument shoud be treated as a derivative. The ODE definition is then
intuitive:

f = [dot (p_e) == J_P * u; ...
dot (R_e_vec) == R_e_dot_vec; ...
dot (q) == B * u];

The output function h(·, ·, ·) is defined as in section 2.2.

The controlled quantity is the end effector position p_e, which can be com-
pared directly to the reference in (5.1). The orientation error, instead, needs
a preliminar computation:

Err_R_e = norm (R_e’ * R_e_des - eye(3)),’fro’);

which is the Frobenius distance between rotation difference and the iden-
tity.

To implement obstacle avoidance, we insert in the output function the cost
defined in (2.45), where χi(·) is implemented in a function costCollide
(p, obst, r, margin), where,in the specific case, obst is v_o_1 and v_o_2,
margin is choosen to be 0.1 m and p is considered as:

• p_v = [x_v; y_v; z_v], the base position vector.

• p_e, the end effector position.

• p_2, p_3, the second and third joint position, obtained with the direct
kinematics via functions getP2, getP3 (q, groundParams).

56 Chapter 5 The Universal MPC Wrapper for ROS

• w_fr, w_fl, w_rr, w_rl, keypoints centered in the four wheels, based
on the specific robot geometry, hardcoded.

• keypts, optional keypoint accepted as online data (intended to be the
object pose, when available, should be infinite otherwise)

The final output vector is then hN = [p_e; total_cost; Err_R_e] for the
terminal term, and h = [hN; controls] for the running cost, where total_cost
is the sum of the result of costCollide for the two obstacle and each keypoint
defined above. controls is an ACADO shortcut to refer to all the control
inputs.

To export the code we need first to setup ACADO (first line below), define an
OCP variable and the size of the cost matrices W and WN:

acadoSet (’problemname’,’mpc_export’);
ocp = acado.OCP (0.0, N*Ts, N);

W = acado.BMatrix (eye (length(h)));
WN = acado.BMatrix (eye (length(hN)));

given N to be the prediction count and Ts the sample time. We then setup the
MPC cost function and model with:

ocp.minimizeLSQ (W, h);
ocp.minimizeLSQEndTerm (WN, hN);
ocp.setModel (f)

with clear meaning of the functions. The maximum control and joint values
are set with ocp.subjectTo (... <= var <= ...).

Option Value

HESSIAN_APPROXIMATION GAUSS_NEWTON
DISCRETIZATION_TYPE MULTIPLE_SHOOTING
SPARSE_QP_SOLUTION FULL_CONDENSING_N2

INTEGRATOR_TYPE INT_IRK_GL2
NUM_INTEGRATOR_STEPS 2 * N

QP_SOLVER QP_QPOASES3
LEVENBERG_MARQUARDT 1e-4

Table 5.1: ACADO MPC problem options

Finally, to export the code:

mpc = acado.OCPexport (ocp);
mpc.set (...);
...
mpc.set (...)

mpc.exportCode (<path>)

where mpc.set will set the problem
options define in table 5.1, which are
rather standard. For integration with
the ROS wrapper, if the script is in the matlab directory of the package, the
target directory should be ../src/export_MPC.

5.1 Matlab problem definition with ACADO 57

5.2 MPC Wrapper implementation

In this section we will present the implementation of the ROS MPC Wrapper
node. First, we will briefly outline the ACADO generated code interface. The
MPC Wrapper will employ the latter to implement the MPC in two layers: the
outer layer is the ROS interface, which is responsible of communication with
external ROS node by reading inputs and publishing the outputs. The inner
layer is responsible of converting ROS messages to ACADO structure and to
run the actual MPC solution, with the additional possibility of handling input
packet loss without interrupting the control.

5.2.1 ACADO generated code interface

The ACADO generated code consists of several source files, the main ones are
acado_solver.c, acado_integrator.c, which contain the C translation of
the expressions defined in MATLAB and the interface for problem solution.

The main definitions, which will be used in the wrapper, are located in
acado_common.h, that are:

• Constants indicting the exact sizes of the problem: ACADO_N, number of
control intervals, ACADO_NOD, number of online data values, ACADO_NU,
number of control variables, ACADO_NX, number of differential states,
ACADO_NY, number of references per sample on the first N samples,
ACADO_NYN number of references on the last (N + 1)-st sample.

• ACADOvariables, structure containing all the variables of the problem:
states, controls, online data, running and terminal reference, cost
matrices and the current state feedback vector x̂0.

• acado_initializeSolver, to initialize the solver.

• acado_preparationStep, to setup variables before each computation
step.

• acado_shiftStates, and acado_shiftControls to shift the stored val-
ues of the states and controls. See below for details.

• acado_feedbackStep, main function in which the computation actually
occur.

58 Chapter 5 The Universal MPC Wrapper for ROS

After initializing the solver, at each computation step, ACADO requires to
initialize the values of state, online data and reference as well as the controls
for the whole prediction horizon and this will be used as initial condition in
each solution of the optimization problem. Before the first calculation, of
course, no data is available for the controls, so the vector will be filled with
zeros. After the first calculation, at each step a set of predicted control values
is available from the previous one: the first one has already been applied,
after the feedback the previous open loop control will not be optimal and the
state prediction will be different according to the measured state. However,
those represent a good initialization for the next optimization step, so all the
control prediction and states should be shifted forward at each computation
step.

5.2.2 MPC Wrapper inner layer
The inner layer, implemented as a C++ class, is responsible for handling the
main MPC computation, assuming to have all the input information decoded.
It is based on a finite state machine whose transition are governed by the
outer layer counterpart. It is designed to work in two modes: synchronous
and asynchronous.

• In synchronous mode the computation must be triggered (by the outer
layer) at a specific rate, regardless if new measurement are available
or not. If no new data is provided, the next step will output the last
computed prediction, with the next open-loop input as current control,
as described below.

• In asynchronous mode, the computation is executed at the same time
new data is available, with no timing constraints. This preclude the
possibility of handling data losses.

Note that timing and data updating is responsibility of the outer layer:
depending on its implementation, one of the two behavior will arise.

Despite the advantages of the former mode, besides requiring a quite precise
time base synchronization, it should be noticed that in case of data loss the
provided prediction window is progressively shorter.

In this project, this entail different window length between leader and fol-
lower, and this may arise additional problems. For this reason, for simplicity,
the asynchronous mode is chose for the specific application.

5.2 MPC Wrapper implementation 59

Figure 5.1: MPC Wrapper Finite State Machine diagram

The implementation of the inner layer is based on a finite state machine.
The interface from and to the outer layer consists of a set of input actions
(initParams, initInput, start, updateInput and tick and stop) and two
data structures, InputData and OutputData, defined later.

The states and transitions are defined as follows:

1. NOT_READY, is the initial state when the machine is loaded. It waits
until the initParams action is called to specify the MPC initialization:

• Initial state x0.

• Initial algebraic state z0, if any.

60 Chapter 5 The Universal MPC Wrapper for ROS

• Initial control input u0. Without any information, the default
choice is a vector of zeros.

• Weight matrices for runnning and terminal cost, W and WN

respectively.

• Maximum number of iterations Niter.

This will then cause the state to change to INITIALIZED

2. INITIALIZED. In this state the MPC parameters are set and the machine
is waiting for the first input data of type InputData to be supplied
through the action initInput.The state will subsequently change to
READY.

3. READY. The MPC is ready and waits for the start action to be called
for synchronization purpose, which will initialize the solver and trigger
the computation of the first solution. The state will also change to
SPINNING_NEW

4. SPINNING_NEW. New data is available and three actions can be per-
formed:

• updateInput, which will reupdate the input data, discarding the
current. This is inteded to occur in case of packet loss after a
small time, so that the new system state is close to the old one.
Otherwise the stop action should be taken so to reinitialize the
MPC.

• tick, which will start the solution according to the current input
data. After the computation, new output of type OutputData is
available to be fetched by the outer layer. Consequently, the state
will change to SPINNING_OLD.

• stop will change the state to INITIALIZED to disable output and
allow a reinitialization of the MPC.

5. SPINNING_OLD. In this state the solution for the current input data has
already been computed. The same three actions can be called as in the
previous state, with different results:

• updateInput will return to state SPINNING_NEW where new data
has no solution yet.

5.2 MPC Wrapper implementation 61

• tick. This can only occur in synchronous mode when the next
control has to be computed but the new data is not available. This
will keep the last solution and set the openLoopIndex field of the
OutputData structure, which is initially 0, to 1, which means that
the control sample to be applied is the second in the prediction
array. If tick is called again from this state, the openLoopIndex
will be increased, until either a new updateInput is triggered,
which will reset the counter, or the prediction window is exceeded,
which will bring the machine to the fault state DEAD.

• stop will change the state to INITIALIZED like before.

6. DEAD. The MPC prediction is over and no new data is supplied. This
faulty condition cannot be handled by the MPC: a constant prediction
position and zero velocity input is yield as output.

The data structures used to exchange input and output informations are the
following

struct InputData: struct OutputData:
Vector state Matrix stateTrajectory
Matrix refWindow Matrix controlTrajectory
Matrix refTerminal int openLoopIndex
Matrix onlineData int solverStatus

int iterNumber
double kktTol
double cpuTime
double objectiveValue

where:

• The fields of InputData contain information about current state, win-
dow and terminal reference and online data, where the rows of the
matrices are relative to the different instants of the prediction window.

• The fields of OutputData contain the solution to the optimal control
problem in controlTrajectory and the state prediction, both through-
out the prediction window. The openLoopIndex, as mentioned, refers
to the control sample that has to be applied according to the algorithm
and is always zero in asynchronous mode. solverStatus, is the error
code occurred in the solution:

0: No error.

62 Chapter 5 The Universal MPC Wrapper for ROS

1: QP could not be solved within the given number of iterations.

-1: QP could not be solved due to an internal error.

-2: QP is infeasible and thus could not be solved.

-3: QP is unbounded and thus could not be solved.

-30: QP causes nan KKT.

The resulting tolerance value from the solution is stored in kktTol,
the actual number of iterations needed for the solution is reported in
iterNumber, the time taken for the solution in cpuTime and the current
objective function value in objectiveValue.

The sizes of the vectors and matrices are defined by ACADO in the generated
code: this allows to the node to be adapted to any problem size without
manual modifications to the code.

5.2.3 MPC Wrapper Outer Layer

The outer layer is an actual ROS node which is responsible for both receiv-
ing and publishing data from and to the other nodes and to trigger the
computation with the right timing. Currently, an hybrid synchronous and
asynchronous mode has been realized, leaving more advanced implementa-
tions as future works.

Inputs and outputs

The first requirement for the ROS node to be reusable is to have a standard-
ized input-output interface, which shall be realized through a ROS message.
To this aim it is important that the structure of the message type is sufficiently
flexible. The standard message std_msgs/Float64MultiArray perfectly suits
the needs. By definition it is composed of a layout specification part and a
one-dimensional array that contains all the data:

std_msgs/Float64MultiArray:
MultiArrayLayout layout # specification of data layout
float64[] data # array of data

A further look into the definition of MultiArrayLayout shows how the data
into array should be fitted:

5.2 MPC Wrapper implementation 63

std_msgs/MultiArrayLayout:
MultiArrayDimension[] dim # Array of dimension properties
uint32 data_offset # padding elements at front of data

std_msgs/MultiArrayDimension:
string label # label of given dimension
uint32 size # size of given dimension
uint32 stride # stride of given dimension

According to the documentation, to define a matrix the layout field is used as
follows:

matrix[i, j] = data[data_offset + dim[1].stride * i + k]

The dimensions of the data must be known a priori both from the wrapper and
from the receiver/sender (depending on the direction of the communication)
but this is the case in any application: the wrapper is aware of the dimensions
from the ACADO generated code while the external nodes are application-
dependant and they are then able to provide all the necessary information.

In this light, we can define the costum messages type according which the
nodes will exchange information:

mpc_wrapper/InputData:
std_msgs/Float64MultiArray state
std_msgs/Float64MultiArray refWindow
std_msgs/Float64MultiArray refTerminal
std_msgs/Float64MultiArray state

mpc_wrapper/OutputData:
std_msgs/Float64MultiArray controlTrajectory
std_msgs/Float64MultiArray stateTrajectory
std_msgs/Float64MultiArray currentControl
int64 openLoopIndex
float64 kktTol
float64 solverStatus
float64 cpuTime
int64 nIter
float64 objVal

This to the definition is completely analogous to the data structure of the
inner layer: it is then easy to convert it according to and from the given
layout and supply to and receive from the inner layer.

64 Chapter 5 The Universal MPC Wrapper for ROS

Main loop

As mentioned, the current implementation is an hybrid of the two modes
which constantly provides data to the inner layer and the procedure is
schematized as follows:

1. The ROS node loads the MPC initialization parameters from the con-
figuration file (default config/mpc_wrapper.yaml) which defines the
parameters described above as well as the loop rate.

2. When the first input data arrives, it sets the first input and automatically
starts the MPC, bringing its state to SPINNING_NEW.

3. Then, the main loop starts to run at constant rate while the input data is
updated in parallel. The node will always update the input and trigger
a tick, regardless that new data is actually available: if not, the old
data is kept as constant.

4. Right after the solution is triggered, the output data generated by
the inner layer is fetched, converted to the output ROS message and
published to the external nodes.

The overall schemes for the tree implementations are schematized in figures
5.2, 5.3 and 5.4. In the scheme, the shapes have the following meaning:

• Rectangles are data storage: they latch data until is refreshed by a new
input.

• Parallelograms represents actions, that are triggered by incoming ar-
rows or may trigger other actions pointed by outcoming arrows.

• Ellipses are external and autonomous source of signals, that might emit
data (e.g. ROS IN) or logical signals (e.g. CLOCK).

• Triangles are "tri-state buffers": when the lateral signal is on, it means
that a data transfer from the input to the output is performed.

• Arrows coming to and from data blocks contain data signals, while
those coming to and from action blocks represent logical signals.

• Diamond shapes have the common meaning of conditial action which
emits logical signals if the stated condition is true.

5.2 MPC Wrapper implementation 65

Outer Layer Inner Layer

ROS IN OUTER DATA INNER DATA

UPDATE

CLOCK TICK SOLVE

PUBLISH SOLUTION

ROS OUT

Figure 5.2: MPC Wrapper outer layer "hybrid" implementation scheme

Outer Layer Inner Layer

ROS IN OUTER DATA INNER DATA

NEW DATA

TICK SOLVE

PUBLISH SOLUTION

ROS OUT

Figure 5.3: MPC Wrapper outer layer asynchronous implementation scheme

66 Chapter 5 The Universal MPC Wrapper for ROS

Outer Layer Inner Layer

ROS IN OUTER DATA INNER DATA

NEW DATA

UPDATE

CLOCK TICK SOLVE

PUBLISH SOLUTION

ROS OUT

Figure 5.4: MPC Wrapper outer layer synchronous implementation scheme

Summary

The Universal MPC wrapper is a flexible tool that allows an easy implementa-
tion of a generic optimal control problem. First, the problem is defined with
ACADO in a matlab script that generates the relative C code.

The MPC Wrapper is responsible of receiving data through a ROS message
of the type mpc_wrapper/InputData described above, solving such problem
according to the interface provided by the generated code, and will output
the results in a ROS message of the type mpc_wrapper/OutputData, that
contains all the resulting data.

Depending on the implementation, the MPC wrapper is able to handle input
data losses by exploiting the open-loop prediction of the control input. Cur-
rently, only the first "hybrid" scheme is realized, in the future versions the
user will be able to choose which scheme to employ.

5.2 MPC Wrapper implementation 67

6Experiment
Implementation and
Results

In the previous section we presented the general implementation of the MPC
wrapper as tool to solve generic optimal control problem, with a specific ex-
ample from the case-study. Here we will briefly present how this is integrated
in the ROS system that manages the informations routing from sensors and to
actuators as well as the implementation of the actual multi-agent algorithm.
Afterwards, we will present the simulation and experimental results.

6.1 Ground and Aerial MPC interfaces
The MPC wrapper communicates through a costum ROS message type: the
data, however, comes from different sensors and the control incorporates
values targeted at different actuators. To this reason, two ROS nodes have to
be implemented as interfaces with the wrapper, both for the ground and for
the aerial controllers.

Both interfaces have been implemented according to a similiar scheme as the
"hybrid" procedure described in the previous chapter:

1. Incoming and outcoming data are latched in member variables of a
class whenever a new message is received or a new solution is read.

2. The main task is to process the data to either gather the useful sensors
variables and building mpc_wrapper/InputData structure or to extract
the computed control input from mpc_wrapper/OutputData.l

3. A main loop spins in parallel with a constant rate and publishes at each
iteration the processed input data structure. In general sensors are not
synchronized and when the received data is sampled they can refer in
general to slightly different time instants.

The conversions are schematized in fig. 6.1 and 6.2

69

p e

R e vec

th1

...

th4

x v

y v

psi v

State

End-effector
Odometry Sensor

nav msgs/Odometry

Joints Encoders
std msgs/Float32MultiArray

Vehicle
Odometry Sensor

nav msgs/Odometry

p e des

Err R e

total cost

controls

End-effector
Target Pose

geometry msgs/Pose

Zeros

Reference

R e des

v o 1

r 1

v o 2

r 2

keypts

End-effector
Target Pose

geometry msgs/Pose

Obstacles
Data

ground mpc/Obstacles

Object
Odometry Sensor

nav msgs/Odometry

Online Data

Figure 6.1: Data conversion table for the ground MPC wrapper input interface

70 Chapter 6 Experiment Implementation and Results

uth1

...

uth4

ux

uy

upsi

Controls

Joints
Velocity Input

std msgs/Float32MultiArray

Vehicle
Velocity Input

nav msgs/Odometry

p e

R e vec

th1

...

Prediction

Multi-agent
Algorithm

aerial mpc/Trajectory

Figure 6.2: Data conversion table for the ground MPC wrapper output interface

The MPC may run at very slow rate and if data is gathered at the same rate
this error could be relevant. For this reason, the interface loop frequency
shoud be higher and comparable to the sensor data rate. As mentioned, the
MPC wrapper allows for overwriting input data before the computation starts,
and with a small time period if the packets refer to different time instants,
such error is neglectable.

Note that the output message contains the state prediction for the ground
(the leader) end effector that will be processed by the main algorithm and
supplied to the follower, as will be explained in the next section.

6.1.1 Aerial Robust Control

While the input interface for the aerial controller is almost completely equiva-
lent to the ground one, it has been noticed experimentally both in the gazebo
and with real robots that supplying the input directly to a velocity controller
for the aerial vehicle reults in really poor performances, not suitable for the
cooperative task.

6.1 Ground and Aerial MPC interfaces 71

uth1

uth2

ux

uy

uz

upsi

Controls

Joints
Velocity Input

std msgs/Float32MultiArray

RPYT
Controller

std msgs/Float32MultiArray

p e

R e vec

th1

...

Prediction

Position-Velocity
Controller

aerial mpc/Trajectory

Figure 6.3: Data conversion table for the aerial MPC wrapper output interface

To this aim, a different control strategy has been considered. The idea
is to exploit the position prediction to include both position and velocity
information to a PID that outputs roll and pitch angles, which will then be
supplied to a roll-pitch-yaw-rate-thrust controller. Specifically:

pv,a,des(t) = p̂v,a(t+ 1)

vv,a,des(t) = p̂v,a(t+ 2)− p̂v,a(t)
2Ts

(6.1)

where p̂e,a is the prediction generated by the solver and Ts is the MPC sample
time. The control law considered is a modified version of [21], in which the
state is stabilized in the point (pv,a,des,vv,a,des), instead of (pv,a,des, 0).

The algorithm proposed first computes a desired force in the world frame
like the system was fully actuated. Then, it convertes the force into desired
roll and pitch angles and considers the body frame component. These are
then supplied to an external controller, along with the yaw rate which is easy
to handle due to the flying vehicle actuation.

72 Chapter 6 Experiment Implementation and Results

6.2 The Task Commander

Last section described how the two controllers are integrated with the sensors
and actuators. Here we will describe the ROS node that sets up the entire
experiment, which provides for a first stage of rendez-vous in which the two
robots approach and grasp the object and then implements the algorithm by
computing the required quantities and handling the message routing from
leader to folllower. In this way the algorithm is completely transparent to the
agents controller, with the only exception that the aerial MPC must accept
either a constant reference or an entire trajector. This is done by sending the
reference command into two separate topics of message type:

• geometry_msgs/Pose will set all the reference samples in the prediction
window i = 1, . . . , N to the constant pose defined in the message. This
is used in the first stage to command the robot into the grip position.

• aerial_mpc/Trajectory, defined as an array of geometry_msgs/Pose,
specifies a different pose for each sample. This is required in the cooper-
ative algorithm as a generic trajectory is the target of the optimization
problem.

The task commander node is based on a hierarchy-based set of classes, whose
UML schema is shown in figure 6.4. Each class inherits the properties and
methods from the parent one according to the arrows in figures and can be
described as follows:

• ArenaEntity is the base class and represents everything whose position
and velocity can be measured (e.g. a mo-cap element in the real arena).

• Agent contains the common definitions for the agents, which includes
constant position control and the desired initial position w.r.t. the
object.

• Object is a passive element which is available to be grasped. Currently,
this extension is only useful in simulation as grasping is not yet imple-
mented with real robots.

• Leader and Follower extends the Agent class with case-specific commands
and properties. Leader and follower must convert trajectories according
to the algorithm: the leader needs to directly control the object position
and it needs to know the relative transform, just like the follower needs
one to convert the predicted trajectory.

6.2 The Task Commander 73

Leader

Subscriber predictionSub

/ Role role = LEADER
+ Transform objectToLeader
+ aerial mpc/Trajectory prediction

/ void commandPose (Pose)
+ void commandObjectPose (Pose)

Follower

Publisher predictionPub

/ Role role = FOLLOWER
+ Transform leaderToFollower
+ aerial mpc/Trajectory prediction

/ void commandPose (Pose)
+ void commandTrajectory (Trajectory)

Agent

Publisher commandPosePub

+ Role role
+ Pose gripPose
+ String gripperLink
+ double threshold

+ initROS (NodeHandle, . . .)
+ void commandPose (Pose)
+ bool setPointReached ()

Object

+ String linkName

ArenaEntity

NodeHandle rosNode
Subscriber odometrySub

+ String entityName
+ nav msgs/Odometry odometry

Figure 6.4: UML description of the main concepts in the task commander implenta-
tion

74 Chapter 6 Experiment Implementation and Results

Note that those classes do not conceptually represent the agents as the
control is not implemented at this point but they rather offer a convenient
and unified way to process references to agents. This allows for a modular
implementation of the multi-agent coordination and leaves open the possiblity
to extend the number of involved agents as well as a change in the roles.

The experiment procedure

The procedure to execute the experiment is managed by a finite state machine
that is composed of the following states:

1. NOT_READY. This is the initial condition: the robots are located in a
generic position and the aerial robot is on ground. Both robot must be
turned on, in particular the drone should have the motor started.

A command received on topic /world/commander/command with con-
tent data: 0 will start the aerial take off by supplying an hovering
position as constant setpoint a predefined height above its current
location, and advances the state.

2. AERIAL_TAKEOFF. The take off command has been sent and the machine
is waiting for it to reach the setpoint under a specified threshold in
position and velocity.

3. IDLE. The flying vehicle is hovering and robots are ready to start the
rendez-vous stage. In this step the machine could wait for another
command but currently it advances immediately to the rendez-vous
state.

4. START_RENDEZVOUS. To both robots a setpoint nearby the object, bring-
ing them to a relative pose with respect to the object frame, and the
state is advanced.

5. WAIT_RENDEZVOUS. Wait until both setpoints have been reached accord-
ing to the specified threshold. When this occurs, the state is advanced.

6.2 The Task Commander 75

6. WAIT_POSE. The randez-vous stage has been accomplished and the
machine waits for the object pose to be supplied through the topic
/world/commander/object_pose. This will cause the state to advance.

7. HANDSHAKE. The first step once the object setpoint is given is to perform
the handshake operation. To do that the node will sample the current
agents pose and compute the relative transforms needed to convert the
setpoints from object to leader and from leader to follower.

8. COOPERATIVE_TASK_SPIN. Right after the handshake, the machine will
start the main loop, which will:

a) Get the ground predicted trajectory.

b) Convert it through the leader to follower estimated transform (see
section 2.3 for concepts and remarks about estimation).

c) Supply the processed trajectory to the aerial MPC through the
message type aerial_mpc/Trajectory.

9. STOP. This state is reached whenever after the handshake the user send
a data: 1 on the topic /world/commander/command: this will cause the
experiment to terminate and the aerial vehicle to land, by sending a
constant setpoint with the current pose with the z component set to 0.
The state will change back to NOT_READY.

Commands in the topics /world/commander/* are typically published manu-
ally via command line but they are suitable to be sent from another applica-
tion as well.

Note that the object position is not strictly necessary for the experiment to
run. It is needed for the rendez-vous to compute the absolute positions of
the agents. Afterwards, it is only useful to account for collision avoidance.
While in the simulation environment no problem can arise, in the real arena
the object should have a position sensor, i.e. in the specific case with the
motion-capture system, it should have the reflective markers or, otherwise, a
separate simple estimation node should be introduced.

76 Chapter 6 Experiment Implementation and Results

6.3 Gazebo simulation results
The ROS system nodes that implement the algorithm and the controllers can
be interfaced with the Gazebo simulation environment defined in chapter 6.
Here we will present some test of the cooperative algorithm.

6.3.1 Initialization and rendez-vous

The initial condition for the Gazebo simulation is reported in figure 6.5a.
According to the procedure defined in the previous section, the aerial robot
will first take of (Fig. 6.5b) and then both robots will approach the object to
the prescribed relative position, Fig. 6.5c.

The robots are controlled individually so we will take the opportunity to
assess the single control performances. Figure 6.6 shows the position and
orientation error for the ground robot from the starting point to the grasp
configuration. From the graph is evident after about 6 s a disturbance that
applies to both x and y component. From several simulations this appeared
to be a disturbance introduced at the base by the physics engine of Gazebo at
slow velocitiese, perhaps due to a bad simulation of static friction. However,
after this small glitch the simulation proceeds smoothly and the controller
is finally able to stabilize the position. We notice that, just like in the pure
kinematic case, the vertical component is the slowest to converge. Also, by
looking closely, it can be noticed a slightly wobbling trend, that matches the
orientation error. This is an expected behavior since to keep the orientation
error small a complex coordination of the joints is required and in a real
environment this is inevitabily accomplished with some error, which anyways
is sufficiently small.

The aerial control (Fig. 6.7) is significantly faster and smoother: the low-
speed unexpected disturbance is not present and the three components
converge with about the same speed. This comes from the higher mobility
of the aerial vehicle as most of the movements can be done by the vehicle
rather than the joints. On the other hand, the orientation error has quite
higher peaks, caused by the rolling/pitching movements that the underactu-
ated vehicle must perform to achieve an acceleration. Such error could be
critical in the cooperative task as it could produce too much internal torques.
However, if the overall movement is kept slow, they will result in small and
tolerable errors, as we will se in the next section.

6.3 Gazebo simulation results 77

(a) Initial condition

(b) Aerial take off stage

(c) Grasping position

Figure 6.5: Gazebo simulation of rendez-vous phase.

78 Chapter 6 Experiment Implementation and Results

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

(a) Ground end effector position error

0 2 4 6 8 10 12 14
0

0.5

1

1.5
10 -4

(b) Ground end effector orientation error

Figure 6.6: Individual control for ground end-effector during rendez-vous

6.3 Gazebo simulation results 79

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

(a) Aerial end effector position error

0 2 4 6 8 10 12 14
0

1

2

3

10 -4

(b) Aerial end effector orientation error

Figure 6.7: Individual control for aerial end-effector during rendez-vous

80 Chapter 6 Experiment Implementation and Results

6.3.2 Cooperative manipulation experiments

The cooperative algorithm starts from the gripping configuration (Fig. 6.5c)
and, again according to the algorithm described in the previous section,
executes the preliminary handshake stage. Then, the grasp is simulated
with EasyGripper (sec. 4.2.3). To evaluate the performances, the object
will be attached only to the ground robot, and check the follower tracking
error as assessment. Here we present the results of experiment in several
conditions.

Transportation with no obstacle

First we will test the algorithm without obstacle. The object will be trans-
ported with the same orientation to a constant setpoint po,des = [0,−1.5, 0.3].
Figure 6.10 shows three instants of the transportation task. The lines rep-
resent the last 10 predicted trajectory for the ground base (blue) and end
effector (black), the corresponding desired trajectory for the aerial robot
(purple) and the predicted trajectory from the aerial MPC (orange). The less
these lines are scattered, the more accurate is the prediciton.

Figures 6.8 shows the resulting tracking error for the leader, which is just as
expected. More interesting is the tracking error of the follower, in Fig. 6.9,
that shows that the controller is able to track the reference trajectory with
an error of the order of a few centimeters. It is notable that the tracking
error is related to the same effect observed in the pure kinematic simulation:
the initial acceleration causes a larger error in the first instants (fig 6.10b).
However, the controller is able to overcome the error rather quickly.

Lift test

Right after the object was transported to the previous target, we test the
ability of the algorithm to lift the object, which as we already discussed is
a quite complex movement for the joint yet necessary to overcome ground
obstacles. In figure 6.11 the initial and final configuration are reported. From
figure 6.12 we notice that the wobbly trend is still present in the leader
movements. This however has no side effects on the position stability and
the slowness of the movements allows for a even smaller tracking error than
horizontal transportation.

6.3 Gazebo simulation results 81

0 5 10 15

0

0.2

0.4

0.6

0.8

(a) Ground end effector position error

0 5 10 15
0

1

2

3

4

5

6

10 -4

(b) Ground end effector orientation error

Figure 6.8: Individual control for ground end-effector in cooperative transportation
without obstacles

82 Chapter 6 Experiment Implementation and Results

0 5 10 15
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(a) Aerial end effector position error

0 5 10 15
0

0.5

1

1.5

10 -3

(b) Aerial end effector orientation error

Figure 6.9: Individual control for aerial end-effector during in cooperative trans-
portation without obstacles

6.3 Gazebo simulation results 83

(a) Initial error peak due to acceleration

(b) Intermediate stage

(c) Final condition

Figure 6.10: Gazebo simulation of a transportation without obstacles.

84 Chapter 6 Experiment Implementation and Results

(a) Initial configuration

(b) Final configuration

Figure 6.11: Gazebo simulation of object lift.

6.3 Gazebo simulation results 85

0 5 10 15 20
-0.2

-0.15

-0.1

-0.05

0

(a) Ground end effector position error

0 5 10 15 20
0

0.5

1

10 -4

(b) Ground end effector orientation error

0 5 10 15 20
-0.02

-0.01

0

0.01

0.02

(c) Aerial tracking position error

0 5 10 15 20
0

1

2

3

4

10 -7

(d) Aerial tracking orientation error

Figure 6.12: Errors for cooperative object lift

86 Chapter 6 Experiment Implementation and Results

Transportation in presence of obstacles

In the previous paragraphs we showed the controller of horizontal trans-
portation and vertical lifting separately. We now test the performances of
the collision avoidance algorithm by considering setpoint with an obstacle in
the middle of the path, in a similar way to what done in the pure kinematic
simulation. To do this the algorithm shall find a path that requires both
horizondal and vertical movements.

The obstacle is a box placed at pobst = [0, 0.5, 0]. The obstacle model that
the algorithm uses is a sphere, which does not have to inscribe the box as
it would most likely make the overcome impossible for the ground robot.
On the contrary, it should approximate the contour with a certain margin: a
safety margin is anyways considered from the algorithm (see sec. 2.4.2).

The supplied object setpoint is po,des = [0, 1.5, 0.2]. The results are reported
in figure 6.13 and 6.14 while figure 6.15 shows three instants of the gazebo
simulation. From the first graph we notice the lift of about 0.2 m to avoid the
obstacle, along with a small shift in the x axis as wel. That figure also shows
that a considerable orientation error is produced. This could be avoided
in theory by increasing the orientation error. However, due to imperfect
actuation, this has been showed to produce an oscillatory behavior with the
considered parameters.

The prediction scattering that can be noticed in Fig. 6.15b reveal a higher un-
certainty in the control in the presence of the obstacle. However, this is well
handled by the robustness of the algorithm, that in any case is able to ensure
an error which is comparable to that of a simple horizontal transportation.
From 6.14 we notice that the initial acceleration and the horizontal move-
ment, which is the fastest one, are responsible for the larger error component
(x and y component).

Conclusions

The simulation experiments show that in such environment, which is quite
realistic unlike the pure kinematic one, the algorithm is able to stabilize the
system and provide small tracking error for the followers.

6.3 Gazebo simulation results 87

0 5 10 15 20 25
-2

-1.5

-1

-0.5

0

(a) Ground end effector position error

0 5 10 15 20 25
0

1

2

3

4

5

10 -3

(b) Ground end effector orientation error

Figure 6.13: Individual control for ground end-effector in cooperative transporta-
tion with an obstacle

88 Chapter 6 Experiment Implementation and Results

0 5 10 15 20 25
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(a) Aerial end effector position error

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
10 -3

(b) Aerial end effector orientation error

Figure 6.14: Tracking error for aerial end-effector during in cooperative transporta-
tion with an obstacle

6.3 Gazebo simulation results 89

(a) Initial curve to avoid obstacle.

(b) Object lifted above obstacle

(c) Obstacle took over.

Figure 6.15: Gazebo simulation of a transportation with an obstacle.

90 Chapter 6 Experiment Implementation and Results

6.4 Experimental results

Although the gazebo simulation is more realistic and the results are more
reliable than those obtained in simulink, the algorithm performances heavily
depend on the phyisical and dynamical properties of the agents and objects
so an experimental validation is required to actually assess the effectiveness
of the algorithm.

6.4.1 Experimental setup

The experiments have been performed up to a preliminary stage in the Smart
Mobility Lab (SML), part of the Integrated Transport and Research Laboratory
(ITRL) of KTH, Royal Institute of Technology (Stockholm, Sweden).

The lab provides for a 6 m× 6 m× 3 m large flying arena (Fig. 6.16) as well
as a motion capture system by Qualisys, capable of a precision of 6 mm and
an output rate of 100 Hz, that covers the whole volume. The arena is suitable
also for testing ground mobile robots by removing the mattresses.

Figure 6.16: Flying arena in Smart Mobility Lab (KTH, Stockholm)

6.4 Experimental results 91

Figure 6.17: Ground robot composed of RB-Nex-03 omidirectional base and Wid-
owX manipulator.

The ground robot (Fig. 6.17) is composed of an omnidirectional mobile base,
RB-Nex-03 from Nexus Robot, equipped with a WidowX arm from Trossen,
whereas the aerial robot is the costum built hexarotor Popeye (Fig. 6.18),
endowed with a two joints arm extracted from the same manipulator.

However, the preliminary tests did not involve Popeye itself, but the Storm
srd370, a smaller and lighter UAV, more safe to run initial experiments.
Although it has no arm attached, in the tests a dummy arm was considered.
From the Gazebo simulations it is noticeable that, since it has to keep a
defined orientation, the aerial arm configuration is almost fixed: we consider

Figure 6.18: Popeye aerial robot

92 Chapter 6 Experiment Implementation and Results

that one as fixed configuration of the virtual arm. Practically, zeros values
for the joints are supplied to the MPC and the generated outputs for the
joints velocities, which are expected to be close to zero in the particular
experimental conditionss, are simply ignored.

The simulated position-velocity sensors in the Gazebo models are replaced
by the measurement of the mo-cap, which can identify rigid bodies defined
by at least 4 markers, that are placed on the base of the vehicles and on the
ground end-effector. Since for the measurement to be reliable the markers
should have a minimum distance, a broken propeller has been exploited to
outdistance the markers, as can be noticed from figure 6.17.

6.4.2 Individual control experiments

Ground robot with obstacle avoidance

The ground robot has been tested for individual control which is the same
kind of algorithm used for the cooperative task. An obstacle is placed at the
center of the path, as represented in figure 6.20. The results are reported in
6.19 and shows that the controller is still able to accomplish both stability
and obstacle avoidance. However, the resulting path is quite irregular, with
sudden accelerations and turns. This is most cenrtainly due to a combination
of the control actuation dynamics, not accounted in the MPC, and network
delays.

Also, the base speed low-level control is rather inaccurate and suffers of a
high non-linear distortion at low speeds. This forces to make the dynamics
faster, to avoid running at those speeds, resulting in a less accurate control,
being the sample time the same.

Another source of distortion might be markers occlusion from the mo-cap:
given the configuration of the cameras, some spots of the arena are more
critical to errors and this might lead the Qualisys marker shape recognition
to fail. In such cases the state is not updated and, due to the current
implementation scheme, the last available state is kept constant. When the
markers are recognized again, the state updates abruptly, which may also
justify part of the quick accelerations during the control.

6.4 Experimental results 93

0 5 10 15 20

-2

-1.5

-1

-0.5

0

(a) Ground end effector position error

0 5 10 15 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) Ground end effector orientation error

Figure 6.19: Individual control of real ground robot with obstacle avoidance

94 Chapter 6 Experiment Implementation and Results

(a) Initial condition that emulates the grasping configuration.

(b) Obstacle avoidance accomplished by circumventing the box.

(c) Final desired condition.

Figure 6.20: Individual control on real robot in SML arena.

6.4 Experimental results 95

Aerial flight tests with srd370

As mentioned, preliminary flight tests have been done with the srd370 robot,
to make sure about the controller stability before employing the larger and
more fragile hexarotor.

Graph in figure 6.21a shows the error convergence during take off. During
the this first phase the low level controllers were not fine tuned yet and this
motivates the large overshoot on the x component. Besides this, even with
coarse low level tuning, the MPC is able to stabilize the error dynamics with
rather high performances.

Figure 6.21b shows the results of an horizontal setpoint in the x direction.
From the graph is evident that, even if the error initially converges fast, at
steady state the aerial robot oscillates with a quite remarkable error. The
srd370 is quite light and the popellers cannot ensure a perfect stability. Even
though those errors could be reduced by tuning the low level controller,
significantly higher stability and precision is expected from the exarotor
which is the actual robot that can perform the cooperative manipulation, so
fine tuning the test drone is not really useful.

Finally, figure 6.21c shows the response to another setpoint and subsequently
a robustness test to external disturbances, applied from outside the flying
arena net for safety reasons (Fig. 6.22c). The controller is able to stabilized
after the disturbance is applied, with the same steady-state error of the
previous case.

6.5 Conclusions

The proposed multi-agent technique has been revealed effective in the Gazebo
simulations, whose results are comparable to those obtained in Simulink.
From the preliminary tests with real robots, the MPC shows good converging
performances as far as individual control is concerned. Since in simulation it
has been noticed that the cooperative performances strongly depend on the
performances of the single MPCs we can expect the cooperative manipulation
with real robots to have comparable performances. However, due to time
lack, this is left for future works.

96 Chapter 6 Experiment Implementation and Results

(a) Take off

(b) Horizontal displacement set-point

(c) Robustness test to external disturbances test

Figure 6.21: Flight test with srd370: individual MPC control test

6.5 Conclusions 97

(a) Hovering position after take off

(b) First setpoint reached

(c) External disturbances

Figure 6.22: Individual control on real robot in SML arena

98 Chapter 6 Experiment Implementation and Results

Bibliography

[1]D. Ariens, B. Houska, and H.J. Ferreau. ACADO for Matlab User’s Manual.
http://www.acadotoolkit.org. 2010–2011 (cit. on p. 3).

[3]M. Corah and N. Michael. „Active estimation of mass properties for safe cooper-
ative lifting“. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). 2017, pp. 4582–4587 (cit. on p. 2).

[4]H.J. Ferreau, H.G. Bock, and M. Diehl. „An online active set strategy to over-
come the limitations of explicit MPC“. In: International Journal of Robust and
Nonlinear Control 18.8 (2008), pp. 816–830 (cit. on p. 54).

[5]H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. „qpOASES: A
parametric active-set algorithm for quadratic programming“. In: Mathematical
Programming Computation 6.4 (2014), pp. 327–363 (cit. on p. 54).

[6]Rolf Findeisen, Lars Imsland, Frank Allgower, and Bjarne A. Foss. „State and Out-
put Feedback Nonlinear Model Predictive Control: An Overview“. In: European
Journal of Control 9.2 (2003), pp. 190 –206 (cit. on p. 5).

[7]A. Franchi, C. Secchi, M. Ryll, H. H. Bulthoff, and P. R. Giordano. „Shared
Control : Balancing Autonomy and Human Assistance with a Group of Quadrotor
UAVs“. In: IEEE Robotics Automation Magazine 19.3 (2012), pp. 57–68 (cit. on
p. 2).

[8]A. Gawel, M. Kamel, T. Novkovic, et al. „Aerial picking and delivery of magnetic
objects with MAVs“. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). 2017, pp. 5746–5752 (cit. on p. 2).

[9]B. Houska, H.J. Ferreau, and M. Diehl. „ACADO Toolkit – An Open Source
Framework for Automatic Control and Dynamic Optimization“. In: Optimal
Control Applications and Methods 32.3 (2011), pp. 298–312 (cit. on p. 3).

[10]B. Houska, H.J. Ferreau, M. Vukov, and R. Quirynen. ACADO Toolkit User’s
Manual. http://www.acadotoolkit.org. 2009–2013 (cit. on p. 3).

[11]M. Kiehl. „Parallel multiple shooting for the solution of initial value problems“.
In: Parallel Computing 20.3 (1994), pp. 275 –295 (cit. on p. 54).

99

[12]K. Kondak, F. Huber, M. Schwarzbach, et al. „Aerial manipulation robot com-
posed of an autonomous helicopter and a 7 degrees of freedom industrial
manipulator“. In: 2014 IEEE International Conference on Robotics and Automa-
tion (ICRA). 2014, pp. 2107–2112 (cit. on p. 2).

[13]H. Lee, H. Kim, and H. J. Kim. „Planning and Control for Collision-Free Cooper-
ative Aerial Transportation“. In: IEEE Transactions on Automation Science and
Engineering 15.1 (2018), pp. 189–201 (cit. on p. 2).

[14]T. Lee. „Collision avoidance for quadrotor UAVs transporting a payload via
Voronoi tessellation“. In: 2015 American Control Conference (ACC). 2015, pp. 1842–
1848 (cit. on p. 2).

[15]G. Loianno and V. Kumar. „Cooperative Transportation Using Small Quadrotors
Using Monocular Vision and Inertial Sensing“. In: IEEE Robotics and Automation
Letters 3.2 (2018), pp. 680–687 (cit. on p. 2).

[16]R. Mahony, V. Kumar, and P. Corke. „Multirotor Aerial Vehicles: Modeling,
Estimation, and Control of Quadrotor“. In: IEEE Robotics Automation Magazine
19.3 (2012), pp. 20–32 (cit. on p. 2).

[17]D. I. Montufar, F. Muñoz, E. S. Espinoza, O. Garcia, and S. Salazar. „Multi-UAV
testbed for aerial manipulation applications“. In: 2014 International Conference
on Unmanned Aircraft Systems (ICUAS). 2014, pp. 830–835 (cit. on p. 2).

[18]R. Naldi, A. Gasparri, and E. Garone. „Cooperative pose stabilization of an
aerial vehicle through physical interaction with a team of ground robots“. In:
2012 IEEE International Conference on Control Applications. 2012, pp. 415–420
(cit. on p. 2).

[19]T. Nguyen and E. Garone. „Control of a UAV and a UGV cooperating to manipu-
late an object“. In: 2016 American Control Conference (ACC). 2016, pp. 1347–
1352 (cit. on p. 2).

[20]Alexandros Nikou, Christos K. Verginis, Shahab Heshmati-Alamdari, and Di-
mos V. Dimarogonas. „A Nonlinear Model Predictive Control Scheme for Co-
operative Manipulation with Singularity and Collision Avoidance“. In: CoRR
abs/1705.01426 (2017). arXiv: 1705.01426 (cit. on pp. 3, 12, 15).

[21]P. O. Pereira and D. V. Dimarogonas. „Lyapunov-based generic controller de-
sign for thrust-propelled underactuated systems“. In: 2016 European Control
Conference (ECC). 2016, pp. 594–599 (cit. on p. 72).

[22]M. Quigley, B. Gerkey, and W.D. Smart. Programming Robots with ROS. O’Reilly
Media, 2015 (cit. on p. 44).

[23]N. Staub, M. Mohammadi, D. Bicego, D. Prattichizzo, and A. Franchi. „Towards
robotic MAGMaS: Multiple aerial-ground manipulator systems“. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA). 2017, pp. 1307–
1312 (cit. on p. 2).

100 Chapter 6 Bibliography

http://arxiv.org/abs/1705.01426

[24]A. Suarez, G. Heredia, and A. Ollero. „Lightweight compliant arm with compli-
ant finger for aerial manipulation and inspection“. In: 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2016, pp. 4449–4454
(cit. on p. 2).

Webpages

[2]Martin Behrendt. MPC scheme basic. 2009. URL: https://commons.wikimedia.
org/wiki/File:MPC_scheme_basic.svg (cit. on p. 6).

WEBPAGES 101

https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg

List of Figures

1.1 Principle of MPC, [2] . 6

2.1 Example of χ(d) with r = 1, m = 3, ε = 0.1 21
2.2 Example surface plot of the cost function of generic points on

a plane considering both the cost for reference tracking and
obstacle avoidance. 21

3.1 Kinematic simulation block diagram. 30
3.2 Ground robot representation . 31
3.3 MPC control test for ground end-effector 32
3.4 Aerial robot representation . 33
3.5 MPC control test for aerial end-effector 34
3.6 Block diagram of the overall system. 36
3.7 Coopertive transportation snapshots showing different tracking

errors. Yellow dots are the two object estimates from the agents. 37
3.8 Cooperative manipulation error results 38
3.9 Follower tracking error comparison with different weights for

control input, fixed the error weight as unitary. 39
3.10 Velocity and acceleration comparison for ground and aerial robot 40
3.12 Coopertive transportation snapshots showing different tracking

errors. Yellow dots are the two object estimates from the agents.
The black circle represents a view of the obstacle 41

3.11 Distance between object and obstacle center. 41
3.13 Cooperative manipulation error results with an obstacle 42

4.1 ROS mechanics scheme . 44
4.2 Typical screenshot of the Gazebo simulator [22] 44
4.3 Link properties . 46
4.4 Joint properties . 47
4.5 Ground robot URDF hierarchy tree 48
4.6 Ground robot Gazebo Rendering 48
4.7 Aerial robot URDF hierarchy tree 50
4.8 Aerial robot Gazebo Rendering 51

103

5.1 MPC Wrapper Finite State Machine diagram 60
5.2 MPC Wrapper outer layer "hybrid" implementation scheme . . . 66
5.3 MPC Wrapper outer layer asynchronous implementation scheme 66
5.4 MPC Wrapper outer layer synchronous implementation scheme . 67

6.1 Data conversion table for the ground MPC wrapper input interface 70
6.2 Data conversion table for the ground MPC wrapper output interface 71
6.3 Data conversion table for the aerial MPC wrapper output interface 72
6.4 UML description of the main concepts in the task commander

implentation . 74
6.5 Gazebo simulation of rendez-vous phase. 78
6.6 Individual control for ground end-effector during rendez-vous . 79
6.7 Individual control for aerial end-effector during rendez-vous . . 80
6.8 Individual control for ground end-effector in cooperative trans-

portation without obstacles . 82
6.9 Individual control for aerial end-effector during in cooperative

transportation without obstacles 83
6.10 Gazebo simulation of a transportation without obstacles. 84
6.11 Gazebo simulation of object lift. 85
6.12 Errors for cooperative object lift 86
6.13 Individual control for ground end-effector in cooperative trans-

portation with an obstacle . 88
6.14 Tracking error for aerial end-effector during in cooperative trans-

portation with an obstacle . 89
6.15 Gazebo simulation of a transportation with an obstacle. 90
6.16 Flying arena in Smart Mobility Lab (KTH, Stockholm) 91
6.17 Ground robot composed of RB-Nex-03 omidirectional base and

WidowX manipulator. 92
6.18 Popeye aerial robot . 92
6.19 Individual control of real ground robot with obstacle avoidance 94
6.20 Individual control on real robot in SML arena. 95
6.21 Flight test with srd370: individual MPC control test 97
6.22 Individual control on real robot in SML arena 98

104 List of Figures

List of Figures 105

	Cover
	Titlepage
	Abstract
	1 Introduction
	1.1 State of the art
	1.2 Thesis Structure
	1.3 Model Predictive Control

	2 The Cooperative Manipulation Algorithm
	2.1 Problem Formulation
	2.2 MPC for individual geometric control
	2.3 MPC for cooperative manipulation: a robust approach
	2.4 Control strategy for obstacle avoidance
	2.4.1 Mathematical definition
	2.4.2 Robust obstacle avoidance with MPC

	3 Kinematic Robots Modeling and Simulation
	3.1 Ground Robot Modeling
	3.1.1 Direct Kinematics
	3.1.2 Differential Kinematics

	3.2 Aerial Robot Modeling
	3.2.1 Direct Kinematics
	3.2.2 Differential Kinematics

	3.3 Pure kinematic simulation
	3.3.1 Individual control

	3.4 Cooperative Algorithm Simulation
	3.4.1 Obstacle Avoidance Test

	4 Simulation Environment Setup
	4.1 Introduction to ROS
	4.1.1 Gazebo

	4.2 Building the Gazebo models
	4.2.1 URDF format
	4.2.2 Case-study models
	4.2.3 Gripper simulation with EasyGripper

	5 The Universal MPC Wrapper for ROS
	5.1 Matlab problem definition with ACADO
	5.1.1 ACADO OCP definitions

	5.2 MPC Wrapper implementation
	5.2.1 ACADO generated code interface
	5.2.2 MPC Wrapper inner layer
	5.2.3 MPC Wrapper Outer Layer

	6 Experiment Implementation and Results
	6.1 Ground and Aerial MPC interfaces
	6.1.1 Aerial Robust Control

	6.2 The Task Commander
	6.3 Gazebo simulation results
	6.3.1 Initialization and rendez-vous
	6.3.2 Cooperative manipulation experiments

	6.4 Experimental results
	6.4.1 Experimental setup
	6.4.2 Individual control experiments

	6.5 Conclusions

	Bibliography

