
IN DEGREE PROJECT ELECTRICAL ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2017

Decentralized Navigation of
Multiple Quad-rotors using Model
Predictive Control

IMRAN KHAN

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING

Abstract

In this thesis, we develop a model predictive control (MPC) scheme for the naviga-

tion of multiple quadrotors in an environment with obstacles. The overall control

scheme is decentralized, since each quadrotor calculates its own signal based on local

information. The MPC constraints take care of collision with the static obstacles,

inter-agent collisions as well as input saturations. Firstly, we formulate and solve

the problem using a nonlinear MPC framework, where the agents and the obstacles

are modelled as 3D spheres. Secondly, to deal with complexity issues, we linearize

the model and constraints by employing polyhedral sets, and we solve the problem

with linear MPC. Thirdly, we use a mixed logical dynamical (MLD) framework to

solve our problem, which is then incorporated into a hybrid MPC problem. The per-

formance of the proposed solutions is demonstrated through computer simulations

and real-time experiments.

i

Abstrakt

I denna uppsats utvecklar vi en modellprediktiv reglerstrategi (MPC) för navigering

av multipla quadrotor-drönare i en miljö med hinder. Den övergripande regler-

strategin är decentraliserad d̊a varje quadrotor beräknar sin styrsignal baserad p̊a

lokal information. Bivillkoren i MPC-formuleringen tar hänsyn till kollisioner med

statiska objekt, kollisioner mellan agenter samt villkor för insignal. Reglerproblemet

formuleras och löses genom ett olinjärt MPC-ramverk där agenterna samt hindren

är modellerade som 3D-sfärer. Vidare, för att hantera formuleringens komplexitet,

linjäriseras modellen och bivillkoren uttrycks via polyhedra mängder vilket möjliggör

för en linjär MPC. Slutligen används ett ramverk för system av typen mixed log-

ical dynamical (MLD) systems for att formulera regleringen som ett hybrid-MPC-

problem. De föreslagna lösningarna är utvärderade genom datorsimuleringar och

realtidsexperiment.

ii

Acknowledgements

There are many people at the automatic control department, who guided me when-

ever I needed their help. First of all, I would like to thank my examiner Professor

Dimos V. Dimarogonas who gave me an opportunity to work on real quad-rotors at

smart mobility lab KTH under the supervision of Christos Verginis.

A special thanks to my supervisor Christos Verginis, who encouraged me a lot

during my thesis and always motivated and helped me at the difficult times. This

work wouldn’t be possible to complete without you.

I also want to thank Pedro F. Lima, a PhD student at automatic control depart-

ment for his help. I am also grateful to Pedro Roque, a research engineer at smart

mobility lab for his help while carrying out real experiments on quad-rotors.

Last but not least, I would like to express gratitude to my wife who always stood

with me throughout the whole journey of my Master program at KTH. Your love

and care encouraged me to overcome the hurdles of this journey.

Imran Khan

July 2017

KTH-Stockholm

iii

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Literature Overview . 2

1.2 System Description . 3

1.3 Problem Statement . 4

1.4 Methodology . 5

1.5 Thesis outline . 5

2 Modelling of Quad-rotor 7

2.1 Mathematical model of quad-rotor . 7

2.2 State Space Model . 11

2.2.1 Linear Model . 11

3 Model Predictive Control 15

3.1 Nonlinear Model Predictive Control (NMPC) 16

3.1.1 Problem formulation - NMPC 16

3.1.2 Finite Horizon NMPC with Guaranteed Stability 18

3.1.3 Stability of sampled-data NMPC 18

3.2 Linear Model Predictive Control (LMPC) 19

3.2.1 Problem formulation - LMPC 19

3.2.2 Stability of linear MPC . 19

3.3 Hybrid Model Predictive Control (HMPC) 20

3.3.1 Boolean Algebra . 20

3.3.2 Mixed Logical Dynamical System 21

3.3.3 HYSDEL Tool Box . 21

3.3.4 Optimal Control of MLD systems 21

4 MPC for decentralized navigation and obstacle avoidance 23

4.1 Non-linear MPC and obstacle avoidance 23

4.1.1 Obstacle modelling . 23

4.1.2 Problem Formulation - NMPC 24

4.1.3 Flow chart of NMPC Algorithm 25

4.2 Linear MPC and obstacle avoidance 26

iv

Decentralized Navigation of Multiple Quad-rotors using MPC

4.2.1 Obstacle modelling . 26

4.2.2 Obstacle avoidance . 28

4.2.3 Problem formulation - LMPC 29

4.2.4 Flow chart of LMPC Algorithm 30

4.3 Hybrid MPC and obstacle avoidance 30

4.3.1 Obstacle modelling . 31

4.3.2 Hybrid Model . 31

4.3.3 Mixed logical dynamical system modelling 31

4.3.4 Problem formulation - HMPC 32

4.3.5 Flow chart of HMPC Algorithm 33

4.4 Linear MPC vs Hybrid MPC . 34

4.5 Dynamic Obstacle avoidance . 34

5 Simulation Results 35

5.1 Tuning of Parameters . 36

5.1.1 Prediction Horizon . 36

5.1.2 Sampling time . 37

5.1.3 Sampling distance . 37

5.1.4 Spherical sizes of the obstacle 37

5.2 Non-linear MPC results . 38

5.2.1 CASE-I . 38

5.2.2 CASE-II . 39

5.3 Linear MPC results . 40

5.3.1 CASE-I . 40

5.3.2 CASE-II . 42

5.4 Hybrid MPC results . 43

5.4.1 CASE-I . 43

5.4.2 CASE-II . 44

6 Experimental Evaluation 46

6.1 Implementation . 47

6.2 Velocity Model . 47

6.3 Experiments . 47

6.3.1 Gazebo Simulator . 47

6.3.2 Real time . 49

7 Conclusion 50

7.1 Future Work . 50

v

List of Figures

1.1 Visualization of 2x quad-copter navigation in Gazebo simulator . . . 2

1.2 Bounded region showing 2x quad-rotors and 5x region of interests . . 4

2.1 Inertial frame (x, y, z) and quad-rotor body frame (xb, yb, zb), where

fi and ωi ∀ i ∈ [1, 4] represent the forces and angular velocities in the

body frame respectively produced by each motor Mi while τφ, τθ and

τψ are the three rotational torques in the same frame and T is the

thrust in the body z-axis. 8

3.1 Abstract of Model Predictive Control 15

4.1 Flow chart of NMPC Algorithm for static and dynamic obstacle

avoidance algorithm, NMPC 1 for Static Obstacle avoidance and

NMPC 2 for static and dynamic obstacle avoidance 26

4.2 Obstacle modelled as polyhedron . 27

4.3 Obstacle in the predicted trajectory of quad-rotor 28

4.4 Flow chart of LMPC Algorithm for static and dynamic obstacle avoid-

ance algorithm . 30

4.5 Workspace for quad-rotor navigation 31

4.6 Obstacles associated with binary variables in a work-space 32

4.7 Flow chart of HMPC Algorithm for static and dynamic obstacle

avoidance algorithm, HMPC 1 for Static Obstacle avoidance and

HMPC 2 for static and dynamic obstacle avoidance 33

4.8 Obstacle avoidance method for other moving agents; this method is

common for NMPC, LMPC and HMPC 34

5.1 A simulation workspace showing five regions of interests and two

quad-rotors positioned at π1 and π2 36

5.2 3D trajectory showing the decentralized motion of two agents using

NMPC for sideon collision avoidance between two agents and static

obstacle avoidance with region π5 . 38

5.3 Linear positions and Euler angles of agents 39

5.4 Inputs applied to agents . 39

5.5 3D trajectory showing the decentralized motion of two agents using

NMPC for headon collision avoidance between two agents 39

5.6 Linear positions and Euler angles of agents 40

vi

Decentralized Navigation of Multiple Quad-rotors using MPC

5.7 Inputs applied to agents . 40

5.8 3D trajectory showing the decentralized motion of two agents using

LMPC for sideon collision avoidance between two agents and static

obstacle avoidance with region π5 . 41

5.9 Linear positions and Euler angles of agents 41

5.10 Inputs applied to agents in order to reach the goal while avoiding

obstacles . 41

5.11 3D trajectory showing the decentralized motion of two agents using

NMPC for headon collision avoidance between two agents 42

5.12 Linear positions and Euler angles of agents 42

5.13 Inputs applied to agents in order to reach the goal while avoiding

obstacles . 42

5.14 3D trajectory showing the decentralized motion of two agents using

HMPC for sideon collision avoidance between two agents and static

obstacle avoidance with region π5 . 43

5.15 Linear positions and Euler angles of agents 43

5.16 Inputs applied to agents in order to reach the goal while avoiding

obstacles . 44

5.17 3D trajectory showing the decentralized motion of two agents using

NMPC for headon collision avoidance between two agents 44

5.18 Linear positions and Euler angles of agents 44

5.19 Inputs applied to agents in order to reach the goal while avoiding

obstacles . 45

6.1 Hierarchical control structure for performing experiments using LMPC

as a path planner . 46

6.2 2D Path showing the obstacle avoidance between two agents in Gazebo 48

6.3 RQT graph showing different topics published by different nodes dur-

ing decentralized navigation of 2x firefly 48

6.4 RQT graph showing different topics published by different nodes dur-

ing decentralized navigation of 2x Crazyflies 49

6.5 Linear positions of two agents during decentralized navigation subject

to inter-agent collision avoidance . 49

vii

List of Tables

5.1 Quad-rotor parameters . 35

5.2 Positions of Region of interests . 36

5.3 Upper bounds on the sizes of the static and dynamic obstacles for

each controller . 38

viii

Chapter 1

Introduction

In the recent past, quad-rotors have become the topic of interest in research institu-

tions. Quad-rotors are finding applications in every field ranging from military and

police to fire control departments and from monitoring the agricultural sector to

the coverage of an incident or event by electronic media. These useful applications

have led the manufacturers to produce excessive number of quad-copters. With this

increase in the production of quad-rotors, there is a need to develop algorithms for

decentralized navigation of multiple quad-copters in a constrained environment such

that they can avoid the hurdles in the form of static and dynamic obstacles.

This thesis is primarily focused on obstacle avoidance in scenarios of multiple

quad-copters navigation as shown in Fig. 1.1. As the quad-copter approaches the

static obstacle or other quad-copter, a control algorithm maneuvering the quad-

copter finds the optimal path such that the obstacles in its path are avoided. There

are several model-dependent and model-independent approaches that have been used

for collision avoidance. Commonly used among them are the potential field method

[25] and predictive control method [4] based on the dynamic model of the quad-rotor.

In this thesis, the main goal is to formulate the model predictive control (MPC)

problem Eq. (1.1) based on the position and size information of static and dynamic

obstacles, dynamic model of quad-rotor and state and input constraint as follows:

minimize: cost function

subject to: dynamics of quad-rotor

collision avoidance

input and state constraints

(1.1)

The solution of the optimization problem defined in Eq.(1.1) gives a sequence

of optimal inputs at each time instant that make the quad-rotor follow an optimal

path free of obstacles.

1

Decentralized Navigation of Multiple Quad-rotors using MPC

Figure 1.1: Visualization of 2x quad-copter navigation in Gazebo simulator

It has been noticed that model predictive control is becoming popular for the

control of autonomous vehicles such as cars [8], [19] and quad-rotors [9] and a lot of

research has been done in the recent past on the quad-rotor navigation and obstacle

avoidance.

1.1 Literature Overview

Since 2000, various control methods have been suggested for decentralized or cen-

tralized motion and trajectory tracking of quad-rotors in a constrained environment.

The aim of the research work in this field is to find a control scheme that allows the

states of quad-copter to converge to the reference trajectories while keeping them in

a safe region.

In 2009, a hierarchical approach is developed for autonomous and decentralized

navigation of formation of quad-rotors in [5] subject to collision avoidance con-

straints. In this method, the hybrid MPC controller is deployed at upper level for

each vehicle based on the dynamic model of the quad-rotor which is operated at

slower sampling rate. This controller in turn gives the way points to the lower linear

MPC stabilizing controller with an integral action running at the higher sampling

rate which regulates the vehicle to the desired way points. In 2011, the same author

extends his previous work and introduces a hierarchical method which uses linear

time varying (LTV) MPC instead of hybrid MPC at the upper level in [6]. These

approaches are only limited to the decentralized navigation of multiple quad-rotors

in a leader follower approach.

The hierarchical model predictive control (MPC) approach for flight control and

stabilization of formation of UAVs while avoiding the inter agent collision by sharing

the information with each other is proposed in [10].

Robust Model Predictive Control (RMPC) approach is adopted for the deploy-

ment of a quad-rotor in [1], which considers the avoidance of static obstacles in the

2

Decentralized Navigation of Multiple Quad-rotors using MPC

local map generated by perception algorithm subject to the constraints on inputs

and outputs. Furthermore, this work also uses a relaxation method to formulate the

RMPC in terms of linear matrix inequalities (LMI), which makes the the number

of LMI constraints to grow linearly with the number of uncertainties. Thus, this

approach is computationally efficient compared to previous work in terms of dealing

the uncertainties. But on the other hand, it is limited to single agent navigation

and static obstacle avoidance.

In 2013, navigation of a small helicopter between two points while avoiding

static obstacle is formulated as a hybrid MPC problem in [18]. For the obstacle

avoidance, a hybrid model is considered as a piecewise affine (PWA) form, which

is then converted to a mixed logical dynamical (MLD) model. The extent of this

paper is only for a helicopter navigation and static obstacle avoidance.

In 2016, a control strategy based on decentralized navigation functions integrated

with temporal logic is proposed for motion planning of a formation of quad-rotors

while guaranteeing the inter-agent collision avoidance in [25].

Control algorithm is derived based on the combination of sliding model control

and linear quadratic control in [15] to navigate multiple air vehicles in a leader fol-

lower approach. [26] uses reachable set for air vehicles to define inter-agent collision

avoidance algorithms.

In [14] and [23], a nonlinear MPC problem is formulated for navigation and

control of quad-rotors lacking the obstacle and inter-agent collision avoidance algo-

rithms.

Algorithms for inter-agent obstacle avoidance by adopting velocity obstacle method

for quad-copters while following the air rules are proposed in [16] and [17] without,

however, dealing with static obstacles.

In this document, MPC based schemes are developed for the navigation of mul-

tiple quad-rotors in a decentralized fashion subject to static and dynamic obstacle

avoidance and constraints on states and inputs. First the problem is formulated as

a non-linear predictive control scheme based on the non-linear dynamic model of

quad-rotors. Since non-linear MPC problem is non-convex, it is then converted to a

linear MPC problem subject to linear model and constraints on states and inputs.

In the end, the method suggested in [18] is extended to multiple quad-rotors navi-

gation and a hybrid MPC scheme is derived for the desired problem by converting

whole system into mixed logical dynamical system (MLD).

1.2 System Description

For this thesis, we consider N quad-rotors occupying a body sphere of radius ri
∀i ∈ {1, 2, ...N}, navigating in a bounded region X defined as:

X = {x ∈ R3 | xmin ≤ x ≤ xmax} (1.2)

and it is convex set.

Moreover, there exist K > N spherical regions of interests πk in this bounded

region X with radius rπk > ri ∀k ∈ {1, 2, ...K} as shown in the Fig. 1.2.

3

Decentralized Navigation of Multiple Quad-rotors using MPC

Agent 1

Agent 2

Region of Interests

Figure 1.2: Bounded region showing 2x quad-rotors and 5x region of interests

It is assumed that each agent has a sensing radius R > maxi,j={1,2,..N}(ri + rj).

Therefore, each agent knows the position of all other agents within its sensing radius

R. Furthermore, it is considered that each quad-rotor has a priority number pi
∀i ∈ {1, 2, ...N}. Hence, during navigation, priority is given to the quad-copters

ranked with higher priority numbers, whenever two or more quad-rotors approach

each other in the workspace and are within the sensing radius of each other.

In addition to this, each agent knows the positions of all the regions of interests.

Initially, each quad-rotor is in a region of interest and plans to navigate to other

region of interest. Thus, during navigation, all the regions of interests πk except the

initial and goal regions of interests are considered to be the static obstacles.

1.3 Problem Statement

The problem tackled in this thesis is the decentralized navigation of multiple quad-

rotors in a bounded region with the special purpose of inter-agents collision avoid-

ance and collision avoidance with static obstacles. We aim to design a controller

that steers the quad-rotors to the goal region of interests subject to input and state

constraints.

In brief, the problem that is addressed in this document is to find the sequence

of control inputs that solves the following optimization problem:

minimize: distance to the goal region of interest

subject to: dynamics of quad-rotor

static obstacle avoidance

inter-agent collision avoidance

input and state constraints

(1.3)

4

Decentralized Navigation of Multiple Quad-rotors using MPC

1.4 Methodology

In this thesis, the problem defined in Eq. (1.3) is first designed as a non-linear MPC

optimization problem subject to the quad-rotor dynamics, where the agents and

static obstacles are modelled as spheres. The non linear MPC is computationally

in-efficient and may be non-convex. Therefore, a linear MPC scheme is derived for

solving the problem (1.3), which is based on a linear model of the quad-rotors

and the obstacles and agents are modelled as polyhedrons which define the linear

constraints on the states. Furthermore, the problem defined in Eq. (1.3) is solved

as a hybrid MPC problem subject to a mixed logical dynamical system. For this,

the working region is converted into two regions; the flying zone and the obstacle

zone. The hybrid model is obtained by considering two different dynamics for the

obstacle and flying zones. This hybrid model is then converted into a mixed logical

dynamical system MLD. For the static obstacle avoidance, the method proposed

in [18] for a small scale helicopter model is extended to decentralized navigation of

multiple quad-rotors.

For the dynamic obstacle avoidance it is proposed, that whenever two or more

quad-rotors encounter each other with in their respective sensing radius, quad-

rotor(s) with low priority number will stop and hover until the quad-rotors having

higher priority leave their respective sensing radius. Meanwhile, the lower priority

quad-rotor(s) will be treated as obstacles by the higher priority quad-rotor within

their sensing radius.

1.5 Thesis outline

In this part, the structure of thesis is outlined:

Chapter 2: Modelling of Quad-rotor

This chapter presents the dynamic model of the quad-rotor. This model is then

linearized in order to use it in the design of linear and hybrid model predictive con-

trollers.

Chapter 3: Model Predictive Control

In this chapter, the basic working principle of model predictive control (MPC)

scheme is given. A brief introduction is given about the predictive controllers that

are used in this document. These include non-linear MPC, linear MPC and hybrid

MPC.

Chapter 4: MPC for decentralized navigation and obstacle avoidance

This chapter intends to introduce the predictive controllers for multi-agent decen-

tralized navigation subject to constraints. First, the non-linear MPC controller is

derived subject to the non-linear model where the agents and obstacles are modelled

as spheres and the considered collisions and input saturations act as non-linear con-

straints. A linear MPC controller is then designed subject to a linearized version of

5

Decentralized Navigation of Multiple Quad-rotors using MPC

the quad-rotor model and linear constraints on the states, where the obstacles are

modelled as polyhedrons. For the hybrid MPC, first the hybrid model is designed

and is then converted into a MLD by introducing logical variables for each obstacle.

Finally, the hybrid MPC is presented for navigation subject to MLD.

Chapter 5: Simulations

This chapter is dedicated to the simulation results of all the derived controllers.

Chapter 6: Experimental evaluation

This chapter concerns the experimental evaluation of the proposed controllers.

Chapter 7: Conclusion

Finally, in this chapter, conclusions and possible future developments of the project

are made.

6

Chapter 2

Modelling of Quad-rotor

This chapter depicts the operating principle of a quad-rotor and presents the differ-

ential equations-based dynamic model of a quad-rotor. At the end the non-linear

model is linearized to get the linear model of the quad-rotor.

2.1 Mathematical model of quad-rotor

A quad-rotor is controlled by the rotation speeds of four motors during flight as

shown in Fig. 2.1. Each motor Mi produces a thrust fi and torque τMi
and rotates

with angular speed ωi. There are four types of movements; throttle movements,

roll movements, pitch movements and yaw movements. Throttle movements lead

to forces in the upward direction which move the quad-rotor up and down. Such

movements are attained by increasing (or decreasing) the speed of all motors by

the same amount. The pitch and roll movements in helicopters are controlled by a

mechanical device known as swashplate, whereas same movements are achieved in

quad-rotors by varying the angular speed of four motors of quad-rotor. In quad-

rotors, the pitch movement is controlled by varying the speeds of the front (M1) and

back (M3) motors, while the left (M4) and right (M2) motors are used to control

the roll movement. In order to move the quad-rotor in the yaw direction the speed

of the front and rear motors is increased while the speed of the left and right motors

is decreased at the same time or vice versa. Furthermore, to reduce the gyroscopic

and aerodynamic effects, the front and back motors rotate counter-clockwise while

the left and right motors rotate clockwise as indicated in Fig. 2.1.

7

Decentralized Navigation of Multiple Quad-rotors using MPC

xy

z

Inertial Frame

Body Frame

xbyb zb

f1

f2f3

f4

M1

M2M3

M4

3
2

14

� �

�

T

Figure 2.1: Inertial frame (x, y, z) and quad-rotor body frame (xb, yb, zb), where fi
and ωi ∀ i ∈ [1, 4] represent the forces and angular velocities in the body frame

respectively produced by each motor Mi while τφ, τθ and τψ are the three rotational

torques in the same frame and T is the thrust in the body z-axis.

Let the absolute position of the quad-rotor in the inertial frame is expressed by

q = [ξT , ηT]T

where ξ = [x, y, x]T is the linear position of the quad-rotor in the inertial frame and

η = [φ, θ, ψ]T represents the Euler angles, i.e., the orientation of the quad-rotor in

the inertial frame as shown in Fig. 2.1.

The thrust T and rotational torques can be defined as [13] [22]

T =
4∑
i=1

fi = k
4∑
i=1

ω2
i

τφ = lk(ω2
4 − ω2

2)

τθ = lk(ω2
3 − ω2

1)

τψ =
4∑
i=1

τMi

where, l is the distance of the rotor from the center of the quad-rotor, ωi is the

angular speed of the ith motor and k > 0 is the lift constant.

The rotor torque τMi
around its rotation axis is opposed by the aerodynamics drag,

such that

τMi
= IM ω̇i + bω2

i

in which IM is the moment of inertia of rotor and b is the drag constant. For

quasi-stationary movements, ω̇ is very small and neglected [13], and hence

τMi
= bω2

i

8

Decentralized Navigation of Multiple Quad-rotors using MPC

The rotation axis of each rotor also moves in the body-fixed frame result in gyro-

scopic torques τG

τG =
4∑
i=1

IM(Ω× Ez)ωi

where, Ez is the unit vector in inertial z-axis.

The rotation matrix from the body frame to the inertial frame is mathematically

defined as [22]

R =

CψCθ CψSθSφ− SψCφ CψSθCφ+ SψSφ

SψCθ SψSθSφ+ CψCφ SψSθCφ− CψSφ

−Sθ CθSφ CθCφ

 (2.1)

where, S and C stands for trigonometric function sin and cos respectively.

The angular velocities η̇ in the inertial frame are related to the angular velocity

vector Ω in the body frame by:

Ω = W η̇ (2.2)

where Ω = [p, q, r]T , η̇ = [φ̇, θ̇, ψ̇]T and transformation matrix W which relates

velocities in both frames is [22]

W =

1 0 −Sθ

0 Cφ CθSφ

0 −Sφ CθCφ

 (2.3)

There are different methods adopted by researchers for modelling the quad-rotors.

The most popular approaches among them are the Newton-Euler and the Euler-

Lagrange methods[13]. In this project, we use the Newton-Euler approach to model

the dynamics of quad-rotor.

In order to obtain the mathematical model of the quad-rotor, consider a solid

body moving in a 3-D space Fig. 2.1 and is subject to a thrust T in the direction of

the body z−axis and three torques τφ, τθ and τψ.

In the inertial frame, the quad-rotor is accelerated due to the thrust vector FB,

the gravity and friction force fd. As the thrust acts on the quad-rotor in the body

frame, the rotation matrix R Eq. (2.1) is used to convert the thrust from the body

to inertial frame.

Thus, according to Newton’s equation of 3-D motion, the following holds in the

inertial frame
mξ̈ = −mgEz + RFB

ξ̈ = −gEz +
RFB
m

where Ez = [0, 0, 1]T , ξ̈ = [ẍ, ÿ, z̈]T , FB = [0, 0,T]T and R is the rotation matrix.

9

Decentralized Navigation of Multiple Quad-rotors using MPC

The drag force fd induced by the air resistance is included in order to give a

more realistic behaviour of the quad-rotor. So the above equation can be written as

ξ̈ = −gEz +
RFB
m
− fd
m

(2.4)

where, fd is diagonal matrix of the following form:

fd =

kx 0 0

0 ky 0

0 0 kz

ẋẏ
ż

 (2.5)

where, kx, ky and kz are coefficients that relate the linear velocities to the drag force.

Eq. (2.4) becomes

ẍ =
T

m
(CψSθCφ+ SψSφ)− kx

m
ẋ

ÿ =
T

m
(SψSθCφ− CψSφ)− ky

m
ẏ

z̈ =
T

m
CθCφ− g − kz

m
ż

(2.6)

According to Euler’s equation, the total torque applied to the quad-rotor in the

body frame is
IΩ̇ + Ω× (IΩ) = τ − τG
Ω̇ = I−1(τ − τG − Ω× (IΩ))

(2.7)

where, τ = [τφ, τθ, τψ] is the generalized torque acting on the body in the body frame,

τG is the gyroscopic torque and I is the moment of inertia. It is assumed that the

quad-rotor has symmetric structure and therefore, the inertia matrix is diagonal

I =

Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.8)

Moreover, it is also assumed that the moment of inertia of each motor IM is very

small and hence the gyroscopic torque τG can be neglected in designing the model

[13]. Hence, Eq. (2.7) becomes

ṗ =
(Iyy − Izz)qr

Ixx
+
τφ
Ixx

q̇ =
(Izz − Ixx)pr

Iyy
+

τθ
Iyy

ṙ =
(Ixx − Iyy)pq

Izz
+
τψ
Izz

(2.9)

where, (ṗ, q̇, ṙ) is the angular acceleration vector in the body frame with respect to

inertial frame. Following Eq. (2.2), we obtain

η̇ = W −1Ωφ̇θ̇
ψ̇

 =

1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ
Cθ

Cφ
Cθ

pq
r

10

Decentralized Navigation of Multiple Quad-rotors using MPC

Expanding above equation results in

φ̇ = p+ SφTθq + CφTθr

θ̇ = Cφq − Sφr

ψ̇ =
Sφ

Cθ
q +

Cφ

Cθ
r

(2.10)

where, φ̇, θ̇, and ψ̇ are the angular velocities around x, y, and z axis, respectively

in the inertial frame.

2.2 State Space Model

By introducing the parameters u = ẋ, v = ẏ and w = ż, the set of equations

Eq. (2.6), Eq. (2.9) and Eq. (2.10) can be written as:

ẋ = u

ẏ = v

ż = w

u̇ =
T

m
(CψSθCφ+ SψSφ)− kx

m
u

v̇ =
T

m
(SψSθCφ− CψSφ)− ky

m
v

ẇ =
T

m
CθCφ− g − kz

m
w

ṗ =
(Iyy − Izz)qr

Ixx
+
τφ
Ixx

q̇ =
(Izz − Ixx)pr

Iyy
+

τθ
Iyy

ṙ =
(Ixx − Iyy)pq

Izz
+
τψ
Izz

φ̇ = p+ SφTθq + CφTθr

θ̇ = Cφq − Sφr

ψ̇ =
Sφ

Cθ
q +

Cφ

Cθ
r

(2.11)

or in compact state-space form:

Ẋ = f(X,U)

where X = (x, y, z, u, v, w, p, q, r, φ, θ, ψ)T is the state vector and U = (T, τφ, τθ, τψ)

is the thrust vector acting as control input.

2.2.1 Linear Model

The solution of the state space model Eq. (2.11) may give non-unique results as

trigonometric functions appear in a non-elementary way. Hence, the model is sim-

plified by assuming that the Euler angles are negligibly small. Therefore by using

11

Decentralized Navigation of Multiple Quad-rotors using MPC

the Tailor series expansion, sin function is approximated by its argument and the

cos function by unity. The state space model Eq. (2.11) is then simplified to

ẋ = u

ẏ = v

ż = w

u̇ =
T

m
(θ + ψφ)− kx

m
u

v̇ =
T

m
(ψθ − φ)− ky

m
v

ẇ =
T

m
− g − kz

m
w

ṗ =
(Iyy − Izz)qr

Ixx
+
τφ
Ixx

q̇ =
(Izz − Ixx)pr

Iyy
+

τθ
Iyy

ṙ =
(Ixx − Iyy)pq

Izz
+
τψ
Izz

φ̇ = p+ φθq + θr

θ̇ = q − φr
ψ̇ = φq + r

(2.12)

or in a compact state-space form:

Ẋ = f̂(X,U)

Linearization is performed on the simplified state space model, Eq. (2.12). The

nonlinear system f̂(X,U) is linearized around the equilibrium points.

Ẋ = 0 =⇒ f̂(X̄, Ū) = 0

Solving this equation gives the equilibrium point around which the linearization is

peformed.

X̄ = [x̄, ȳ, z̄, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Ū = [mg, 0, 0, 0]

12

Decentralized Navigation of Multiple Quad-rotors using MPC

The state matrix related to the linear model is

A =
∂f̂(X,U)

∂X

∣∣∣X = X̄ =

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 −kx
m

0 0 0 0 0 0 g 0

0 0 0 0 −ky
m

0 0 0 0 −g 0 0

0 0 0 0 0 −kz
m

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

(2.13)

and the input matrix is

B =
∂f̂(X,U)

∂U

∣∣∣
X=X̄

=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
1
m

0 0 0

0 1
Ixx

0 0

0 0 1
Iyy

0

0 0 0 1
Izz

0 0 0 0

0 0 0 0

0 0 0 0

(2.14)

13

Decentralized Navigation of Multiple Quad-rotors using MPC

Hence the linear state space model is

ẋ = u

ẏ = v

ż = w

u̇ = −kx
m
u+ gθ

v̇ = −ky
m
v − gφ

ẇ = −kz
m
w +

T

m

ṗ =
τφ
Ixx

q̇ =
τθ
Iyy

ṙ =
τψ
Izz

φ̇ = p

θ̇ = q

ψ̇ = r

(2.15)

14

Chapter 3

Model Predictive Control

In Model predictive control (MPC), an open loop optimization problem is solved

iteratively over a finite time horizon. The input to the problem is the current state

of the system while the output is a sequence of optimal control inputs calculated

over the finite time horizon. The solution of the optimal control problem depends

on the predicted states of the system. These states of the system are predicted over

a discrete time horizon using a dynamic model of the plant. At each time instant

the problem is solved and only the first sample of the optimal control is fed to the

plant and the remaining samples are discarded. This process of predicting the states

and solving the problem for the optimal control is iteratively repeated at a constant

interval of time. The general abstract of the model predictive control scheme is

shown in Fig. 3.1

TimeKK-1 K+1 K+2 K+3 K+N

FuturePast

Predicted Control

Predicted trajectory

Prediction Horizon

Reference trajectory

Sample Time

Past Control

Past trajectory

Figure 3.1: Abstract of Model Predictive Control

15

Decentralized Navigation of Multiple Quad-rotors using MPC

The advantage of MPC over the other control schemes is that it can deal with

the constraints explicitly. But at the same time such type of optimization methods

are computationally inefficient and depend on the horizon length and number of

states of the model. Typically, such techniques have been used in the industries

where the plants or models have slow dynamics and the sampling time is more than

the computational time of the problem. More recently, MPC has been applied to

systems with fast dynamics such as autonomous vehicles [8] [19] while guaranteeing

the closed loop stability. In this chapter, we give a brief overview of nonlinear MPC,

linear MPC and hybrid MPC and analyse them for achieving stability.

3.1 Nonlinear Model Predictive Control (NMPC)

The model predictive control scheme which is based on the non-linear dynamics of

the plant is known as nonlinear model predictive control (NMPC). The cost function

may or may not be quadratic and depends on the type of the problem. NMPC is used

to predict the system behaviour subject to non-linear constraints on the inputs and

states. Linear MPC scheme is preferred mostly because it takes less computation

time. But sometimes it is better to use the nonlinear model instead of the linear

one in order to improve the quality specifications of the product because non-linear

models are rich in describing the dynamics of plant. On the other hand, NMPC is

inherently a state feedback control approach [11] and is based on the assumption that

full state information is available or must be estimated from available measurements

for solving the optimization problem. In case of output feedback NMPC, one cannot

guarantee the closed loop stability of the system even if the controller and observer

both are stable as there doesn’t exist any separation principle for nonlinear systems

[11].

As output feedback NMPC has stability issues for non-linear models [11], in

this document state feedback NMPC approach is used. Hence, it is assumed that

full system state information is available. This section describes the state feedback

NMPC and is limited to the sampled-data NMPC where an open loop optimal

problem is solved at discrete sampling instants.

3.1.1 Problem formulation - NMPC

Consider a discrete time non-linear system of the form

x(k + 1) = f(x(k), u(k)), x(0) = x0 (3.1)

where, f : Rn×Rm → Rn is locally Lipschitz continuous and describes the discretized

system dynamics at discrete time instants k ≥ 0, x(k) ∈ Rn and u(k) ∈ Rm are state

and input vectors at time instant k. Furthermore, the system in Eq. (3.1) is subject

to state and input constraints:

x(k) ∈ X, ∀k ≥ 0

u(k) ∈ U, ∀k ≥ 0
(3.2)

16

Decentralized Navigation of Multiple Quad-rotors using MPC

where, X and U are convex sets of the form

X = {x ∈ Rn | xmin ≤ x ≤ xmax}
U = {x ∈ Rm | umin ≤ u ≤ umax}

(3.3)

The problem of driving the states of the system defined by Eq. (3.1) to origin while

optimizing the control can be formulated as

minimize
u

J(x, u)

subject to:

x(k + 1) = f(x(k), u(k)),∀ k ∈ [0,N− 1]

u(k) ∈ U, ∀ k ∈ [0,N− 1]

x(k) ∈ X, ∀ k ∈ [0,N]

x(0) = x0

(3.4)

where, N is the length of the prediction horizon over which the cost function J is

minimized. The cost function J(.) is given by

J(x, u) =
N−1∑
k=0

F (x(k), u(k)) + E(x(N)) (3.5)

The stage cost F (.) and terminal penalty term E(.) are often defined as

F (x, u) = xTQx+ uTRu

E(x) = xTQfx

where the performance weights are positive semi definite and positive definite i.e.,

Q�0, Qf �0 and R�0.

Theoretically, it would better to set prediction horizon N in problem Eq. (3.4) to

infinity. This would lead to minimizing of the infinity cost which is computationally

inefficient. Therefore, a finite horizon length is used in solving the problem Eq. (3.4).

But this leads to the difference between the actual closed-loop states and inputs and

predicted open-loop ones, even if there is no mismatch between plant and its model

and no disturbances. This difference between the predicted and actual closed loop

trajectories have two effects. Firstly, the actual goal to minimize an infinite horizon

problem is not achieved and secondly, one cannot guarantee the closed-loop stability

of NMPC [11].

Ideally, one would prefer to use the NMPC scheme that guarantees closed-loop

stability and, if possible, approximates infinite horizon NMPC approach. Different

approaches that are commonly used to achieve the closed-loop stability of NMPC

are discussed in [11]. These methods include Infinite Horizon NMPC; where

the horizon length is set to infinity and leads to computational problems, Finite

Horizon NMPC with Guaranteed Stability; where, the terminal constraint

set Xf and terminal state penalty term E(.) are added in problem formulation

Eq. (3.4) to guarantee stability and Quasi-infinite horizon NMPC; where, the

17

Decentralized Navigation of Multiple Quad-rotors using MPC

terminal constraint set Xf and terminal state penalty term E(.) are obtained offline

by stabilizing the linear control law locally.

In this project, the Finite Horizon NMPC with Guaranteed Stability approach is

used because of its simplicity to amend in the control problem.

3.1.2 Finite Horizon NMPC with Guaranteed Stability

In this approach, the standard formulation of NMPC Eq. (3.4) is modified in order

to achieve the closed loop stability. This is done by adding suitable equality/ in-

equality constraints, sometimes called stability constraints, and additional penalty

terms. One of the possibilities is to add a zero terminal constraint to the standard

formulation of NMPC problem. (3.4) i.e.,

x(N) = 0

The main disadvantage of adding the zero terminal constraint is that the optimiza-

tion problem (3.4) becomes infeasible, as the predicted state of the system is forced

to go to zero in finite time which is not possible. To over come this issue, most of

the strategies use the terminal region constraint set i.e.,

x(N) ∈ Xf

and/or a terminal cost E(.)

3.1.3 Stability of sampled-data NMPC

The following theorem states the conditions for the stability of the closed loop system

[11].

Theorem 3.1: Suppose that

(a) the terminal region Xf ⊆ X is closed and contains 0, and that the terminal

cost E(x) is locally Lipschitz continuous and positive semi-definite

(b) the terminal constraint set Xf and terminal cost E(x) are chosen in a way that

∀x ∈ Xf , there exists an admissible input u such that x(N) ∈ Xf and that the

minimal value of cost function defined in Eq. (3.5) is decreasing.

(c) the NMPC open-loop optimal control problem is feasible for t = 0.

Then in the closed-loop system Eq. (3.4), x(k) converges to the origin for k →∞.

Hence, the terminal region constraint enforces feasibility of the optimal control

problem at the next sampling instant and thus makes the minimal value of the cost

function to strictly decrease and hence stability can be achieved.

18

Decentralized Navigation of Multiple Quad-rotors using MPC

3.2 Linear Model Predictive Control (LMPC)

The optimal control problem defined in Eq. 3.4 is computationally expensive and

cannot be implemented in real-time applications. Sometimes, it is also difficult to

ensure the closed loop stability of the system for the complex nonlinear models.

Moreover, the computational time is so high that NMPC cannot be used for plants

that have fast dynamics. Therefore, linear MPC is used instead of NMPC for real

time applications with faster dynamics, where the linear time invariant model is

approximated from the nonlinear dynamics of the plant model. Moreover, the closed

loop stability of the system can be also achieved by using output feedback LMPC

as there exists a separation principle for linear models. The linear MPC is a type of

MPC in which the model of the plant as well as the constraints on states and inputs

are linear.

3.2.1 Problem formulation - LMPC

Consider a discrete time linear system of the form

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(3.6)

where, x(k) ∈ X ∀ k > 0 and u(k) ∈ U ∀ k > 0. The sets X and U are bounded

convex sets.

The problem of driving the states of the linear system defined by Eq. (3.6) to

origin while optimizing the cost can be written as

minimize
u

N−1∑
k=0

xTQx+ uTRu+ xTQfx

subject to:

x(k + 1) = Ax(k) +Bu(k),∀ k ∈ [0,N− 1]

u(k) ∈ U, ∀ k ∈ [0,N− 1]

x(k) ∈ X, ∀ k ∈ [0,N]

x(0) = x0

x(N) ∈ Xf

(3.7)

where, N is the length of the prediction horizon over which the cost function is

minimized. The penalty matrices (or performance weights) are the positive semi

definite and positive definite i.e., Q�0, Qf �0 and R�0, so that the control problem

is convex [21]. The terminal cost and the terminal constraints are added in the

problem Eq. (3.7) to achieve the closed loop system stability.

3.2.2 Stability of linear MPC

The following theorem states the conditions for the stability of the closed loop system

using linear MPC [21].

19

Decentralized Navigation of Multiple Quad-rotors using MPC

Theorem 3.2: Consider the linear system Eq.(3.6) with (A,B) reachable. Let

the penalty matrix for control input is positive definite i.e., R�0 and (A,Q1/2) be

observable. Then, if Qf = P where

P = ATPA+Q− (BTPA)T (R +BTPB)−1BTPA (3.8)

the control problem Eq. (3.7) results in an asymptotically stable closed-loop system

for all values of N>1.

Hence, the terminal cost ensures the stability of closed loop system for linear

MPC problem if the terminal penalty matrix is chosen as the solution to the algebraic

riccati equation (ARE) Eq. (3.8).

3.3 Hybrid Model Predictive Control (HMPC)

Often, systems are described by the linear dynamical equations and linear inequal-

ities which involve real and logical variables. These systems are known as mixed

logical dynamical systems MLDs [3]. The optimal control problem of such systems

can be solved using linear MPC and heuristic rules inferred by practical operations

like if-else statements. This approach is sometimes not feasible and inefficient when

there are a lot of if-else statements.

This section describes a predictive control scheme [3] for MLDs known as hybrid

model predictive control. The optimization problem defined for MLDs can be solved

as mixed integer quadratic problem (MIQP). This section starts with a brief intro-

duction about boolean algebra and mixed logical dynamical MLDs systems and then

ends with deriving the problem formulation problem for HMPC subject to MLDs.

3.3.1 Boolean Algebra

Consider a discrete time linear system of the form

x(k + 1) = f(x(k)) (3.9)

where x(k) ∈ X ∀ k > 0 and X is a bounded set. Let

M = max(f(x)) (3.10)

m = min(f(x)) (3.11)

To establish a link between the logical variables and dynamical system, we associate

a logical variable δ ∈ {0, 1} for f(x) which has a value of 1 if f(x) ≤ 0 and 0

otherwise. It can be easily verified that

[f(x) ≤ 0] ↔ [δ = 1]⇔
{
f(x) ≤M(1− δ)
f(x) ≥ ε+ (m− ε)δ (3.12)

where, ε > 0 represents the tolerance in the process/ plant.

20

Decentralized Navigation of Multiple Quad-rotors using MPC

Sometimes, the statements involve the multiplication of a binary and real variable

such as the term δf(x). In order to convert it into set of linear inequalities, we

introduce an auxiliary real variable z and replace the statement δf(x) by z which

satisfies
[δ = 0]→ [z = 0]

[δ = 1]→ [z = f(x)]
(3.13)

Eq. (3.13) can be written as set of linear inequalities of the following form

z ≤Mδ

z ≥ mδ

z ≤ f(x)−m(1− δ)
z ≥ f(x)−M(1− δ)

(3.14)

3.3.2 Mixed Logical Dynamical System

Mixed logical dynamical (MLD) systems describe the evaluation of the linear discrete

time systems which involve the logical variables. The general form of a mixed logical

dynamical system [3] is

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

(3.15)

where in Eq.(3.15), the first line is a state-update equation, the second is an output

equation, and the third is a set of linear inequalities which describe the switching

conditions between the different modes of the hybrid model. In this model, x is the

state vector, u is the input vector, δ represents the binary variables, z is set the

auxiliary variables and A, B1, B2, B3, C, D1, D2, D3, E2, E3, E1, E4 and E5

are matrices of suitable dimensions. Hysdel tool box can be used to generate these

matrices.

3.3.3 HYSDEL Tool Box

HYSDEL (HYbrid SYstem DEscription Language) is a tool box that models the

mixed logical dynamical (MLD) system [24]. It uses a high-level modeling language

to describe the whole system and then translates it into mixed logical dynamical

(MLD) system suitable for solving the desired optimization problem.

3.3.4 Optimal Control of MLD systems

The optimal control problem for MLDs can be defined as

minimize
u

J(x, u, δ, y, z)

subject to:

MLD dynamics described by Eq.(3.15) and

x(N) ∈ Xf

(3.16)

21

Decentralized Navigation of Multiple Quad-rotors using MPC

where, N is the prediction horizon and Xf is terminal state. The cost function

J(x, u, δ, y, z) is usually defined as

J(x, u, δ, y, z) =
N−1∑
k=0

xT (k)Q1x(k) + uT (k)Q2u(k) + δT (k)Q3δ(k)

+ zT (k)Q4z(k) + yT (k)Q5y(k)

(3.17)

where, Q1, Q2, Q3, Q4 and Q5 are positive definite matrices. The optimization

problem for hybrid systems defined in Eq. (3.16) can be solved as a mixed integer

quadratic program (MIQP).

22

Chapter 4

MPC for decentralized navigation

and obstacle avoidance

This section describes the methods that are adopted to design the MPC based

controllers for decentralized navigation of multiple quad-rotors in a constraint envi-

ronment. First, a non-linear MPC problem is derived subject to the nonlinear model

of the quad-rotor and non-linear state constraints. Afterwards, a linear predictive

control scheme is derived to steer the aerial vehicles to the desired goal points subject

to linear constraints on states and inputs. In the end, the whole system is converted

into a mixed logical dynamical system and a hybrid MPC controller is derived for

the same problem subject to a mixed logical dynamical model of the system. In the

linear and hybrid MPC, the obstacles and agents are modelled as polyhedral sets

while in non-linear MPC, these are modelled as spheres.

4.1 Non-linear MPC and obstacle avoidance

The first predictive controller that we derive to solve our desired problem is based

on the non-linear dynamical model of the quad-rotor Eq.(2.11). The nonlinear MPC

optimization problem defined in Eq. (3.4) which is based on the non-linear dynamics

needs to be modified for navigating a quad-rotor to the goal region of interest such

that static and dynamic obstacles can be avoided. Hence, in order to formulate the

nonlinear MPC control problem for navigating a quad-rotor to the goal region of

interest and obstacle avoidance, we need to model the obstacles as constraints on

the states.

4.1.1 Obstacle modelling

For a nonlinear MPC problem, the obstacles are modelled as spherical objects.

These obstacles include the static as well as dynamic obstacles. Let there are K

number of static obstacles positioned at (xsi, ysi, zsi) ∀ i ∈ K, and M number of

dynamic obstacles positioned at (xdj, ydj, zdj) ∀ j ∈ M respectively. It is assumed

that all static and dynamic obstacles have body radius rs and rd respectively then

23

Decentralized Navigation of Multiple Quad-rotors using MPC

the spherical objects can be defined as:

(x− xsi)2 + (y − ysi)2 + (z − zsi)2 = r2
s ∀ i ∈ K

(x− xdj)2 + (y − ydi)2 + (z − zdi)2 = r2
d ∀ j ∈ M

(4.1)

The static and dynamic obstacles are the non-linear constraints on states x, y

and z. As we want our vehicle to never enter the regions defined by Eq. (4.1), the

constraints on the states x, y and z for the static and dynamic obstacles avoidance

are

(x− xsi)2 + (y − ysi)2 + (z − zsi)2 > R2
s ∀ i ∈ N (4.2)

and

(x− xdj)2 + (y − ydj)2 + (z − zdj)2 > R2
d ∀ j ∈ N (4.3)

where, Rs is equal to or more than the sum of the radial sizes of the static and

dynamic obstacles for static obstacle avoidance. Similarly, in order to avoid the

dynamic obstacles, Rd must be equal to or more than the sum of the radial sizes of

encountering agents.

4.1.2 Problem Formulation - NMPC

Consider the nonlinear model of the quad-rotor Eq. (2.11) and define it a function

f(x, u). Let x0 be the initial position of the quad-rotor and r the reference point

where we want our quad-rotor to navigate. In other words, x0 and r represent the

positions of two different regions of interest πi and πj, i 6= j, such that the agent

navigates from x0 to r subject to non-linear dynamics f(x, u) while avoiding all

types of obstacles.

The constraints Eq. (4.2) and Eq. (4.3) depend on the positions of static and

dynamic obstacles. In this thesis, it is assumed that each agent has a certain sensing

radius and it knows the positions of other agents only when they are with in its

sensing radius. Hence we define two optimization problems. The first one is only

dedicated to static obstacle avoidance while the second one is solved only when there

is a dynamic obstacle in the vicinity of the agent.

The non-linear MPC problem named as ”NPMC 1” afterwards for navigating a

quad-rotor to goal region of interest r from initial region of interest x0 subject to

24

Decentralized Navigation of Multiple Quad-rotors using MPC

non-linear model and static obstacles avoidance is

minimize
u

N−1∑
k=0

(x(k)− r)TQ(x(k)− r) + u(k)TRu(k)+

(x(N)− r)TQf (x(N)− r)

subject to:

x(k + 1) = f(x(k), u(k)), ∀ k ∈ [0,N− 1]

u(k) ∈ U, ∀ k ∈ [0,N− 1]

x(k) ∈ X, ∀ k ∈ [0,N]

(x− xsi)2 + (y − ysi)2 + (z − zsi)2 > R2
s ∀ i ∈ K

x(0) = x0

x(N) ∈ Xf

(4.4)

and the non-linear MPC controller ”NPMC 2” for steering the agent to the desired

goal point while avoiding static and dynamic obstacles avoidance subject to non-

linear dynamics is

minimize
u

N−1∑
k=0

(x(k)− r)TQ(x(k)− r) + u(k)TRu(k)+

(x(N)− r)TQf (x(N)− r)

subject to:

x(k + 1) = f(x(k), u(k)),∀ k ∈ [0,N− 1]

u(k) ∈ U, ∀ k ∈ [0,N− 1]

x(k) ∈ X, ∀ k ∈ [0,N]

(x− xsi)2 + (y − ysi)2 + (z − zsi)2 > R2
s ∀ i ∈ K

(x− xdj)2 + (y − ydj)2 + (z − zdj)2 > R2
d ∀ j ∈ M

x(0) = x0

x(N) ∈ Xf

(4.5)

where, N is the prediction horizon length and Xf is the terminal constraint set which

is the spherical region around the goal region of interest. It is chosen in a way that

the optimization problem is feasible and at the same time it is computationally

efficient. The matrices Q, R and Qf are positive definite matrices.

4.1.3 Flow chart of NMPC Algorithm

The flow chart of the NMPC algorithm for the decentralized motion of agents is

shown in Fig. 4.1.

25

Decentralized Navigation of Multiple Quad-rotors using MPC

Figure 4.1: Flow chart of NMPC Algorithm for static and dynamic obstacle avoid-

ance algorithm, NMPC 1 for Static Obstacle avoidance and NMPC 2 for static and

dynamic obstacle avoidance

At each time instant, it is checked whether there is a dynamic obstacle with in

the sensing radius of an agent or not. If there is no dynamic obstacle within the

sensing radius, then the problem is solved using NMPC 1 which only takes care of

the static obstacle avoidance. If there exist a dynamic obstacle in the vicinity of an

agent, the priority is compared to the priority of other agent. If its priority is low

compared to other agent, then vehicle is slow down and stopped. If it has a higher

priority compared to the other agent, it is investigated if other agent is approaching

or not. If it is approaching, then optimization problem is solved with NMPC 2,

which handles the static as well as dynamic obstacle avoidance otherwise NMPC 1

is used to solve the problem. Only the first sample of the control input obtained

from the NMPC 1 or NMPC 2 is fed to the plant/ model afterwards.

4.2 Linear MPC and obstacle avoidance

This section describes the derivation of the optimal control scheme for moving the

quad-rotor to the goal region of interest subject to the linear model of quad-rotor

Eq. (2.15) and linear constraints such that the static and dynamic obstacles are

avoided during the decentralized motion of multiple agents. The linear MPC prob-

lem Eq. (3.7) which is based on the linear dynamics and linear constraints on states

and inputs is updated for static and dynamic obstacle avoidance.

4.2.1 Obstacle modelling

In order to avoid the obstacles using linear MPC, the avoidance of obstacles is

modelled as linear constraints on states x, y and z. In this project, we model the

26

Decentralized Navigation of Multiple Quad-rotors using MPC

obstacles as polyhedrons for linear MPC problem. Consider an obstacle centered at

position (xc, yc, zc) having facet length l as shown in Fig. 4.2.

x

y z

l
(xc,yc,zc)

Figure 4.2: Obstacle modelled as polyhedron

It is assumed, that the size l of all facets of obstacle are equal. The region spanned

by this obstacle can be written in the form of the following linear inequalities.

x ≤ xc + l/2

y ≤ yc + l/2

z ≤ zc + l/2

x ≥ xc − l/2
y ≥ yc − l/2
z ≥ zc − l/2

(4.6)

which can be written as

PZ ≤ d (4.7)

where, Z = [x, y, z]T , P = [I3,−I3]T is a 6x3 matrix and d is a 6x1 vector equal to

d =

xc + l/2

yc + l/2

zc + l/2

−xc + l/2

−yc + l/2

−zc + l/2

(4.8)

In order to avoid collisions with static obstacles and other agents, it is assumed that

the length of facet l is equal to the sum of the radial sizes of the static obstacle and

dynamic obstacles for static obstacle avoidance while it is equal to the sum of the

radial sizes of two agents when dynamic obstacle is avoided.

27

Decentralized Navigation of Multiple Quad-rotors using MPC

4.2.2 Obstacle avoidance

In order to avoid the static and dynamic obstacles, the linear optimization problem is

defined and solved at each sample point. At each time instant, the previous predicted

trajectories are checked by employing heuristic rules such as if-else statements. If

these trajectories enter the obstacle region the constraints are put on the states

related to the linear position of quad-rotor. In order to understand the concept of

obstacle avoidance using LMPC, consider the obstacle in the path of trajectory of

agent in 2-D as shown in Fig.4.3.

Xx1

Predicted trajectory

x2

y1

y2

Y

Obstacle

Obstacle free path

Figure 4.3: Obstacle in the predicted trajectory of quad-rotor

where, (x1,x2) and (y1,y2) specify the boundaries of the obstacle and Xpred =

[xpred,ypred] is the predicted trajectory for prediction horizon length at previous time

instant. The proposed algorithm for obstacle avoidance using linear MPC is

Algorithm 1 Obstacle avoidance algorithm

while k ≤ N do

if xpred(k) > x1 & xpred(k) < x2 then

if ypred(k) > y1 & ypred(k) < y2 then

if ypred(k) > z1 & zpred(k) < z2 then

if abs(y(k)− y1) < abs(y2 − y(k)) then

y(k) < y1

else

y(k) > y2

end if

end if

end if

end if

end while

28

Decentralized Navigation of Multiple Quad-rotors using MPC

where, y(k) < y1 or y(k) > y2 are the constraints on the states of the agent and

N is the prediction horizon. If the initial state and the final goal of the targets are

such that they are aligned on x-axis then constraints are put on y(k), and if they

are aligned on y-axis, constraints are put on x(k). In general form, the constraints

on the states for obstacle avoidance using linear MPC can be written as

AZ < b (4.9)

where, Z = (x, y, z).

This algorithm is for only one obstacle and can be easily extended for the multiple

obstacles in the same way.

4.2.3 Problem formulation - LMPC

Consider a LTI system of the form

x̄(k + 1) = Āx̄(k) + B̄ū(k) (4.10)

For error-free tracking in the z-axis, an integral state in the dynamic model is added.

Hence the augmented model is[
x̄(k + 1)

x̄I(k + 1)

]
=

[
Ā 0

−C 0

] [
x̄(k)

x̄I(k)

]
+

[
B̄

0

]
ū(k) +

[
0

1

]
r(k) (4.11)

which leads to

x(k + 1) = Ax(k) +Bu(k) +Dr(k) (4.12)

The optimal control problem of making the quad-rotor go to reference region of

interest r subject to the linear model Eq. (4.12) and linear constraints on the states

of the form Eq. (4.9) can be written as

minimize
u

N−1∑
k=0

(x− r)TQ(x− r) + uTRu+ (x− r)TQf (x− r)

subject to:

x(k + 1) = Ax(k) +Bu(k) +Dr(k),∀ k ∈ [0,N− 1]

u(k) ∈ U, ∀ k ∈ [0,N− 1]

x(k) ∈ X, ∀ k ∈ [0,N]

AZ < b,

x(0) = x0,

x(N) ∈ Xf

(4.13)

where, AZ < b defines the constraints on the states Z = [x, y, z]T such that the static

and dynamic obstacles are avoided safely.

29

Decentralized Navigation of Multiple Quad-rotors using MPC

4.2.4 Flow chart of LMPC Algorithm

The flow chart of the LMPC algorithm for the decentralized motion of the agents is

depicted in Fig. 4.4. At each sample time, the existence of other agents with in the

sensing radius is checked. In the absence of any agent, the linear MPC problem is

defined such that it only avoids static obstacles. Otherwise, based on the priority

it either decides to stop or avoids the dynamic obstacle. It can be observed that

the MPC problem is defined at each time sample which is based on the predicted

states of the system at previous sample times in order to ensure that obstacles are

avoided.

Figure 4.4: Flow chart of LMPC Algorithm for static and dynamic obstacle avoid-

ance algorithm

4.3 Hybrid MPC and obstacle avoidance

In this section, the hybrid MPC problem defined in Eq.(3.16) is modified such that

the quad-rotor navigates between two regions subject to avoidance of all types of

obstacles. Here, the hybrid MPC is designed for a single static/ dynamic obsta-

cle which can be extended for multiple obstacles. The workspace for quad-rotor

navigation is shown in the Fig. 4.5.

30

Decentralized Navigation of Multiple Quad-rotors using MPC

workspace

Obstacle

Region of interest

Region of interest

Path

Figure 4.5: Workspace for quad-rotor navigation

4.3.1 Obstacle modelling

The obstacles are modelled as polyhedrons in the same way as we did for the linear

MPC Eq. (4.6) and Eq. (4.7).

4.3.2 Hybrid Model

Consider the quad-rotor located in one of the region of interests that aims to navigate

to another region of interest as shown in Fig. 4.5. In this project, the work-space

shown in Fig. 4.5 is divided in to two regions i.e., the obstacle region and the flying

region, with the obstacle region being the sum of individual regions of all obstacles.

Let the dynamics of the quad-rotor in the flying region be described by the discrete

LTI system which also includes the integral state in the z-axis

x(k + 1) = Ax(k) +Bu(k) +Dr(k) (4.14)

Similarly for the obstacles region, the dynamic model is

x(k + 1) = Ix(k) (4.15)

where I is the identity matrix that has the same dimension as the matrix A.

Therefore, the hybrid model for obstacle avoidance scenario is defined by

x(k + 1) =

{
Ax(k) +Bu(k) +Dr(k), Flying region

Ix(k), Obstacle region
(4.16)

4.3.3 Mixed logical dynamical system modelling

In this section, the hybrid model obtained Eq. (4.16) is converted into a mixed logical

dynamical system. A binary variable for each obstacle region can be associated as

specified in Fig. 4.6.

31

Decentralized Navigation of Multiple Quad-rotors using MPC

Workspace

δ3=1
δ2=1

δ1=1

Figure 4.6: Obstacles associated with binary variables in a work-space

Hence, the Hybrid model is

x(k + 1) =

{
Ix(k) if (∨δi == 1)

Ax(k) +Bu(k) +Dr(k) else
(4.17)

The hybrid dynamic model Eq. (4.17) obtained is modified as piecewise linear

affine (PWA) dynamics which is then converted into an equivalent mixed logical

dynamical (MLD) system [3] [18].

Following [7] [18], the model of PWA with s number of states can be written in

the form as:

x(k + 1) =

A1x(k) +B1u(k) if δ1(k) = 1

A2x(k) +B2u(k) if δ2(k) = 1

.

.

Asx(k) +Bnu(k) if δs(k) = 1

(4.18)

subject to x(k) ∈ Ωi, where, δi(k) ∈ {0, 1}, ∀i ∈ s represent the binary variables

associated to the polytope Ωi ∀i ∈ s. x(k) ∈ Rn and u(k) ∈ Rm represent the state

and control vector respectively at time instant k. The polytopes Ωi are the convex

polyhedral sets of the form Ωi = {x : Pix < bi} in the state vector.

The hybrid model Eq. (4.17) is a piecewise affine (PWA) system with four events

each triggered by particular polytope Ωi for specific values of the states of the plant.

According to [7] [2], the piecwise affine form can be converted to the mixed logical

dynamical framework using the HYSDEL tool box in MATLAB. The model MLD

obtained is the desired form suitable for optimization control problems. Hence, in

this project, the MLD model is obtained by using the hysdel tool box [24].

4.3.4 Problem formulation - HMPC

Consider a MLD system obtained in the previous section and r be the goal region of

interest where we want our quad-rotor to maneuver. The optimal control problem

32

Decentralized Navigation of Multiple Quad-rotors using MPC

is defined as

minimize
u

N−1∑
k=0

(x(k)− r)TQ1(x(k)− r) + (z(k)− r)TQ2(z(k)− r)+

(d(k)− df)TQ3(d(k)− df) + u(k)TRu(k)+

(x(N)− r)TQf (x(N)− r)

subject to:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

x(0) = x0

x(N) ∈ Xf

(4.19)

where, N is the prediction horizon length and Xf is the terminal constraint set which

defines the region around the goal region of interest. It is chosen in a way that the

optimization problem is feasible and at the same time it is computationally efficient.

The matrices Q1, Q2, Q3, R and Qf are positive definite matrices and df is the final

states of the logical variables. In order to avoid the obstacles, the logical variables

linked to the obstacles region are set as zero in df . Hence, in the control problem

the binary variables related to the obstacles’ region are penalized to zeros.

4.3.5 Flow chart of HMPC Algorithm

The flow chart of the HMPC algorithm for the decentralized motion of agents is

almost identical to that of the NMPC, Fig. 4.7.

Figure 4.7: Flow chart of HMPC Algorithm for static and dynamic obstacle avoid-

ance algorithm, HMPC 1 for Static Obstacle avoidance and HMPC 2 for static and

dynamic obstacle avoidance

33

Decentralized Navigation of Multiple Quad-rotors using MPC

Two optimal control problems are also defined using HMPC which are used for

avoiding the obstacles in the path while navigating between two regions of interests.

4.4 Linear MPC vs Hybrid MPC

Two hybrid MPC based controllers are defined for the desired task of navigating the

quad-rotors to the goal point while avoiding all types of obstacles where the first one

only avoids the static obstacles and the second one tackles the problem of both static

and dynamic obstacles avoidance. In the linear MPC, the optimization problem is

defined at each sample instant which makes it good for adding the obstacles online.

In the hybrid MPC, the problem is defined based on the information about number

of the dynamic obstacles. But on the other hand in the linear MPC, we can define/

update the problem based on the number of agents in the sensing radius. When

the hybrid model is converted into the desired MLD form, the size of the matrices

becomes too large and grows linearly with the number of obstacles. This makes

the hybrid MPC difficult to debug and thus the structure of hybrid MPC becomes

complex in comparison to linear MPC. But on the other hand, the drawback of

the approach using LMPC is that we loose optimality of the optimization problem

which is maintained in hybrid MPC case.

4.5 Dynamic Obstacle avoidance

In order to explain the moving obstacle avoidance, consider two agents having dif-

ferent priority numbers and same radius navigating in the work-space as shown in

Fig. 4.8. Each quad has a certain sensing radius. Therefore, each quad will know

the position of other quad-rotor within that radius. When these quads are with in

the sensing radius of each other and approaching each other, they will share the

priority numbers. The low priority agent will slow down and stop while the high

priority agent will treat the other agent as obstacle and will avoid it. The predicted

path of both agents while avoiding each other is shown in Fig. 4.8

S
ensing R

adius

Predicted path

Agent 1 - High Priority

Agent 2 - Low Priority

Agent 2 - Predicted path

Agent 1 - Predicted path

Moving Obstacle Avoidance Scenario

Figure 4.8: Obstacle avoidance method for other moving agents; this method is

common for NMPC, LMPC and HMPC

34

Chapter 5

Simulation Results

In this chapter, simulation results for navigation of quad-rotors using non-linear,

linear and hybrid MPC are presented. The necessary parameter values of the quad-

rotor model are taken from [22]. Performance of each controller is presented and

analyzed for feasibility and collision avoidance. The obstacle avoided path, trajec-

tories of necessary states and inputs for each quad-rotor are plotted in each case.

Matlab with Yalmip [20] is used for the modelling and simulation of controllers.

Non-linear MPC problem is solved with non-linear solver Fmincon , linear MPC

with Quadprog while hybrid MPC problem is solved using Gurobi which deals

with integer programming. The general parameters of the quad-rotor used during

the simulations are given in the Table. 5.1.

S/No. Description Parameter Value

1 mass of quad-rotor m 1.56779 Kg

2 drag coefficient kx 0.25 Kg/sec

3 drag coefficient ky 0.25 Kg/sec

4 drag coefficient kz 0.25 Kg/sec

5 Inertia in x− x axis Ixx 4.856x10−3 Kgm2

6 Inertia in y − y axis Iyy 4.856x10−3 Kgm2

7 Inertia in z − z axis Izz 4.856x10−3 Kgm2

Table 5.1: Quad-rotor parameters

The simulation environment consists of five region of interests and two quad-

rotors Fig. 5.1. Hence, for each quad-rotor, there are three static obstacles and

one dynamic obstacle. Table. 5.2 lists the positions of the region of interests in the

working boundary. Initially agent-1 that has high priority is placed at π1 while the

low priority agent-2 is placed at π2 as shown in Fig. 5.1.

35

Decentralized Navigation of Multiple Quad-rotors using MPC

Region x y z

π1 -2 -2 0

π2 2 -2 0

π3 2 2 2

π4 -2 2 2

π5 1 1 2

Table 5.2: Positions of Region of interests

Figure 5.1: A simulation workspace showing five regions of interests and two quad-

rotors positioned at π1 and π2

In this thesis, we study two cases for each controller. In the first case, agent-1

which has high priority navigates form region π1 to π3 while agent-2 is moved from

π2 to π4. Due to the symmetrical positioning of these regions of interests, agents

will collide each other in the middle of the workspace if we don’t use the dynamical

obstacle avoidance algorithms. Moreover, region π5 is also in the path of agent-1

which acts as a static obstacle for agent-1. Hence in this case, the side on collision

avoidance between two agents as well as the static obstacle avoidance is tested.

In the second case, the high priority agent-1 placed at π1 navigates to π2 while

the other agent moves from π2 to π1. Hence a head on collision avoidance between

two agents is tested in this case.

5.1 Tuning of Parameters

The parameters that have to be tuned include the prediction horizon of the problem,

sampling time, sampling distance and spherical sizes of the obstacles.

5.1.1 Prediction Horizon

The prediction horizon is tuned according to the current simulation setup so that

the problem doesn’t become computationally expensive. Moreover, it should be

36

Decentralized Navigation of Multiple Quad-rotors using MPC

feasible so that the terminal state of the model lies with in the terminal constraint

set. The prediction horizon is related to the terminal constraint set. If we choose

the terminal constraint set large than we can keep the prediction horizon low and

vice verse. The prediction horizon varies for all controllers.

5.1.2 Sampling time

For all the simulations, the sampling time is set as 0.1 msec. Increasing the sampling

time makes the problem feasible for low prediction horizon but at the same time it

also increases the sampling distance which makes it difficult to avoid the obstacles.

Hence the penalty matrices of the cost functions are tuned to decrease the sampling

distance if we raise the sampling time.

5.1.3 Sampling distance

Sampling distance is related to the velocity and sampling time and must be small

enough than the size of the obstacle so that min of 1-2 samples can be read with in

the obstacle area. The sampling distance is not constant as the velocity is not con-

stant. There are different ways to make the velocity of the aerial vehicle small. The

velocity can be be made small by penalizing the velocity deviation more in the cost

function and hence the sampling distance can be made small. If the sampling time

is increased, it also increases the sampling distance and hence the lateral velocities

of the agents need to be penalized more in order to decrease the sampling distances.

Other ways to adjust the velocity and sampling distance is by giving less control that

is to penalize the control more. Hence, the weight matrices for the state deviations

and inputs are tuned accordingly if the sampling time is changed. Moreover, it has

been observed from the dynamical model of quad-rotor Eq. (2.15) that the velocities

u and v of the quad-rotor are dependent on the states θ and φ respectively. Hence

the velocity of the quad-rotor can also be controlled by penalizing these states more

or by putting hard constraints according to demand.

5.1.4 Spherical sizes of the obstacle

One of the most important parameters that affect the simulation time and the

feasibility of the optimal control problem is the sizes of the quad-rotors and static

obstacles. They affect the computational time and the feasibility of the simulations.

Increasing the sizes increases the computational time and hence makes the problem

infeasible. The upper bounds on the spherical radius of the static and dynamic

obstacles for each controller which have been able to guarantee the feasibility of the

optimal control control problems are found in Table. 5.3.

37

Decentralized Navigation of Multiple Quad-rotors using MPC

S/No. Obstacle type Radius (m) Controller type

1 Static 0.35 LMPC, NLMPC, HMPC

2 Dynamic 0.15 NLMPC

3 Dynamic 0.2 LMPC, HMPC

Table 5.3: Upper bounds on the sizes of the static and dynamic obstacles for each

controller

5.2 Non-linear MPC results

In this section, the results of the non-linear MPC controller are presented

5.2.1 CASE-I

In this case high priority agent is moved from region π1 to π3 and other agent which

has a low priority navigates from π2 to π4 as shown in Fig. 5.2. It can be seen

that they avoid each other during motion. Moreover, agent 1 also avoids the static

obstacle π5. The linear positions and corresponding Euler angles of each agent are

shown in Fig. 5.3. The control input required for decentralized navigation of these

agents are depicted in Fig. 5.4.

Figure 5.2: 3D trajectory showing the decentralized motion of two agents using

NMPC for sideon collision avoidance between two agents and static obstacle avoid-

ance with region π5

38

Decentralized Navigation of Multiple Quad-rotors using MPC

0 10 20 30 40 50 60 70 80

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 1 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 2 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80

Time Samples

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Euler angles of agent: 1 during Navigation

(rad)

(rad)

(rad)

0 10 20 30 40 50 60 70 80

Time Samples

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Euler angles of agent: 2 during Navigation

(rad)

(rad)

(rad)

Figure 5.3: Linear positions and Euler angles of agents

0 10 20 30 40 50 60 70 80

Time Samples

-20

-15

-10

-5

0

5

10

15

20
Thrust of agent: 1

T(N)

0 10 20 30 40 50 60 70 80

Time Samples

-20

-15

-10

-5

0

5

10

15

20
Thrust of agent: 2

T(N)

0 10 20 30 40 50 60 70 80

Time Samples

-0.3

-0.2

-0.1

0

0.1

0.2

Rotational torques of agent: 1

(Nm)

(Nm)

(Nm)

0 10 20 30 40 50 60 70 80

Time Samples

-0.3

-0.2

-0.1

0

0.1

0.2

Rotational torques of agent: 2

(Nm)

(Nm)

(Nm)

Figure 5.4: Inputs applied to agents

5.2.2 CASE-II

The head-on collision between agents are studied in this case. It can be noticed that

Fig. 5.5, they avoid each other during their motion towards the goal points. Linear

and angular positions, and control generated by the optimal control problem are

shown in Fig. 5.6 and Fig. 5.7.

Figure 5.5: 3D trajectory showing the decentralized motion of two agents using

NMPC for headon collision avoidance between two agents

39

Decentralized Navigation of Multiple Quad-rotors using MPC

0 10 20 30 40 50 60 70 80

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 1 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 2 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80

Time Samples

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Euler angles of agent: 1 during Navigation

(rad)

(rad)

(rad)

0 10 20 30 40 50 60 70 80

Time Samples

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Euler angles of agent: 2 during Navigation

(rad)

(rad)

(rad)

Figure 5.6: Linear positions and Euler angles of agents

0 10 20 30 40 50 60 70 80

Time Samples

-20

-15

-10

-5

0

5

10

15

20
Thrust of agent: 1

T(N)

0 10 20 30 40 50 60 70 80

Time Samples

-20

-15

-10

-5

0

5

10

15

20
Thrust of agent: 2

T(N)

0 10 20 30 40 50 60 70 80

Time Samples

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Rotational torques of agent: 1

(Nm)

(Nm)

(Nm)

0 10 20 30 40 50 60 70 80

Time Samples

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Rotational torques of agent: 2

(Nm)

(Nm)

(Nm)

Figure 5.7: Inputs applied to agents

The simulation results for these cases solved using non-linear MPC are available

at https://youtu.be/qb7fEwLXWOA and https://youtu.be/inSTa70TnMA.

5.3 Linear MPC results

In this section, we present the simulation results for both cases using linear MPC.

5.3.1 CASE-I

In this case the linear MPC based obstacle avoidance algorithm is tested for side on

collision avoidance between two agents and as well as the collision with the static

obstacle. During the navigation agent-1 and agent-2 have to avoid each other. Hence

agent-2 having low priority slows down and stops in order to avoid the collision with

high priority agent. Moreover agent-1 also avoids the static obstacle in its path

before reaching the goal position as seen in Fig. 5.8.

40

https://youtu.be/qb7fEwLXWOA
https://youtu.be/inSTa70TnMA

Decentralized Navigation of Multiple Quad-rotors using MPC

-1

-0.5

2

0

0.5

2

1

1

Z
 (

m
)

Quadcopter Copter Navigation with static and dynamic obstacle avoidance using LMPC

1.5

1

2

Y (m) X (m)

2.5

0 0

3

-1-1

-2
-2

Figure 5.8: 3D trajectory showing the decentralized motion of two agents using

LMPC for sideon collision avoidance between two agents and static obstacle avoid-

ance with region π5

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 1 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 2 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-1.5

-1

-0.5

0

0.5

1

1.5

Euler angles of agent: 1 during Navigation

φ(rad)

θ(rad)

ψ(rad)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-1.5

-1

-0.5

0

0.5

1

1.5

Euler angles of agent: 2 during Navigation

φ(rad)

θ(rad)

ψ(rad)

Figure 5.9: Linear positions and Euler angles of agents

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-20

-10

0

10

20
Thrust of agent: 1

T(N)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-20

-10

0

10

20
Thrust of agent: 2

T(N)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-0.5

0

0.5
Rotational torques of agent: 1

τ
φ
(Nm)

τ
θ
(Nm)

τ
ψ
(Nm)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-0.5

0

0.5
Rotational torques of agent: 2

τ
φ
(Nm)

τ
θ
(Nm)

τ
ψ
(Nm)

Figure 5.10: Inputs applied to agents in order to reach the goal while avoiding

obstacles

The absolute positions q = (x, y, z, φ, θ, ψ) of both agents are shown in Fig. 5.9.

It can be seen that both agents reach their destination points whereas response time

of agent 2 is high as it slows down and stops during the navigation. Fig. 5.10 depicts

the inputs generated by the linear MPC controller which are required to reach the

desired goals subject to the linear constraints on states and inputs.

41

Decentralized Navigation of Multiple Quad-rotors using MPC

5.3.2 CASE-II

In this case head-on collision avoidance between two agents is studied. Agent-1 and

agent-2 swap their positions. During the motion agent-2 slows down and stops as

soon as agent-1 is in its scanning radius and agent-1 being the high priority agent

avoids the agent-2 Fig. 5.11. The absolute positions of both agents and the inputs

required for the current problem are show in Fig.5.12 and Fig. 5.13.

-2

-1

2

0

3
1

1

2

Z
 (

m
)

Quadcopter Copter Navigation with static and dynamic obstacle avoidance using LMPC

2

0 1

Y (m) X (m)

3

0-1

4

-1
-2

-2
-3 -3

Figure 5.11: 3D trajectory showing the decentralized motion of two agents using

NMPC for headon collision avoidance between two agents

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-4

-3

-2

-1

0

1

2

3
3D-position of agent: 1 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-4

-3

-2

-1

0

1

2

3
3D-position of agent: 2 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-1.5

-1

-0.5

0

0.5

1

1.5

Euler angles of agent: 1 during Navigation

φ(rad)

θ(rad)

ψ(rad)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-1.5

-1

-0.5

0

0.5

1

1.5

Euler angles of agent: 2 during Navigation

φ(rad)

θ(rad)

ψ(rad)

Figure 5.12: Linear positions and Euler angles of agents

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-20

-10

0

10

20
Thrust of agent: 1

T(N)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-20

-10

0

10

20
Thrust of agent: 2

T(N)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-0.5

0

0.5
Rotational torques of agent: 1

τ
φ
(Nm)

τ
θ
(Nm)

τ
ψ
(Nm)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-0.5

0

0.5
Rotational torques of agent: 2

τ
φ
(Nm)

τ
θ
(Nm)

τ
ψ
(Nm)

Figure 5.13: Inputs applied to agents in order to reach the goal while avoiding

obstacles

42

Decentralized Navigation of Multiple Quad-rotors using MPC

Simulation results for decentralized navigation of two quad-rotors for these two

cases using linear MPC are available at https://youtu.be/a6Sexymzll0 and https:

//youtu.be/fFFE83XGb1o.

5.4 Hybrid MPC results

The hybrid MPC based obstacles avoidance algorithms are also tested for under

study cases.

5.4.1 CASE-I

This section presents the results of the obstacles avoidance algorithms based on

hybrid MPC for side on collision between the two agents and also for static obstacle

avoidance Fig. 5.14. Agent 1 being the higher priority agent treats the agent 2 as

obstacle and avoids it while the agent 2 slows down until the other agent has left.

Fig. 5.15 and Fig. 5.16 present the absolute positions of both agents and control

input obtained by solving by HMPC problem at each time sample.

-1

-0.5

2

0

0.5

2

1

1

1.5

Z
 (

m
)

Quadcopter Copter Navigation with static and dynamic obstacle avoidance using HMPC

1

2

Y (m) X (m)

2.5

0 0

3

-1-1

-2
-2

Figure 5.14: 3D trajectory showing the decentralized motion of two agents using

HMPC for sideon collision avoidance between two agents and static obstacle avoid-

ance with region π5

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 1 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 2 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Euler angles of agent: 1 during Navigation

φ(rad)

θ(rad)

ψ(rad)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Euler angles of agent: 2 during Navigation

φ(rad)

θ(rad)

ψ(rad)

Figure 5.15: Linear positions and Euler angles of agents

43

https://youtu.be/a6Sexymzll0
https://youtu.be/fFFE83XGb1o
https://youtu.be/fFFE83XGb1o

Decentralized Navigation of Multiple Quad-rotors using MPC

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-20

-10

0

10

20
Thrust of agent: 1

T(N)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-20

-10

0

10

20
Thrust of agent: 2

T(N)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-0.5

0

0.5
Rotational torques of agent: 1

τ
φ
(Nm)

τ
θ
(Nm)

τ
ψ
(Nm)

0 10 20 30 40 50 60 70 80 90 100

Time Samples

-0.5

0

0.5
Rotational torques of agent: 2

τ
φ
(Nm)

τ
θ
(Nm)

τ
ψ
(Nm)

Figure 5.16: Inputs applied to agents in order to reach the goal while avoiding

obstacles

5.4.2 CASE-II

The simulation results for head on collision avoidance between the agents using

HMPC are shown in Fig. 5.17 to Fig. 5.19. It can be seen that the agents avoid each

other in order to swap their positions.

-1

2 3

0

21

1

Z
 (

m
)

Quadcopter Copter Navigation with static and dynamic obstacle avoidance using HMPC

1

2

0

Y (m) X (m)

0

3

-1 -1

-2-2

-3

Figure 5.17: 3D trajectory showing the decentralized motion of two agents using

NMPC for headon collision avoidance between two agents

0 20 40 60 80 100 120 140 160 180 200

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 1 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 20 40 60 80 100 120 140 160 180 200

Time Samples

-3

-2

-1

0

1

2

3
3D-position of agent: 2 during Navigation

X
r
(m)

Y
r
(m)

Z
r
(m)

X(m)

Y(m)

Z(m)

0 20 40 60 80 100 120 140 160 180 200

Time Samples

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Euler angles of agent: 1 during Navigation

φ(rad)

θ(rad)

ψ(rad)

0 20 40 60 80 100 120 140 160 180 200

Time Samples

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Euler angles of agent: 2 during Navigation

φ(rad)

θ(rad)

ψ(rad)

Figure 5.18: Linear positions and Euler angles of agents

44

Decentralized Navigation of Multiple Quad-rotors using MPC

0 20 40 60 80 100 120 140 160 180 200

Time Samples

-20

-10

0

10

20
Thrust of agent: 1

T(N)

0 20 40 60 80 100 120 140 160 180 200

Time Samples

-20

-10

0

10

20
Thrust of agent: 2

T(N)

0 20 40 60 80 100 120 140 160 180 200

Time Samples

-0.5

0

0.5
Rotational torques of agent: 1

τ
φ
(Nm)

τ
θ
(Nm)

τ
ψ
(Nm)

0 20 40 60 80 100 120 140 160 180 200

Time Samples

-0.5

0

0.5
Rotational torques of agent: 2

τ
φ
(Nm)

τ
θ
(Nm)

τ
ψ
(Nm)

Figure 5.19: Inputs applied to agents in order to reach the goal while avoiding

obstacles

Simulation results for decentralized motion of two quad-rotors for under study

cases using hybrid MPC are available at https://youtu.be/E1ye_YK7QQo and https:

//youtu.be/1wi1l1GJzWI.

45

https://youtu.be/E1ye_YK7QQo
https://youtu.be/1wi1l1GJzWI
https://youtu.be/1wi1l1GJzWI

Chapter 6

Experimental Evaluation

The experimental evaluation is done only for the linear MPC controller. The Gurobi

solver in CVXPY created problems with python interface and couldn’t solve the

hybrid MPC problems efficiently in time. The experiments are divided into two

parts. In the first part, the linear MPC is implemented on firefly drone [12] in the

Gazebo simulator. In the second part, the real time experiments are performed

using Crazyflie mini-drones. Moreover, during experimentation only the head on

collision case is studied and evaluated for the controller.

The controllers that we designed calculate the control inputs applied to the plant

based on the predicted states of the system such that the obstacles are avoided. For

the implementation part, the problem is made simpler and we use the linear MPC to

generate the way points to lower level controller subject to obstacle avoidance. The

lower level PID controller steers the quad to way points published at each sample

instant.

The flow chart for performing experiments for obstacle avoidance is shown in

Fig. 6.1

Figure 6.1: Hierarchical control structure for performing experiments using LMPC

as a path planner

46

Decentralized Navigation of Multiple Quad-rotors using MPC

6.1 Implementation

Robot operating system (ROS) which provides a better interface to communicate

in between different nodes/ components is used to implement the MPC controller

while CVXPY provides a good interface to python in order to define and solve the

optimization problem such as linear MPC. To estimate the states of the agent in

the environment, a motion capture (MOCAP) is used. It has been observed by

experience that MOCAP doesn’t give good estimates when the quad-rotors avoid

each other in z-axis. Therefore, the obstacle avoidance is done in x-y plane.

6.2 Velocity Model

The position of the agent in x-y plane can be controlled by the velocity model

Eq. (6.1) [25]. This model is used to design the way point publisher. For experiments

this model is used as we need only prediction of the states x and y.

ṗ = v (6.1)

where, p = (x, y) and v = (vx, vy)

ẋ = vx

ẏ = vy
(6.2)

6.3 Experiments

As discussed earlier, two types of experiments are done. In each case only the

head-on collision case is studied so there will be only dynamic obstacle that will be

avoided.

6.3.1 Gazebo Simulator

Gazebo is a 3D dynamic simulator which is used to simulate the robots under the

necessary environmental conditions. RotorS [12] which provides a modular Gazebo

(Micro Aerial Vehicle) MAV framework is used to simulate the obstacle avoidance

algorithms.

The initial positions of both air-vehicles are (-1.5,-1.5) and (1.5,1.5) respectively.

In-order to test the obstacle avoidance algorithm, the agents are tested for position

swapping. So each quad will go to the initial position of other quad. During naviga-

tion they will face each other. At that time the quad-rotor with low priority will stop

and the one with high priority will avoid the other dynamic agent. There results are

shown in Fig. 6.2 and the video is available at https://youtu.be/LAVANoWWReU.

47

https://youtu.be/LAVANoWWReU

Decentralized Navigation of Multiple Quad-rotors using MPC

Navigation of 2x quadrotors

x-position

1.5

0.5

0

-0.5

-1

1

1

0.5

0

-0.5

-1.5 -1.5

1.5

-1
y-position

Agent-1

Agent-2

Figure 6.2: 2D Path showing the obstacle avoidance between two agents in Gazebo

The communication between different nodes in the ROS are done by topic. The

one that publish the topic is called publisher and the one that listens to it is called

listener. The RQT-graph Fig. 6.3 shows how the different nodes communicate each

other in ROS in order to perform specific task.

Figure 6.3: RQT graph showing different topics published by different nodes during

decentralized navigation of 2x firefly

The path planner and the lower level PID controller are highlighted in red and

green color Fig. 6.3. The path planner has two nodes TrajectoryPlanner and

TrajectoryPlanner2 for each agent. Each of these nodes listens to the topic

/firefly/ground truth/odometry and /firefly two/ground truth/odometry pub-

lished by node Gazebo. These nodes publish the topics /uav posereference and

/uav posereference2 to lower level PID controllers represented by nodes controller

and controller2 which maneuver the quad-rotors to the desired points published

by the trajectory planners.

48

Decentralized Navigation of Multiple Quad-rotors using MPC

6.3.2 Real time

The real time experiments are performed on Crazyflie 2.0 mini-drones. Two crazyflies

are placed initially at (0,-1.5) and (0,1.5) respectively. The real time experiment is

also carried out for the second case where the dynamic obstacle avoidance algorithm

is tested on real drones. The communication between different nodes for the real

time experiments is shown in RQT graph Fig. 6.4.

Figure 6.4: RQT graph showing different topics published by different nodes during

decentralized navigation of 2x Crazyflies

There are two path planners TrajectoryPlanner and TrajectoryPlanner2 for

each Crazyflie. These nodes listen to the topics /Crazyflie2/odom and /Crazyflie3/odom

and publish the topics /Crazyflie2/goal and /Crazyflie3/goal respectivley. These

published points represent the way points of obstacle free path. These topics are lis-

tened by two nodes named as /Crazyflie2/controller and /Crazyflie3/controller.

These are the lower level PID controllers which steer the agents to the desired way

point published by the trajectory planner. Fig. 6.5 shows the linear positions of

the two agents while navigating and avoiding each other. Video for the real time

experiment is available at https://youtu.be/qjon-zx3GqQ.

0 100 200 300 400 500 600 700 800

Time Samples

-1.5

-1

-0.5

0

0.5

1

1.5

2
2D-position of agent: 1 during Navigation

X(m)

Y(m)

0 100 200 300 400 500 600 700 800

Time Samples

-1.5

-1

-0.5

0

0.5

1

1.5

2
2D-position of agent: 2 during Navigation

X(m)

Y(m)

Figure 6.5: Linear positions of two agents during decentralized navigation subject

to inter-agent collision avoidance

49

https://youtu.be/qjon-zx3GqQ

Chapter 7

Conclusion

In this project, we proposed algorithms for MPC based decentralized navigation of

multiple quad-rotors subject to the dynamical model of quad-rotor and avoidance

of static obstacles and inter-agent collision. First, we derived the non-linear model

of a quad-rotor using Newton-Euler approach and modelled the obstacle collisions

as non-linear constraints on the states x,y and z. Then the desired problem was

formulated as a non-linear MPC problem subject to nonlinear model and non-linear

constraints. Secondly, we linearized the model around hovering points and modelled

the obstacles as linear constraints on states x,y and z respectively. Then we derived

the linear MPC problem for the stated problem by using heuristic rules such as

if-else statements for obstacle avoidance. Thirdly, we converted the workspace into

two regions; the flying region and the obstacle region and then associated the bi-

nary variables to each obstacle region and obtained the hybrid model which is then

converted into mixed logical dynamical system suitable form for optimal control

problems. Based on MLD, we formulated the stated problem as hybrid MPC prob-

lem. Moreover, linear MPC and hybrid MPC based algorithm are also compared

for desired problem.

It has been observed form the simulation results that each controller is able to

steer the each agent to the desired goal point in such a way that they follow a path

free of obstacles.

7.1 Future Work

In this thesis, we didn’t use a separate path planner and a controller for simulations

rather we designed a predictive controller which calculates the desired control based

on the predicted trajectories such that all types of obstacles are avoided. While

performing experiments, it has been learned that sometimes the solver takes more

time than the desired sampling time and hence if we apply that input to the model,

it may lead to instability of the closed loop system and the quad-rotor may-not con-

verge to the desired goal point. Therefore, it is better to have a lower level controller

PID or linear MPC which calculates the control based on the way points published

by the upper level path planner. Hence, we suggest to use the hierarchical approach

50

Decentralized Navigation of Multiple Quad-rotors using MPC

having path planner at upper level and controller at lower level for decentralized

navigation of multiple quad-rotors subject to desired tasks.

It is also suggested to use velocity model for path planner at upper level. It

may simplify the problem at upper level because of having less number of states to

handle. Hence, the simulations can be extended to more than two agents.

In this thesis, we define the priorities prior to the start of the simulation. The

other suggestion is to dynamically assign the priorities of the agents.

51

Bibliography

[1] Armin Ataei and Ioannis Ch Paschalidis. “Quadrotor deployment for emer-

gency response in smart cities: A robust MPC approach”. In: Decision and

Control (CDC), 2015 IEEE 54th Annual Conference on. IEEE. 2015, pp. 5130–

5135.

[2] Alberto Bemporad. “Efficient conversion of mixed logical dynamical systems

into an equivalent piecewise affine form”. In: IEEE Transactions on Automatic

Control 49.5 (2004), pp. 832–838.

[3] Alberto Bemporad and Manfred Morari. “Control of systems integrating logic,

dynamics, and constraints”. In: vol. 35. 3. Elsevier, 1999, pp. 407–427.

[4] Alberto Bemporad, Carlo A Pascucci, and Claudio Rocchi. “Hierarchical and

hybrid model predictive control of quadcopter air vehicles”. In: vol. 42. 17.

Elsevier, 2009, pp. 14–19.

[5] Alberto Bemporad and Claudio Rocchi. “Decentralized hybrid model predic-

tive control of a formation of unmanned aerial vehicles”. In: vol. 44. 1. Elsevier,

2011, pp. 11900–11906.

[6] Alberto Bemporad and Claudio Rocchi. “Decentralized linear time-varying

model predictive control of a formation of unmanned aerial vehicles”. In: De-

cision and Control and European Control Conference (CDC-ECC), 2011 50th

IEEE Conference on. IEEE. 2011, pp. 7488–7493.

[7] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control

for linear and hybrid systems. Cambridge University Press, 2017.

[8] Francesco Borrelli et al. “MPC-based approach to active steering for au-

tonomous vehicle systems”. In: International Journal of Vehicle Autonomous

Systems 3.2-4 (2005), pp. 265–291.

[9] Patrick Bouffard. On-board model predictive control of a quadrotor helicopter:

Design, implementation, and experiments. Tech. rep. CALIFORNIA UNIV

BERKELEY DEPT OF COMPUTER SCIENCES, 2012.

[10] Abolfazl Eskandarpour and Vahid Johari Majd. “Cooperative formation con-

trol of quadrotors with obstacle avoidance and self collisions based on a hierar-

chical MPC approach”. In: Robotics and Mechatronics (ICRoM), 2014 Second

RSI/ISM International Conference on. IEEE. 2014, pp. 351–356.

[11] Rolf Findeisen et al. “State and output feedback nonlinear model predictive

control: An overview”. In: vol. 9. 2-3. Elsevier, 2003, pp. 190–206.

52

Decentralized Navigation of Multiple Quad-rotors using MPC

[12] Fadri Furrer et al. “Rotors—A modular gazebo mav simulator framework”.

In: Robot Operating System (ROS). Springer, 2016, pp. 595–625.

[13] Luis Rodolfo G Arc AC Arrillo, Rogelio Loz Ano, Cl Aude P g Ard, et al.

Quad Rotorcraft Control. 2014.

[14] Gonzalo Garcia and Shahriar Keshmiri. “Nonlinear model predictive controller

for navigation, guidance and control of a fixed-wing UAV”. In: AIAA Guid-

ance, Navigation, and Control Conference, American Institute of Aeronautics

and Astronautics, Portland, OR, Aug. 2011, pp. 8–11.

[15] Khaled A Ghamry and Youmin Zhang. “Formation control of multiple quadro-

tors based on leader-follower method”. In: Unmanned Aircraft Systems (ICUAS),

2015 International Conference on. IEEE. 2015, pp. 1037–1042.

[16] Yazdi I Jenie et al. “Selective velocity obstacle method for cooperative au-

tonomous collision avoidance system for UAVs”. In: AIAA Guidance, Naviga-

tion, and Control (GNC) Conference, Boston, MA. 2013.

[17] Yazdi I Jenie et al. “Velocity obstacle method for non-cooperative autonomous

collision avoidance system for UAVs”. In: AIAAGuidance, Navigation, and

Control Conf. 2014.

[18] Endra Joelianto et al. “Model predictive control for obstacle avoidance as hy-

brid systems of small scale helicopter”. In: Instrumentation Control and Au-

tomation (ICA), 2013 3rd International Conference on. IEEE. 2013, pp. 127–

132.

[19] Tamás Keviczky et al. “Predictive control approach to autonomous vehicle

steering”. In: American Control Conference, 2006. IEEE. 2006, 6–pp.

[20] Johan Lofberg. “YALMIP: A toolbox for modeling and optimization in MAT-

LAB”. In: Computer Aided Control Systems Design, 2004 IEEE International

Symposium on. IEEE. 2004, pp. 284–289.

[21] Johan Löfberg. “Linear model predictive control: Stability and robustness”.

PhD thesis. Linköping University Electronic Press, 2001.

[22] Teppo Luukkonen. “Modelling and control of quadcopter”. In: Independent

research project in applied mathematics, Espoo (2011).

[23] H Merabti, I Bouchachi, and K Belarbi. “Nonlinear model predictive control

of quadcopter”. In: Sciences and Techniques of Automatic Control and Com-

puter Engineering (STA), 2015 16th International Conference on. IEEE. 2015,

pp. 208–211.

[24] Fabio Danilo Torrisi and Alberto Bemporad. “HYSDEL-a tool for generating

computational hybrid models for analysis and synthesis problems”. In: vol. 12.

2. IEEE, 2004, pp. 235–249.

[25] Christos K Verginis, Ziwei Xu, and Dimos V Dimarogonas. “Decentralized

Motion Planning with Collision Avoidance for a Team of UAVs under High

Level Goals”. In: 2016.

53

Decentralized Navigation of Multiple Quad-rotors using MPC

[26] Yuchen Zhou and John S Baras. “Reachable set approach to collision avoid-

ance for UAVs”. In: Decision and Control (CDC), 2015 IEEE 54th Annual

Conference on. IEEE. 2015, pp. 5947–5952.

54

TRITA TRITA-EE 2017:095

ISSN 1653-5146

www.kth.se

	p01
	p02

