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We consider a generalised comprehensive Look-ahead Security-constrained Optimal Power Flow (LAS- 

COPF) formulation under the N − 1 contingency criterion over multiple dispatch intervals. We observe 

that the number of decision variables varies quadratically with the number of intervals. To improve scal- 

ability, we propose a reduced LASCOPF formulation for which the number of decision variables varies 

only linearly. We extend these formulations to the N − k contingency criterion. For reduced LASCOPF we 

observe that the number of decision variables varies with the number of k -permutations of contingencies. 

To improve scalability, we propose a formulation that is further reduced to vary only with the number of 

k -combinations. Also, we show that our formulations can be extended simply to model recovery from the 

corresponding outages. Furthermore, we present LASCOPF under the N − 1 contingency criterion using DC 

and AC power flow under generator contingencies. We prove that, barring borderline cases, solving the 

reduced formulation is equivalent to solving the comprehensive formulation. We extend these results to 

the N − k contingency criterion. Finally, we present numerical results on the IEEE 14 bus, IEEE 30 bus and 

IEEE 300 bus test cases, and the 1354 bus part of the European power system using AC power flow to 

demonstrate the computational advantage of the reduced formulations under the N − 1 and N − 2 con- 

tingency criteria. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Power system operation relies on variants of the optimal power 

ow (OPF) problem ( Skolfield & Escobedo, 2022 ). OPF entails min- 

mising generation costs given a set of physical constraints for indi- 

idual dispatch intervals. However, in recent years, the increase in 

he amounts of renewable energy sources has increased intermit- 

ency in the available generation capacity ( Bjørndal, Bjørndal, Cai, 

 Panos, 2018; WWEA, 2018 ) and traditional energy sources are of- 

en called upon to accommodate for this. Therefore, it is important 

o take energy sources’ ramping limits into account, which couples 

onsecutive dispatch intervals ( Han, Gooi, & Kirschen, 2001 ). 

The Look-ahead OPF (LAOPF) offers an extension to OPF that 

akes ramping limits and coupling into account ( Choi & Xie, 2017; 

chiro, Zheng, Zhao, & Litvinov, 2016; Xia & Elaiw, 2010 ). LAOPF 

s intended to be robust to unanticipated changes in net demand. 

ccordingly, LAOPF considers generation cost minimisation over 
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security constrained optimal power flow, European Journal of Operatio
ultiple consecutive dispatch intervals, viz., the planning horizon 

ased on short term weather forecasts, which in turn, affect the 

et demand, i.e., the demand less the renewable generation ( Lorca, 

un, Litvinov, & Zheng, 2016 ). The solution to LAOPF is used to de- 

ermine the locational marginal prices in the next dispatch interval 

nd serves as a prediction for subsequent dispatch intervals ( Hua, 

chiro, Zheng, Baldick, & Litvinov, 2019 ). Then, after the dispatch 

nterval is realised the problem is solved again based on an up- 

ated forecast to determine the locational marginal prices for the 

ispatch interval after. This follows the principle of receding hori- 

on control ( Kwon & Han, 2005 ). 

Over the years, an increasing number of Independent System 

perators (ISOs) have implemented LAOPF for the real time op- 

ration of power systems (viz., multi-interval real-time markets) 

uch as the ISO (2019b) , the ISO (2019a) , the Midcontinent ISO 

 Ma et al., 2009 ) Ontario’s Independent Electricity System Operator 

IESO) ( Yu, Cohen, & Danai, 2005 ) and the Interconnection (2022) . 

RCOT,ERCOT uses LAOPF over five minute intervals with an hour 

ook-ahead to obtain indicative prices. Its use is also being consid- 

red in Australia ( Hesamzadeh, Galland, & Biggar, 2014 ). 
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Apart from the coupling of consecutive dispatch intervals, ISOs 

onsider security against contingencies as well. Security against a 

ontingency entails that immediately after the contingency and as 

utomatic actions occur to respond to the contingency, all gen- 

ration levels and line flows will stay within emergency ratings. 

hereafter, all generation levels and line flows will be returned to 

on-emergency levels within a predetermined amount of time. if 

eneration levels and line flows exceed these limits, there is a risk 

hat of a cascading effect that would result in a system-wide black- 

ut. Since the operation follows the principle of receding horizon 

ontrol, eventually the system will be restored to being secure with 

espect to another contingency; however, this may not be explicitly 

epresented. Security often involves ex ante preparedness against 

he contingency by the dispatch in the base-case, i.e, in the case 

here there is no contingency, e.g., ensuring that the system has 

amping capabilities to attain non-emergency levels. This takes the 

orm of constraints on the base-case that ensure that the demand 

an be satisfied even despite the corresponding outage of a com- 

onent such as transmission line or a generator. 

For power systems, the N − k contingency criterion is com- 

only used as a measure of security, which requires that a system 

e secure against k simultaneous contingencies. Typically, power 

ystems are operated under the N − 1 contingency criterion. How- 

ver, several markets have adopted the N − k contingency criterion 

or k > 1 in order to improve security. The government of the state 

f New South Wales in Australia has imposed an N − 2 planning 

tandard in the Sydney region transmission network ( Commission, 

013 ) and TenneT (2017) in Netherlands considers the N − 2 con- 

ingency criterion as a benchmark to test its transmission systems. 

Stott, Alsac, & Monticelli (1987) proposed including security 

onstraints in the OPF over a single dispatch interval, viz., Security- 

onstrained OPF (SCOPF). Single interval SCOPF formulations, by 

efinition, cannot explicitly accommodate a change in dispatch and 

herefore, can only explicitly model those contingencies that al- 

ow the dispatch to remain the same following the outage, such as 

ransmission line contingencies ( Madani, Lavaei, & Baldick, 2017 ). 

n the contrary, SCOPF formulations with multiple intervals are 

ble to model changes in dispatch following a contingency and af- 

er the automated short-term responses to the contingency, thus 

llowing for more flexibility in the operation for contingencies 

uch as transmission line contingencies. In addition, contingen- 

ies which require a change in dispatch such as generator con- 

ingencies may also be modelled, thus improving security. Accord- 

ngly, later works by Arroyo & Galiana (2005) ; Zaoui & Fliscounakis 

2006) consider two dispatch intervals, where if there is an outage 

n the first interval, the dispatch in the second interval is changed. 

ttarha & Amjady (2016) ; Karangelos & Wehenkel (2019) ; Zaoui 

 Fliscounakis (2006) modelled SCOPF with AC power flow. Li & 

cCalley (2009) proposed a decomposition method to solve SCOPF 

fficiently. Huang, Pan, & Guan (2021) ; Laur, Nieto-Martin, Bunn, & 

icente-Pastor (2020) ; Ordoudis, Pinson, & Morales (2019) consider 

eneration reserves as a means to recover from outages but do not 

xplicitly model the corresponding contingencies. Ramping limits 

ecome relevant while considering generation reserves since the 

imits constrain reserves deployment. This motivated the consid- 

ration of LAOPF with generation reserves without explicitly mod- 

lling generator contingencies ( Han & Gooi, 2007; Han et al., 2001 ). 

The inclusion of security constraints into LAOPF results in the 

ook-ahead security-constrained OPF (LASCOPF) problem ( Javadi, 

mraee, & Capitanescu, 2019 ). Chakrabarti & Baldick (2020) con- 

idered LASCOPF under the N − 1 contingency criterion using the 

C power flow but with a voltage-phase angle representation. 

hey propose a message passing based decomposition algorithm 

o handle the vast computational complexity of the problem. Their 

ormulation considers security against transmission line contin- 

encies in every dispatch interval. However, ramping constraints 
2

re imposed only on the base-case (non-contingency) dispatches, 

hus ignoring the effect of an outage in one dispatch interval 

n subsequent ones. A similar (but simpler) LASCOPF formulation 

s also used by ISOs. Murillo-Sánchez, Zimmerman, Anderson, & 

homas (2013) developed a stochastic LASCOPF formulation under 

he N − 1 contingency criterion using AC power flow for use in 

he event of unreliable forecasts. Alizadeh, Usman, & Capitanescu 

2022) developed a similar formulation while also considering flex- 

ble resources. However, these formulations require a computation- 

lly tractable solution to LASCOPF. Varawala, Hesamzadeh, Dán, & 

aldick (2022) proposed a tractable formulation for the DC power 

ow while considering a comprehensive description of security 

gainst generator contingencies under the N − k contingency cri- 

erion and discussed computationally tractable approaches such 

s Benders decomposition and contingency filtering ( Capitanescu, 

lavic, Ernst, & Wehenkel, 2007; Papavasiliou & Oren, 2013 ). There 

re, however, no tractable solutions for LASCOPF using non-convex 

C power flow, which, in addition to its large size, is NP hard 

 Bienstock & Verma, 2019 ). 

The layout of the rest of the article and our contributions 

re as follows. In Section 2 , we propose a LASCOPF formulation 

ith a generalised objective function and generalised constraints, 

ASCOPF 1 . We consider security against a set of contingencies un- 

er the N − 1 contingency criterion for a planning horizon of mul- 

iple dispatch intervals. We consider that outages corresponding 

o any contingencies may take place in any dispatch interval and 

odel their effect during the remainder of the planning horizon. 

ince we consider the ex post dispatch in the remainder of the 

lanning horizon, the number of decision variables in the prob- 

em is quadratic in the length of the planning horizon. In order to 

vercome this, we propose a reduced formulation, LASCOPF-r 1 , for 

hich the decision variables are defined to be independent of the 

nterval of the contingency, such that there is only one set of deci- 

ion variables per interval and hence, the number of decision vari- 

bles are linear in the length of the planning horizon. In Section 3 ,

e extend the LASCOPF 1 and LASCOPF-r 1 formulations to the N − k 

ontingency criterion where k ∈ N , k ≥ 1 , where N is the set of pos-

tive integers, viz., LASCOPF k and LASCOPF-r k respectively. Since we 

onsider multiple contingencies with outages that could occur in 

ny order the number of decision variables varies with the number 

f possible k permutations of contingencies. To overcome this, we 

ropose LASCOPF-ru k for which the number of decision variables 

aries with the number of possible k permutations of contingen- 

ies. 

In Section 4 , we present DC-LASCOPF 1 where we explic- 

tly model a cost minimisation objective and constraints under 

C power flow and consider security against generator contin- 

encies. The objective function for both the DC-LASCOPF 1 and 

C-LASCOPF-r 1 formulations are identical and depend only upon 

he base-case. Therefore, the contingency scenario decision vari- 

bles only serve to add constraints on the base-case. We prove 

hat these constraints are identical for LASCOPF 1 and LASCOPF-r 1 
nder certain realistically fulfilled conditions and therefore, the 

ptimal objective value is equal for both formulations. We ex- 

end our results and show that DC-LASCOPF k , DC-LASCOPF-r k 
nd DC-LASCOPF-ru k have the same optimal objective 

alue. 

We present DC-LASCOPF 1 in order to set the stage for 

C-LASCOPF 1 under AC power flow which we present in Section 5 . 

e conjecture that certain observations made for DC-LASCOPF 1 
lso apply to AC-LASCOPF 1 and therefore the same results would 

pply to both. In Section 6 , we demonstrate the usefulness of 

he proposed AC-LASCOPF-r 1 and AC-LASCOPF-ru k formulations 

y comparing their computational time to AC-LASCOPF 1 and 

C-LASCOPF-r respectively. Finally, we conclude in Section 7 . 
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. LASCOPF under N − 1 contingency criterion 

.1. General formulation: LASCOPF 1 

In what follows, we develop a formulation for the look-ahead 

ecurity-constrained optimal power flow problem under the N − 1 

ontingency criterion ( LASCOPF 1 ). We do so for a power system 

ith a set of buses 1 N and generators G. We compute LASCOPF 1 
or a planning horizon of T ∈ N dispatch intervals, assumed to be 

f equal duration, for simplicity, given the present dispatch 

2 of the 

ystem. The present, for which the dispatch has already been cho- 

en, is represented as dispatch interval (interval, in short) 0. Our 

bjective is to choose the dispatch for intervals 1 to T . Under a

ase-case dispatch, i.e., when no outage has taken place, the volt- 

ge 3 at bus n ∈ N in interval t ∈ N 0 ; t ≤ T , where N 0 refers to the

et of non-negative integers, is denoted by v { 0 } n,t ∈ C . Note that the

alues of variables, such as voltage and parameters, such as de- 

and at a bus may vary continuously with time and therefore, 

lso during a single interval. For brevity, we refer by ‘in interval 

’ to a value at the end of interval t . The active power generation

y generator g ∈ G is p 
{ 0 } 
g,t ∈ R ≥0 and the reactive power generation 

s q 
{ 0 } 
g,t ∈ R . In the LASCOPF 1 formulation, the base-case dispatch of 

he system in interval t is fully determined by (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈

 ; g ∈ G) . 

The LASCOPF 1 formulation considers security under the N − 1 

ontingency criterion against a given set of contingencies C. Con- 

ider that an outage corresponding to contingency c ∈ C may take 

lace in any interval u ∈ N ; u < T . Accordingly, we need to explic-

tly re-dispatch other generators (including the deployment of ca- 

acity that would be designated as spinning reserves in a conven- 

ional dispatch formulation) over the subsequent intervals, i.e., be- 

inning with interval 4 are implicitly incorporated, e.g., for a gen- 

rator contingency c ∈ G which entails the complete outage of an 

perational generator, we are implicitly assuming that the stored 

inetic energy in the inertia of other generators will make up for 

he shortfall in the seconds after the outage with other automated 

ctions operating subsequently until new dispatch instructions can 

e set to generators and implemented. Accordingly, our formula- 

ion obtains the dispatch across several consecutive dispatch in- 

ervals that is cognisant of such automatic responses, but with 

he understanding that spinning reserves would be dispatched ex- 

licitly in our formulation over several intervals to relieve the 

apacity providing the automatic actions. u + 1 until the end of 

he planning horizon to make up for the shortfall. In order to 

odel the contingency scenario for contingency c, we must con- 

ider the modified physical constraints that would apply to the 

orresponding modified dispatch. Accordingly, a contingency sce- 

ario is denoted by the tuple (c, u ) : in interval t > u , the voltage

t bus n , and the active and reactive power at generator g are 

 

(c,u ) 
n,t ∈ C , p (c,u ) 

g,t ∈ R ≥0 and q (c,u ) 
g,t ∈ R , respectively. The dispatch of

he system under scenario (c, u ) in interval t > u is determined by

v (c,u ) 
n,t , p (c,u ) 

g,t , q (c,u ) 
g,t | n ∈ N ; g ∈ G) . 

Fig. 1 illustrates our model of operation under contingency sce- 

arios. 

The LASCOPF 1 formulation over the set of variables 

 = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c,u ) 
n,t , p (c,u ) 

g,t , q (c,u ) 
g,t | c ∈ C; n ∈ N ; g ∈ G; t, u ∈ 
1 See Appendix A for a comprehensive list of notation used throughout this arti- 

le. 
2 In practice, this dispatch would be a re-dispatch in the real-time market com- 

ared to the day-ahead market schedules. 
3 For brevity, we use voltage to refer to the voltage phasor . 
4 We assume that automatic responses carried out immediately after the contin- 

ency 

c

o

g

t

s

t

3 
 ; u < t ≤ T ) is 

in 

S 
f 

(
v { 0 } n,t , p 

{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G; t ∈ N ; t ≤ T 

)
, (1a) 

ubject to 

Base-case dispatch constraints:) 

 

{ 0 } 
t 

(
v { 0 } n,t , p 

{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G 

)
≤ 0 , (1b)

˜ 
 

{ 0 } 
t 

(
v { 0 } n,t , p 

{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G 

)
= 0 , (1c)

R g ≤ p 
{ 0 } 
g,t − p 

{ 0 } 
g,t−1 

≤ R g , (1d) 

Contingency scenario constraints on the corresponding dispatch:) 

 

{ c} 
t 

(
v (c,u ) 

n,t , p (c,u ) 
g,t , q (c,u ) 

g,t | n ∈ N ; g ∈ G 
)

≤ 0 , (1e) 

˜ 
 

{ c} 
t 

(
v (c,u ) 

n,t , p (c,u ) 
g,t , q (c,u ) 

g,t | n ∈ N ; g ∈ G 
)

= 0 , (1f) 

R g ≤ p (c,u ) 
g,t − p (c,u ) 

g,t−1 
≤ R g if g � = c; t > u + 1 , (1g) 

R g ≤ p (c,u ) 
g,t − p 

{ 0 } 
g,t−1 

≤ R g if g � = c; t = u + 1 , (1h) 

 c ∈ C; ∀ g ∈ G; ∀ t, u ∈ N ; u < t ≤ T . 

Here, (1a) is a generalised objective function that represents 

inimisation over any desired base-case quantity 5 the objective to 

e a function of the base-case dispatch only ( Capitanescu, Glavic, 

rnst, & Wehenkel, 2006 ). This is because (1) the probability of in- 

ividual outages is in practice difficult to determine, (2) the proba- 

ility of individual outages is low and therefore, considering the 

uantity under contingency scenarios would not affect the out- 

ome much and the accompanied increase in computational costs 

ould not be justified and (3) if a contingency actually occurs, 

hen LASCOPF will be re-solved for the system in the next dis- 

atch interval with the lost component(s) removed, treating what 

as the post-contingency state of the system as the new base- 

ase, so that any sub-optimality will begin to be addressed within 

 dispatch interval, typically 5 to 15 minutes. Although the contin- 

ency scenario quantities are not considered ex ante, based on the 

rinciple of receding horizon control, they would be optimised ex 

ost where what was previously the contingency scenario would 

e the base-case., e.g., total generation cost and transmission line 

osses. This will turn out to be crucial in enabling a simplification 

f the problem. The power system is subject to certain static phys- 

cal constraints, i.e., physical constraints that apply independently 

o each instant of time, such as active power generation limits and 

ower balance. For the base-case dispatch, (1b) and (1c) repre- 

ent an aggregate of these inequality and equality constraints re- 

pectively. In addition to static physical constraints, every genera- 

or g ∈ G has ramping limits R g ∈ R ≥0 , respectively, which constrain 

he difference in its active power generation between consecutive 

ntervals. For the base-case dispatch, the ramping constraints are 

xpressed in (1d) . In Fig. 1 , (1d) are represented by solid arrows 

which represent no change in scenario) connecting the filled cir- 

les (which represent the base-case). It is the existence of ramping 

onstraints that requires consideration of multiple intervals while 

perating the power system. 

The static physical constraints that would apply to the contin- 

ency scenario dispatch, including any constraints that characterise 

he outage corresponding to the contingency, are represented in 
5 A theoretically optimal approach would consider the desired quantity under all 

cenarios, i.e., the base-case and the contingency scenarios and discount it with 

heir probabilities. However, it is customary in the literature to approximate. 



L. Varawala, G. Dán, M.R. Hesamzadeh et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; March 6, 2023;23:42 ] 

Fig. 1. Illustration of the dispatch under base-case { 0 } and contingency scenario (c, u ) under contingency c ∈ C in interval u ∈ N ; u < T , and the change from base-case to 

contingency scenario (c, u ) in interval t = u + 1 for LASCOPF 1 . 
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1e) and (1f) . For example, for a generator contingency g ∈ C, the

haracteristic constraint would describe the outage of generator g. 

ther static physical constraints on other generators and the sys- 

em would replace the base-case dispatch constraints. Observe that 

hile the arguments of the functions represented by h 
{ c} 
t and 

˜ h 
{ c} 
t 

epend upon u , the parameters of the functions themselves do 

ot. In addition, consecutive contingency scenario dispatches from 

nterval u + 1 to interval T must satisfy ramping constraints ex- 

ressed in (1g) . In Fig. 1 , constraints (1g) are represented by solid

rrows connecting empty circles (which represent a contingency 

cenario). Finally, since an outage corresponding to a contingency 

n interval u would require a change from the base-case to the 

ontingency scenario, the ramping constraints (1h) between the 

ase-case dispatch in interval u and the contingency scenario dis- 

atch in interval u + 1 would apply. In Fig. 1 , constraints (1h) are

epresented by dashed arrows (which represent a change of sce- 

ario when an outage corresponding to a contingency takes place). 

he condition g � = c ensures that if the contingency is a generator 

ontingency, i.e., c ∈ G, the ramping constraints would not apply 

o generator c and if the contingency is not a generator contin- 

ency, i.e., c / ∈ G, it holds for all generators. The distinction between 

1g) and (1h) is the reason why u is required to specify a con- 

ingency scenario. Our optimisation objective does not include the 

osts in contingency scenarios, i.e., we do not consider the costs 

nder contingency scenarios ex ante. However, due to the receding 

orizon control, the dispatch will have to be recomputed ex post 

nd this will move the post-contingency dispatch towards optimal- 

ty in a receding horizon control fashion given the contingency. In 

his article, we restrict our attention to the dispatch ex ante. 

To represent the contingency reserve limits ( Huang et al., 2021 ), 

 conventional SCOPF formulation would need the surrogate con- 

traint 

S g,t ≤ p (c,u ) 
g,t − p 

{ 0 } 
g,t ≤ S g,t ∀ c ∈ C;

∀ g ∈ G; g � = c; ∀ t, u ∈ N ; u < t ≤ T . (1i) 

here S g,t ∈ R ≥0 and S g,t ∈ R ≥0 represent the lower and upper con- 

ingency reserve limits respectively. On the other hand, our for- 

ulation explicitly considers contingencies and ensures that gen- 
4 
rators can be re-dispatched to make up for the shortfall due to 

 generator contingency. That is, the reservation of capacity and 

amping capability is done implicitly by enforcing supply-demand 

alance in the post-contingency system, rather than by explicitly 

efining a spinning reserve requirement. This eliminates the need 

or the surrogate constraint. In fact, we can obtain the parameters 

 g,t and S g,t from our formulation as 

 g,t = min 

{ 

0 , p (c,u ) 
g,t − p 

{ 0 } 
g,t | c ∈ C, c � = g, u ∈ N , u < t 

} 

∀ t ∈ N ; t ≤ T ,

(1j) 

 g,t = max 

{ 

0 , p (c,u ) 
g,t −p 

{ 0 } 
g,t | c ∈ C, c � = g, u ∈ N , u < t 

} 

∀ t ∈ N ; t ≤ T . 

(1k) 

Recall that base-case dispatches are defined in every interval 

, thus the number of base-case dispatches is T . On the contrary, 

ontingency scenario dispatches are defined for every contingency 

cenario (c, u ) in every remaining interval t where c ∈ C and t, u ∈
 , u < t ≤ T , thus the number of contingency scenario dispatches is

C| × ∑ 

u ∈ T ,u<T (T − u ) = |C| × T (T − 1) / 2 . This can be inferred from

ig. 1 . Accordingly, the total number of decision variables and con- 

traints of LASCOPF 1 increases quadratically in T . The number of 

onstraints scales similarly, as discussed in Appendix B . This ren- 

ers the problem computationally intractable for large values of T . 

Finally, observe that our formulation differs from existing for- 

ulations of LASCOPF implemented at certain ISOs. Those formu- 

ations only model outages that would take place in the upcom- 

ng interval, i.e., u = 1 . In addition, they may or may not consider

he effect of the outage on the remainder of the planning hori- 

on but rather only for a single interval following the outage, i.e., 

 = u + 1 = 2 . In other words, they do not consider the entire set of

onstraints in (1h) and may or may not consider the constraint set 

1g) . On the contrary, our model enforces both (1h) and (1g) and 

s thus, a more comprehensive formulation of LASCOPF. 
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Fig. 2. Illustration of the dispatch under base-case { 0 } and contingency scenario (c, u ) under contingency c ∈ C in interval u ∈ N ; u < T , and the change from base-case to 

contingency scenario (c, u ) in interval t = u + 1 for LASCOPF-r 1 . 
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.2. Reduced formulation: LASCOPF-r 1 

In LASCOPF 1 , the quadratic dependence on the number of con- 

ingency scenario dispatches on T is due to their dependence on u . 

n what follows, we propose LASCOPF-r 1 , a formulation in which 

very contingency scenario dispatch is chosen to be independent of 

he interval u in which the outage may take place. Accordingly, un- 

er scenario (c, u ) the contingency scenario dispatch in interval t

s (v (c) 
n,t , p 

(c) 
g,t , q 

(c) 
g,t | n ∈ N ; g ∈ G) . LASCOPF-r 1 is essentially LASCOPF 1 

ith the additional constraint (
v (c,u ) 

n,t , p (c,u ) 
g,t , q (c,u ) 

g,t | n ∈ N ; g ∈ G 
)

= 

(
v (c) 

n,t , p 
(c) 
g,t , q 

(c) 
g,t | n ∈ N ; g ∈ G 

)
∀ c ∈ C; ∀ t, u ∈ N ; u < t ≤ T , (1l)

nd with S = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c) 
n,t , p 

(c) 
g,t , q 

(c) 
g,t | c ∈ C; n ∈ N ; g ∈ G; t ∈

 ; t ≤ T ) . 

Constraint (1l) essentially means that the contingency scenario 

ispatch (v (c) 
n,t , p 

(c) 
g,t , q 

(c) 
g,t | n ∈ N ; g ∈ G) must simultaneously satisfy

ll the constraints that were satisfied in LASCOPF 1 separately by 

he contingency scenario dispatches (v (c,u ) 
n,t , p (c,u ) 

g,t , q (c,u ) 
g,t | n ∈ N ; g ∈

) over individual values of u as illustrated in Fig. 2 . Observe that

onstraints (1e) and (1f) depend only on contingency c and not on 

 and are thus identical for (v (c,u ) 
n,t , p (c,u ) 

g,t , q (c,u ) 
g,t | n ∈ N ; g ∈ G) over

ll values of u . Consequently, each of them represents only a single 

et of constraints on (v (c) 
n,t , p 

(c) 
g,t , q 

(c) 
g,t | n ∈ N ; g ∈ G) . This only leaves

1g) and (1h) as distinct constraints to be obeyed simultaneously 

y (v (c) 
n,t , p 

(c) 
g,t , q 

(c) 
g,t | n ∈ N ; g ∈ G) . 

In the reduced formulation, there is one contingency scenario 

ispatch for every contingency c in every interval t > 1 and so 

he number of contingency scenario dispatches is |C| × (T − 1) . 

his can be inferred from Fig. 2 . Accordingly, the number of de- 

ision variables and constraints of LASCOPF-r 1 increases only lin- 

arly in T rendering the problem more computationally feasible 

han LASCOPF 1 for large values of T . 

Recall that certain ISO LASCOPF formulations only model out- 

ges that would take place in the upcoming interval, i.e., u = 1 

ut consider their effect throughout the planning horizon, i.e., t ∈ 

 , 1 < t ≤ T . Our LASCOPF-r 1 formulation, owing to the indepen- 

ence of u , LASCOPF-r 1 , would have the same number of decision 

ariables as existing ISO formulations. The only difference between 

he two is the additional consideration of (1h) in LASCOPF-r 1 since 

ASCOPF-r 1 considers that the outage may take place in any inter- 

al of the planning horizon and therefore, the corresponding ramp- 

ng constraints must be obeyed. We expect that this addition does 

ot increase the computational complexity much compared to ex- 

sting ISO formulations while allowing for a more comprehensive 

onsideration of contingencies. 
5 
It follows from the definition of LASCOPF-r 1 that its feasible re- 

ion is a subset of that of LASCOPF 1 . 

bservation 1. If LASCOPF-r 1 is feasible, then LASCOPF 1 is feasible. 

emma 1. For every feasible solution of LASCOPF 1 , the feasible re- 

ions defined by (1g) and (1h) for (v (c) 
n,t , p 

(c) 
g,t , q 

(c) 
g,t | n ∈ N ; g ∈ G; ∀ t ∈

 ; t ≤ T ) intersect ∀ c ∈ C. 

roof. Consider a feasible instance of LASCOPF 1 and a feasible 

olution (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c,u ) 
n,t , p (c,u ) 

g,t , q (c,u ) 
g,t | c ∈ C; n ∈ N ; g ∈ G; t, u ∈

 ; u < t ≤ T ) . Given the base-case dispatch, (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈

 ; g ∈ G; t ∈ N ; t ≤ T ) , observe that (1g) and (1h) together with

1l) only place constraints on (p (c) 
g,t | g ∈ G; ∀ t ∈ N ; t ≤ T ) ∀ c ∈

. First, consider a contingency c = c ′ and interval t = 2 . Let

p (c ′ , 1) 
g, 2 

| g ∈ G) be the feasible set of dispatch during interval t = 2

or contingency scenario (c ′ ) occurring during interval u = 1 . Now 

onsider the corresponding LASCOPF-r 1 formulation and the set of 

ispatch (p (c ′ ) 
g, 2 

| g ∈ G) . For t = 2 , the only possible value that u can

ake on is u = 1 , since u ∈ N , u < t = 2 , so from (1l) (p (c ′ ) 
g, 2 

| g ∈ G) =
p (c ′ , 1) 

g, 2 
| g ∈ G) . As a result, (p (c ′ ) 

g, 2 
| g ∈ G) satisfies (1h) for u = 1 . Ob-

erve that (1g) does not involve (p (c ′ ) 
g, 2 

| g ∈ G) . 

Let us now consider interval t = 3 and let (p (c ′ , 1) 
g, 3 

| g ∈ G) and

p (c ′ , 2) 
g, 3 

| g ∈ G) be the feasible sets of dispatch for LASCOPF 1 for 

he outage occurring during intervals u = 1 and u = 2 , and con-

equently satisfying (1g) and (1h) respectively. For LASCOPF-r 1 , 

et (p (c ′ ) 
g, 3 

| g ∈ G) be the corresponding set of dispatch. From (1l) ,

p (c ′ ) 
g, 3 

| g ∈ G) is constrained by (1g) for u = 1 and by (1h) for u = 2 .

et Y be the feasible region defined by (1g) for u = 1 . We can de-

ompose Y = 

∏ 

g∈G Y g , where 

 g = 

{ 

[ 
−R g + p 

( c ′ , 1 ) 
g, 2 

, R g + p 
( c ′ , 1 ) 
g, 2 

] 
if g � = c ′ , 

R otherwise . 
(2) 

imilarly, let Z be the feasible region defined by (1h) for u = 2 ,

hich can also be decomposed as Z = 

∏ 

g∈G Z g , where 

 g = 

{ 

[ 
−R g + p 

{ 0 } 
g, 2 

, R g + p 
{ 0 } 
g, 2 

] 
if g � = c ′ , 

R otherwise . 

(3) 

n the next step, we show that for generator g = g ′ , we have

 g ′ ∩ Z g ′ = ∅ . If g ′ = c ′ , then Y g ′ ∩ Z g ′ = R � = ∅ . If g ′ � = c ′ , Y g ′ ∩ Z g ′ =
 −R g ′ + max { p (c ′ , 1) 

g ′ , 2 , p 
{ 0 } 
g ′ , 2 } , R g ′ + min { p (c ′ , 1) 

g ′ , 2 , p 
{ 0 } 
g ′ , 2 } ] . To show that the

ntersection above is non-empty, let us first consider (1h) for 
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L

 = g ′ , u = 1 and t = 2 , which is satisfied by p (c ′ , 1) 
g ′ , 2 . After rearrange-

ent we obtain 

R g ′ + p 
( c ′ , 1 ) 
g ′ , 2 ≤ p 

{ 0 } 
g ′ , 1 ≤ R g ′ + p 

( c ′ , 1 ) 
g ′ , 2 . (4) 

ow consider (1d) for g = g ′ and t = 2 , which is satisfied by p 
{ 0 } 
g ′ , 2 .

fter rearrangement we obtain 

R g ′ + p 
{ 0 } 
g ′ , 2 ≤ p 

{ 0 } 
g ′ , 1 ≤ R g ′ + p 

{ 0 } 
g ′ , 2 . (5) 

ince LASCOPF 1 is feasible, we know that ∃ p { 0 } 
g ′ , 1 , ∃ p (c ′ , 1) 

g ′ , 2 and 

 p 
{ 0 } 
g ′ , 2 satisfying the above. Therefore, after combining the above 

e obtain 

R g ′ + max 

{ 

p 
( c ′ , 1 ) 
g ′ , 2 , p 

{ 0 } 
g ′ , 2 

} 

≤ R g ′ + min 

{ 

p 
( c ′ , 1 ) 
g ′ , 2 , p 

{ 0 } 
g ′ , 2 

} 

, (6) 

hich implies Y g ∩ Z g � = ∅ for g ′ � = c ′ . Therefore, the feasible re-

ions defined by (1g) and (1h) for (p (c ′ ) 
g, 3 

| g ∈ G) intersect. 

Let us now consider interval t = 4 . The dispatch (p (c ′ ) 
g, 4 

| g ∈ G) is

onstrained by (1g) for u ∈ { 1 , 2 } and by (1h) for u = 3 . First, re-

all for t = 3 that constraints (1g) for u = 1 and (1h) for u = 2 al-

ow (p (c ′ ) 
g, 3 

| g ∈ G) = (p (c ′ , 1) 
g, 3 

| g ∈ G) = (p (c ′ , 2) 
g, 3 

| g ∈ G) . If we require this

o be the case, we can see that the feasible regions defined by 

1g) for u ∈ { 1 , 2 } when t = 4 are identical. We can show for t = 4 ,

imilarly to the approach for t = 3 , that the feasible region defined

y (1h) for u = 3 intersects with the others. So far we have shown

hat feasible regions intersect up to t = 4 . We can repeat the above

nalysis for interval t = t ′ starting with t ′ = 5 up to t ′ = T in in-

reasing order and then for all contingencies c ∈ C. This concludes 

he proof. �

. LASCOPF under N − k contingency criterion 

.1. Comprehensive formulation: LASCOPF k 

In the following section, we propose LASCOPF k , a gener- 

lised formulation for LASCOPF under the N − k contingency 

riterion. LASCOPF k differs from LASCOPF 1 in that we require 

he system to be secure against k contingencies over the plan- 

ing horizon. We consider temporally ordered sequences of 

 ∈ N ; s ≤ k contingencies (c 1 , . . . , c s | c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ) .

or contingencies, it is also necessary to specify the sequence 

f intervals (u 1 , . . . , u s | u 1 , . . . , u s ∈ N ; u 1 ≤ . . . ≤ u s < T ) in which

he corresponding outages may take place. Observe that we 

ave allowed multiple outages to take place in the same 

nterval. 6 A contingency scenario is denoted by the tuple 

 

c 1 , u 1 , . . . , c s , u s ) : in interval t > u s the dispatch of the sys- 

em is (v (c 1 ,u 1 , ... ,c s ,u s ) 
n,t , p 

(c 1 ,u 1 , ... ,c s ,u s ) 
g,t , q 

(c 1 ,u 1 , ... ,c s ,u s ) 
g,t | n ∈ N ; g ∈ G) .

ccordingly, the LASCOPF k formulation over the set of variables 

 = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c 1 ,u 1 , ... ,c s ,u s ) 
n,t , p 

(c 1 ,u 1 , ... ,c s ,u s ) 
g,t , q 

(c 1 ,u 1 , ... ,c s ,u s ) 
g,t | s ∈

 ; s ≤ k ; c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; n ∈ N ; g ∈ G; t, u 1 , . . . , u s ∈ 

 ; u 1 ≤ . . . ≤ u s < t ≤ T ) is 

in 

S 
f 

(
v { 0 } n,t , p 

{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G; t ∈ N ; t ≤ T 

)
, (7a) 

subject to 

(Base-case dispatch constraints, (7b) to (7d) :) (1b) to (1d) , 

(Contingency scenario constraints on the corresponding dis- 

atch:) 

 

{ c 1 , ... ,c s } 
t 

(
v (c 1 ,u 1 , ... ,c s ,u s ) 

n,t , p (c 1 ,u 1 , ... ,c s ,u s ) 
g,t , q (c 1 ,u 1 , ... ,c s ,u s ) 

g,t | n ∈ N ; g ∈ G 
)

≤ 0 , (7b)
6 The contingency criterion securing against k contingencies sequentially is re- 

erred to, in the literature, as N − 1 − 1 . . . k times and simultaneously as N − k . The 

djustment requirement is in general greater for the latter case. Since our formu- 

ation secures against simultaneous contingencies, we have chosen to refer to our 

ontingency criterion as the stricter N − k criterion. 

a

k

O

6 
˜ h 

{ c 1 , ... ,c s } 
t 

(
v (c 1 ,u 1 , ... ,c s ,u s ) 

n,t , p (c 1 ,u 1 , ... ,c s ,u s ) 
g,t , q (c 1 ,u 1 , ... ,c s ,u s ) 

g,t | n ∈ N ; g ∈ G 
)

= 0 , (7c) 

−R g ≤ p (c 1 ,u 1 , ... ,c s ,u s ) 
g,t − p (c 1 ,u 1 , ... ,c s ,u s ) 

g,t−1 
≤ R g 

if g / ∈ { c 1 , . . . , c s }; t > u s + 1 , (7d) 

−R g ≤ p (c 1 ,u 1 , ... ,c s ,u s ) 
g,t − p 

{ 0 } 
g,t−1 

≤ R g 

if g / ∈ { c 1 , . . . , c s }; u 1 = u s ; t = u s + 1 , (7e) 

−R g ≤ p (c 1 ,u 1 , ... ,c s ,u s ) 
g,t − p (c 1 ,u 1 , ... ,c r ,u r ) 

g,t−1 
≤ R g if g / ∈ { c 1 , . . . , c s };

u r < u r+1 = u s ; t = u s + 1 , (7f) 

 r, s ∈ N ; s ≤ k ; ∀ c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; ∀ g ∈ G; ∀ t, u 1 , . . . , u s ∈ 

 ; u 1 ≤ . . . ≤ u s < t ≤ T . 

Constraints (7b) and (7c) are analogous to (1e) and (1f) in 

ASCOPF 1 , respectively. Since these are static constraints, they only 

epend on the sets of contingencies { c 1 , . . . , c s } and not on their

rder. In addition, consecutive contingency scenario dispatches for 

ispatches under the same contingency scenario (c 1 , u 1 , . . . , c s , u s )

ust satisfy ramping constraints expressed in (7d) . At the point 

f transition from the base-case to (c 1 , u 1 , . . . , c s , u s ) , ramping con-

traints expressed in (7e) would apply. Observe that a transition 

rom the base-case would instead take place if all correspond- 

ng outages would take place in the same interval u 1 = . . . = u s .

imilarly, at the point of transition from the contingency sce- 

ario (c 1 , u 1 , . . . , c r , u r ) to scenario (c 1 , u 1 , . . . , c s , u s ) , ramping con-

traints expressed in (7f) would apply. In this case, all outages cor- 

esponding to contingencies c r+1 to c s would take place in the 

ame interval u r+1 = . . . = u s . The example in Appendix D illus- 

rates the N − k contingency criterion. 

Owing to the dependence of contingency scenario dispatches on 

he intervals (u 1 , . . . , u s ) in which the outages would take place,

he numbers of contingency scenario dispatches and accordingly, 

he decision variables and constraints and follow O(T k +1 ) render- 

ng LASCOPF k computationally intractable for large values of T . 

.2. Reduced formulation: LASCOPF-r k 

To overcome the O(T k +1 ) dependence of the number of dis- 

atches on T , similar to LASCOPF-r 1 , we propose LASCOPF-r k 
nder the N − k contingency criterion. Here, under contin- 

ency scenario (c 1 , u 1 , . . . , c s , u s ) the dispatch in interval t is

v (c 1 , ... ,c s ) 
n,t , p 

(c 1 , ... ,c s ) 
g,t , q 

(c 1 , ... ,c s ) 
g,t | n ∈ N ; g ∈ G) . Note that the indexing

n the superscript of the decision variables is on the basis of un- 

rdered sets { c 1 , . . . , c s } in LASCOPF-ru k , whereas the indexing is 

n the basis of ordered sets (c 1 , . . . , c s ) in LASCOPF-r k . Accordingly, 

ASCOPF-r k is essentially LASCOPF k with the additional constraint 

(
v (c 1 ,u 1 , ... ,c s ,u s ) 

n,t , p (c 1 ,u 1 , ... ,c s ,u s ) 
g,t , q (c 1 ,u 1 , ... ,c s ,u s ) 

g,t | n ∈ N ; g ∈ G 
)

= 

(
v (c 1 , ... ,c s ) 

n,t , p (c 1 , ... ,c s ) 
g,t , q (c 1 , ... ,c s ) 

g,t | n ∈ N ; g ∈ G 
)

∀ s ∈ N ; s ≤ k ; ∀ c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ;
∀ t, u 1 , . . . , u s ∈ N ; u 1 ≤ . . . ≤ u s < t ≤ T , (7g) 

nd with S = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c 1 , ... ,c s ) 
n,t , p 

(c 1 , ... ,c s ) 
g,t , q 

(c 1 , ... ,c s ) 
g,t | s ∈ N ; s ≤

 ; c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; n ∈ N ; g ∈ G; t ∈ N ; t ≤ T ) . 

bservation 2. If LASCOPF-r is feasible, then LASCOPF is feasible. 
k k 
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emma 2. For every feasible solution of LASCOPF-r k , 

he feasible regions defined by (7d) , (7e) and (7f) for 

v (c 1 , ... ,c s ) 
n,t , p 

(c 1 , ... ,c s ) 
g,t , q 

(c 1 , ... ,c s ) 
g,t | n ∈ N ; g ∈ G; ∀ t ∈ N ; t ≤ T ) intersect

 s ∈ N ; s ≤ k ; ∀ c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s . 

roof. The proof of Lemma 1 for the N − 1 contingency criterion 

an be generalised to the N − k contingency criterion. We begin 

y proving that the feasible regions intersect for contingency sce- 

ario dispatches with a single contingency and proceed by consid- 

ring contingency scenario dispatches with increasing number of 

ontingencies. �

Incorporating the additional constraint, we obtain the 

ollowing formulation for LASCOPF-r k over the set of vari- 

bles S = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c 1 , ... ,c s ) 
n,t , p 

(c 1 , ... ,c s ) 
g,t , q 

(c 1 , ... ,c s ) 
g,t | s ∈ N ; s ≤

 ; c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; n ∈ N ; g ∈ G; t ∈ N ; t ≤ T ) . 

in 

S 
f 

(
v { 0 } n,t , p 

{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G; t ∈ N ; t ≤ T 

)
, (8a) 

subject to 

Base-case dispatch constraints, (8b) to (8d):) (1b) to (1d) , 

Contingency scenario constraints on the corresponding dispatch if 

 > 1 :) 

 

{ c 1 , ... ,c s } 
t 

(
v (c 1 , ... ,c s ) 

n,t , p (c 1 , ... ,c s ) 
g,t , q (c 1 , ... ,c s ) 

g,t | n ∈ N ; g ∈ G 
)

≤ 0 , (8b)

˜ 
 

{ c 1 , ... ,c s } 
t 

(
v (c 1 , ... ,c s ) 

n,t , p (c 1 , ... ,c s ) 
g,t , q (c 1 , ... ,c s ) 

g,t | n ∈ N ; g ∈ G 
)

= 0 , (8c)

R g ≤ p (c 1 , ... ,c s ) 
g,t − p (c 1 , ... ,c r ) 

g,t−1 
≤ R g if g / ∈ { c 1 , . . . , c s } if t > 2 , (8d)

R g ≤ p (c 1 , ... ,c s ) 
g,t − p 

{ 0 } 
g,t−1 

≤ R g if g / ∈ { c 1 , . . . , c s } , (8e) 

 r, s ∈ N ; r ≤ s ≤ k ; ∀ c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; ∀ g ∈ 

; ∀ t, u 1 , . . . , u s ∈ N ; u 1 ≤ . . . ≤ u s < t ≤ T . Here, (7d) and (7f) have

een represented jointly as (8d) . 

Since separate contingency scenario dispatches are defined only 

or every contingency sequence (c 1 , . . . , c s ) in every interval t , 

he number of contingency scenario dispatches are 
∑ k 

k ′ =1 
|C| P k ′ × T 

here n P k represents the number of k permutations of n . Accord- 

ngly, LASCOPF-r k is more computationally feasible than LASCOPF k 
or large values of T . However, the dependence of the number on 

C| P k could still render LASCOPF-r k computationally intractable for 

arge values of k , despite it being easier to solve than LASCOPF k . 

.3. Unordered contingencies: LASCOPF-ru k 

To overcome the 
∑ k 

k ′ =1 
|C| P k ′ dependence of the number of dis- 

atches on k , we propose LASCOPF-ru k . Here, given the sequence of 

ontingencies (c 1 , . . . , c s ) the contingency scenario dispatch in in- 

erval t is (v { c 1 , ... ,c s } n,t , p 
{ c 1 , ... ,c s } 
g,t , q 

{ c 1 , ... ,c s } 
g,t | n ∈ N ; g ∈ G) . LASCOPF-ru k 

s LASCOPF-r k with the additional constraint (
v (c 1 , ... ,c s ) 

n,t , p (c 1 , ... ,c s ) 
g,t , q (c 1 , ... ,c s ) 

g,t | n ∈ N ; g ∈ G 
)

= 

(
v { c 1 , ... ,c s } n,t , p 

{ c 1 , ... ,c s } 
g,t , q 

{ c 1 , ... ,c s } 
g,t | n ∈ N ; g ∈ G 

)
∀ s ∈ N ; s ≤ k ; ∀ c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; ∀ t ∈ N ; t ≤ T , 

(8f) 

nd with S = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

{ c 1 , ... ,c s } 
n,t , p 

{ c 1 , ... ,c s } 
g,t , q 

{ c 1 , ... ,c s } 
g,t | s ∈ N ; s ≤

 ; c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; n ∈ N ; g ∈ G; t ∈ N ; t ≤ T ) . 

bservation 3. If LASCOPF-ru k is feasible, then LASCOPF-r k and 

onsequently, LASCOPF k are feasible. 

emma 3. For every feasible solution of LASCOPF-r k , the feasible re- 

ions defined by (8d) and (8e) for (v { c 1 , ... ,c s } n,t , p 
{ c 1 , ... ,c s } 
g,t , q 

{ c 1 , ... ,c s } 
g,t | n ∈
7

 ; g ∈ G; ∀ t ∈ N ; t ≤ T ) intersect ∀ s ∈ N ; s ≤ k ; ∀ c 1 , . . . , c s ∈ C; c 1 � =
 . . � = c s . 

roof. See Appendix C . �

Since separate contingency scenario dispatches are defined only 

or every contingency set { c 1 , . . . , c s } rather than sequence in ev-

ry interval t , the number of contingency scenario dispatches are 
 k 
k ′ =1 

|C| C k ′ × T where n C k represents the number of k combina- 

ions of n . Accordingly, LASCOPF-ru k is more computationally fea- 

ible than LASCOPF-r k for large values of k . 

.4. Recovering from an outage 

The LASCOPF k formulation can be extended to include re- 

overy of the failed components from outages. Recovery of a 

ailed component entails bringing the component back online 

nd accordingly dispatching generators. Recovery can be ac- 

ommodated in the LASCOPF k formulation by removing the 

equirement that c 1 � = . . . � = c s in the definition of the set of

ecision variables, S such that S = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c 1 ,u 1 , ... ,c s ,u s ) 
n,t ,

p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t , q 

(c 1 ,u 1 , ... ,c s ,u s ) 
g,t | s ∈ N ; s ≤ k ; c 1 , . . . , c s ∈ C; n ∈ N ; g ∈

; t, u 1 , . . . , u s ∈ N ; u 1 ≤ . . . ≤ u s < t ≤ T ) . Let d ∈ N ; d ≤ k and

onsider the contingency scenario dispatch (v (c 1 ,u 1 , ... ,c d ,u d ) 
n,t , 

p 
(c 1 ,u 1 , ... ,c d ,u d ) 
g,t , q 

(c 1 ,u 1 , ... ,c d ,u d ) 
g,t | n ∈ N ; g ∈ G) in interval t where 

 d < t ≤ T . If a single contingency c ′ appears twice in the string

f contingencies (c 1 , . . . , c d ) , then it represents a dispatch in a

ystem that was previously affected by a corresponding outage 

ut has since recovered. If c ′ appears thrice, it represents that the 

utage has recurred since its first recovery and so on. 

Recall that constraints (7b) and (7c) are static, i.e., 

ould apply to a given contingency scenario dispatch 

v (c 1 ,u 1 , ... ,c d ,u d ) 
n,t , p 

(c 1 ,u 1 , ... ,c d ,u d ) 
g,t , q 

(c 1 ,u 1 , ... ,c d ,u d ) 
g,t | n ∈ N ; g ∈ G) only 

ased on its active contingencies { c 1 , . . . , c s } where s ≤ d. The set

f active contingencies { c 1 , . . . , c s } � c ′ if and only if c ′ is contained

n the tuple (c 1 , . . . , c d ) an odd number of times. If s = 0 , then the

ase-case dispatch constraints would apply. 

In order to define LASCOPF-r k , (7g) would apply as defined. 

owever, to define LASCOPF-ru k (8f) would have to be modified 

s (
v (c 1 , ... ,c d ) 

n,t , p 
(c 1 , ... ,c d ) 
g,t , q 

(c 1 , ... ,c d ) 
g,t | n ∈ N ; g ∈ G 

)
= 

(
v { c 1 , ... ,c s } n,t , p 

{ c 1 , ... ,c s } 
g,t , q 

{ c 1 , ... ,c s } 
g,t | n ∈ N ; g ∈ G 

)
∀ d ∈ N ; s ≤ d ≤ k ; ∀ c 1 , . . . , c d ∈ C; ∀ t ∈ N ; t ≤ T . (9) 

ote that if s = 0 , instead of using the base-case dispatch 

v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G) on the right hand side we de-

ne a second base-case dispatch with the superscript { 0 ′ } as 

v { 0 
′ } 

n,t , p 
{ 0 ′ } 
g,t , q 

{ 0 ′ } 
g,t | n ∈ N ; g ∈ G) so that recovery does not impose

ny constraints on the original base-case dispatch. This new base- 

ase dispatch will satisfy the same constraints as the original base- 

ase dispatch but will not factor into the objective function. This 

ill allow Lemma 3 to hold and will also allow some results that 

e will present in the following sections. 

. LASCOPF with DC power flow 

In what follows, we introduce a particular formulation 

or LASCOPF 1 under the DC power flow model, DC-LASCOPF 1 
 Varawala et al., 2022 ). We consider the set of contingencies to 

e generator contingencies, i.e., C ⊆ G. Under an outage corre- 

ponding to a generator contingency, the failed generator cannot 

enerate. Since DC power flow does not consider reactive power, 
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he DC-LASCOPF 1 formulation is defined over the set of variables 

 = (p 
{ 0 } 
g,t , p 

(c,u ) 
g,t | c ∈ C; g ∈ G; t, u ∈ N ; u < t ≤ T ) as 

in 

S 

T ∑ 

t=1 

∑ 

g∈G 
C g,t 

(
p 
{ 0 } 
g,t 

)
, (10a) 

ubject to 

Base-case dispatch constraints:) 
 

g∈G 
p 
{ 0 } 
g,t = 

∑ 

n ∈N 
˜ D n,t , (10b) 

 g ≤ p 
{ 0 } 
g,t ≤ P g , (10c) 

K l ≤
∑ 

n ∈N 
H ln 

( ∑ 

g∈G 
A ng p 

{ 0 } 
g,t − ˜ D n,t 

) 

≤ K l , (10d) 

R g ≤ p 
{ 0 } 
g,t − p 

{ 0 } 
g,t−1 

≤ R g , (10e) 

Generator contingency scenario constraints on the corresponding 

ispatch:) 

p (c,u ) 
g,t = 0 if g = c, (10f) 

 

g∈G 
p (c,u ) 

g,t = 

∑ 

n ∈N 
˜ D n,t , (10g) 

 g ≤ p (c,u ) 
g,t ≤ P g if g � = c, (10h) 

R g ≤ p (c,u ) 
g,t − p (c,u ) 

g,t−1 
≤ R g if g � = c; t > u + 1 , (10i) 

R g ≤ p (c,u ) 
g,t − p 

{ 0 } 
g,t−1 

≤ R g if g � = c; t = u + 1 , (10j) 

 c ∈ C; ∀ g ∈ G; ∀ l ∈ L; ∀ t, u ∈ N ; u < t ≤ T . 

For every generator g ∈ G in interval t ∈ N ; t ≤ T , the cost of

enerating active power p g,t ∈ R ≥0 is C g,t (p g,t ) ∈ R ≥0 . For every bus

 ∈ N in interval t ∈ N ; t ≤ T , the active power demand is ˜ D n,t ∈
 ≥0 . For every generator g ∈ G, the minimum and maximum ac- 

ive power generation limits are P g , P g ∈ R ≥0 respectively where 

 g ≤ P g . A ng = 1 if generator g is located at bus n and A ng = 0 oth-

rwise ∀ n ∈ N ; g ∈ G. For transmission line l ∈ L , the maximum

ower flow is K l ∈ R ≥0 . H ln ∈ R is the power transfer distribution

actor for transmission line l and bus n ∀ n ∈ N ; ∀ l ∈ L . 

Objective function (10a) is the total generation cost in the 

ase-case dispatch over the entire planning horizon. For the base- 

ase dispatch, the power balance, active power generation limits, 

ransmission line limits and ramping constraints are (10b), (10c), 

10d) and (10e) , respectively. When an outage corresponding to a 

enerator contingency takes place, the failed generator cannot gen- 

rate for the remainder of the planning horizon which is enforced 

y constraint (10f) . In addition, for the generator contingency sce- 

ario dispatch 

7 , the power balance and active power generation 

imits are (10g) and (10h) , respectively. The ramping constraints are 

10i) and (10j) . Note here that since the contingency scenario dis- 

atch is only defined for intervals after which the outage would 

ake place, i.e., t > u , the constraints are accordingly only defined 

or these intervals. Under severe outages such as those correspond- 

ng to generator contingencies, transmission line limits are often 
7 A theoretically optimal approach would consider load-shedding as a possible 

ction and weigh its associated cost against the increased cost due to consideration 

f security constraints that prevent load-shedding. However, in practice, the cost of 

oad-shedding is typically so high compared to generation costs that it is rarely the 

ptimal outcome. If low cost load-shedding is available and set up to be triggered 

hrough dispatch signals, then, in principle, it could be considered in our LASCOPF 

ormulation. 

o

P

t

T

w  

o

8 
elaxed to increase flexibility (Chapter 8, Wood, Wollenberg, & 

heblé, 2014 ). In what follows, we characterise the structure of 

10b) and (10g) . 

bservation 4. If DC-LASCOPF 1 is feasible, then the feasible re- 

ions defined by (10b) for (p 
{ 0 } 
g,t | g ∈ G) and (10g) for (p (c,u ) 

g,t | g ∈
) ∀ c ∈ C; ∀ u ∈ N ; u < t ≤ T are identical and convex. Furthermore,

 F t : R 

|G| → R such that ∂ F t (p g,t | g ∈ G) /∂ p g,t ≥ 0 ∀ g ∈ G ∀ t ∈ N

uch that the feasible regions can be represented by F t (p g,t | g ∈
) = 0 . 

This observation is instrumental for obtaining the results in 

he rest of the section and also towards developing the theorems 

or AC-LASCOPF 1 in the following section. We now continue with 

roposing DC-LASCOPF-r 1 which is essentially DC-LASCOPF 1 with 

he additional constraint 

p (c,u ) 
g,t | g ∈ G 

)
= 

(
p (c) 

g,t | g ∈ G 
)

∀ c ∈ C; ∀ t, u ∈ N ; u < t ≤ T , (10k)

and with S = (p 
{ 0 } 
g,t , p 

(c) 
g,t | c ∈ C; g ∈ G; t ∈ N ; t ≤ T ) . 

It is intuitive to expect that, barring borderline cases, an op- 

imal solution for DC-LASCOPF 1 exists, noting that there may be 

ther optimal solutions, for which the contingency scenario active 

ower generation would all not be less than the base-case active 

ower generation for all healthy generators based on the net loss 

f generation. In what follows, we show that if this holds, then 

olving DC-LASCOPF 1 and DC-LASCOPF-r 1 are equivalent. 

heorem 1. If DC-LASCOPF 1 is feasible and has a solution for which 

ither p (c,u ) 
g,t ≥ p 

{ 0 } 
g,t ∀ g ∈ G; g � = c or p (c,u ) 

g,t ≤ p 
{ 0 } 
g,t ∀ g ∈ G; g � = c ∀ c ∈

;∀ t, u ∈ N ; u < t ≤ T , then DC-LASCOPF-r 1 is feasible. Furthermore, 

f DC-LASCOPF 1 has such a solution that is optimal, then the optimal 

bjective value is equal for both DC-LASCOPF 1 and DC-LASCOPF-r 1 . 

roof. The proof follows that of Theorem 4 presented in the next 

ection. �

Note here that the condition that there be a feasible solution of 

ASCOPF 1 such that the contingency scenario active power gener- 

tion meets the given requirements is only required to prove the 

quivalence between the formulations. The condition is not explic- 

tly included as a constraint in either formulation and accordingly, 

ither formulation may have solutions that do not satisfy this con- 

ition. 

Now, consider the N − k contingency criterion. We formulate 

he DC-LASCOPF k , DC-LASCOPF-r k and DC-LASCOPF-ru k problems 

s extensions of DC-LASCOPF 1 according to the general LASCOPF k , 

ASCOPF-r k and LASCOPF-ru k formulations respectively presented 

n Section 3 . We obtain the following results for the formulations. 

heorem 2. If DC-LASCOPF k is feasible and has a solution 

or which either p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t ≥ p 

{ 0 } 
g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s }

r p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t ≤ p 

{ 0 } 
g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s } ∀ s ∈ N ; s ≤

 ; ∀ c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; ∀ t, u 1 ∈ N ; u 1 = . . . = u s < t ≤ T 

nd either p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t ≥ p 

(c 1 ,u 1 , ... ,c r ,u r ) 
g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s } or

p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t ≥ p 

(c 1 ,u 1 , ... ,c r ,u r ) 
g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s } ∀ r, s ∈ N ; r ≤

 ≤ k ; ∀ c 1 , . . . , c r ∈ C; c 1 � = . . . � = c s ; ∀ t, u 1 , . . . , u s ∈ N ; u 1 ≤ . . . ≤ u r ≤
 r+1 = . . . = u s < t ≤ T , then DC-LASCOPF-r k is feasible. Furthermore, 

f DC-LASCOPF 1 has such a solution that is optimal, then the optimal 

bjective value is equal for both DC-LASCOPF k and DC-LASCOPF-r k . 

roof. The proof follows that of Theorem 1 can be generalised to 

he N − k contingency criterion. �

heorem 3. If DC-LASCOPF-r k is feasible and has a solution for 

hich either p 
(c 1 , ... ,c 

1 
s ) 

g,t ≥ p 
(c 1 , ... ,c 

2 
s ) 

g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s −1 , c 
1 
s , c 

2 
s }

r p 
(c 1 , ... ,c 

1 
s ) 

g,t ≤ p 
(c 1 , ... ,c 

2 
s ) 

g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s −1 , c 
1 
s , c 

2 
s } ∀ s ∈ N ; s ≤
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 ; ∀ c 1 , . . . , c s −1 , c 
1 
s , c 

2 
s ∈ C; c 1 � = . . . � = c s −1 � = c 1 s � = c 2 s ; ∀ t ∈ N ; t ≤ T , 

hen DC-LASCOPF-ru k is feasible. Furthermore, if DC-LASCOPF 1 has 

uch a solution that is optimal, then the optimal objective value is 

qual for both DC-LASCOPF-r k and DC-LASCOPF-ru k . 

roof. The proof follows that of Theorem 1 . �

. LASCOPF with AC power flow 

In what follows, we introduce LASCOPF 1 under AC power flow, 

hich we refer to as AC-LASCOPF 1 and we show that due to sim- 

larities between DC-LASCOPF 1 and AC-LASCOPF 1 the analysis de- 

eloped in the previous section would also apply to AC-LASCOPF 1 . 

e consider the set of contingencies to be generator contingen- 

ies, i.e., C ⊆ G. The AC-LASCOPF 1 formulation is defined over the 

et S = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c,u ) 
n,t , p (c,u ) 

g,t , q (c,u ) 
g,t | c ∈ C; n ∈ N ; g ∈ G; t, u ∈

 ; u < t ≤ T ) as 

in 

S 

T ∑ 

t=1 

∑ 

g∈G 
C g,t 

(
p 
{ 0 } 
g,t 

)
, (11a) 

ubject to 

(base-case dispatch constraints:) 

 

g 

A ng 

(
p 
{ 0 } 
g,t + jq 

{ 0 } 
g,t 

)
− D n,t = v { 0 } n,t 

∑ 

n ′ 
Y ∗nn ′ v 

{ 0 }∗
n ′ ,t , (11b) 

 g ≤ p 
{ 0 } 
g,t ≤ P g , (11c) 

Q g ≤ q 
{ 0 } 
g,t ≤ Q g , (11d) 

 n ≤
∣∣∣v { 0 } n,t 

∣∣∣ ≤ V n , (11e) 

∑ 

n 

T ln v 
{ 0 } 
n,t 

∑ 

n ′ 
˜ Y ∗ln ′ v 

{ 0 } ∗
n ′ ,t 

∣∣∣∣∣ ≤ K l , (11f) 

∑ 

n 

F ln v 
{ 0 } 
n,t 

∑ 

n ′ 
˜ Y ∗ln ′ v 

{ 0 } ∗
n ′ ,t 

∣∣∣∣∣ ≤ K l , (11g) 

R g ≤ p 
{ 0 } 
g,t − p 

{ 0 } 
g,t−1 

≤ R g , (11h) 

Generator contingency scenario constraints on the corresponding 

ispatch:) 

p (c,u ) 
g,t = 0 if g = c, (11i) 

 

(c,u ) 
g,t = 0 if g = c, (11j) 

 

g 

A ng 

(
p (c,u ) 

g,t + jq (c,u ) 
g,t 

)
− D n,t = v (c,u ) 

n,t 

∑ 

n ′ 
Y ∗nn ′ v 

(c,u ) ∗
n ′ ,t , (11k) 

 g ≤ p (c,u ) 
g,t ≤ P g if g � = c, (11l) 

Q g ≤ q (c,u ) 
g,t ≤ Q g if g � = c, (11m) 

 n ≤
∣∣v (c,u ) 

n,t 

∣∣ ≤ V n , (11n) 

R g ≤ p (c,u ) 
g,t − p (c,u ) 

g,t−1 
≤ R g if g � = c; t > u + 1 , (11o) 

R g ≤ p (c,u ) 
g,t − p 

{ 0 } 
g,t−1 

≤ R g if g � = c; t = u + 1 , (11p) 

 c ∈ C; ∀ n ∈ N ; ∀ g ∈ G; ∀ l ∈ L; ∀ t, u ∈ N ; u < t ≤ T . 
9 
For every pair of buses n, n ′ ∈ N , the bus admittance factor is

 nn ′ ∈ C . For every bus n ∈ N in interval t ∈ N ; t ≤ T , D n,t ∈ C rep-

esents the complex power demand where Re (D n,t ) ∈ R ≥0 is the 

ctive power demand and Im (D n,t ) ∈ R is the reactive power de- 

and. For every generator g ∈ G, the reactive power generation 

imit is Q g ∈ R ≥0 . For every bus n ∈ N , the minimum and maxi-

um voltage magnitude limits are V n , V n ∈ R ≥0 respectively where 

 n ≤ V n . Y ln ∈ C is the bus branch admittance factor for transmis- 

ion line l and bus n ∀ n ∈ N ; ∀ l ∈ L . T ln and F ln take on the value

 if transmission line l end at bus n or originates at bus n respec-

ively and are 0 otherwise. 

For the base-case dispatch, the power balance, reactive power 

eneration limits, voltage magnitude limits and transmission line 

imits are (11b), (11d), (11e) , and (11f) and (11g) , respectively 

Chapter 8, Wood et al., 2014 ). When an outage corresponding to a 

enerator contingency takes place, the failed generator cannot gen- 

rate for the remainder of the planning horizon which is enforced 

y constraints (11i) and (11j) . Accordingly, for the generator contin- 

ency scenario dispatch, the power balance, reactive power genera- 

ion limits and voltage magnitude limits are (11k), (11m) and (11n) , 

espectively. The illustrative example in Appendix D highlights the 

ffect of considering generator contingency scenario dispatches on 

he base-case dispatch. 

We make the following Conjecture for AC-LASCOPF 1 similar to 

bservation 4 for DC-LASCOPF 1 . 

onjecture 1. If AC-LASCOPF 1 is feasible, then there exists a con- 

ex set of values of (p (c,u ) 
g,t | g ∈ G) that are feasible w.r.t. (11k) and

11n) such that a feasible (v (c,u ) 
n,t | g ∈ G) exists, given feasible 

q (c,u ) 
g,t | g ∈ G) ∀ c ∈ C; ∀ u ∈ N ; u < t ≤ T . Furthermore, ∃ F t : R 

|G| → R

uch that ∂ F t (p g,t | g ∈ G) /∂ p g,t ≥ 0 ∀ g ∈ G ∀ t ∈ N such that the fea-

ible regions can be represented by F t (p g,t | g ∈ G) = 0 . 

We propose AC-LASCOPF-r 1 which is essentially AC-LASCOPF 1 
ith the additional constraint (
v (c,u ) 

n,t , p (c,u ) 
g,t , q (c,u ) 

g,t | n ∈ N ; g ∈ G 
)

= 

(
v (c) 

n,t , p 
(c) 
g,t , q 

(c) 
g,t | n ∈ N ; g ∈ G 

)
∀ c ∈ C; ∀ t, u ∈ N ; u < t ≤ T , (11q) 

nd with S = (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c) 
n,t , p 

(c) 
g,t , q 

(c) 
g,t | c ∈ C; n ∈ N ; g ∈ G; t ∈

 ; t ≤ T ) . In what follows, we show that if AC-LASCOPF 1 has a so-

ution for which active power generation for all healthy generators 

n the contingency scenario is either not less than or not greater 

han that in the base-case for all healthy generators, then solving 

C-LASCOPF 1 and AC-LASCOPF-r 1 are equivalent. 

heorem 4. If Conjecture 1 holds, then if AC-LASCOPF 1 is fea- 

ible and has a solution for which either p (c,u ) 
g,t ≥ p 

{ 0 } 
g,t ∀ g ∈ G; g � =

or p (c,u ) 
g,t ≥ p 

{ 0 } 
g,t ∀ g ∈ G; g � = c ∀ c ∈ C; ∀ t, u ∈ N ; u < t ≤ T , then

C-LASCOPF-r 1 is feasible. Furthermore, if AC-LASCOPF 1 has such a 

olution that is optimal, then the optimal objective value is equal for 

oth AC-LASCOPF 1 and AC-LASCOPF-r 1 . 

roof. Consider a feasible instance of AC-LASCOPF 1 with a solu- 

ion for which either p (c,u ) 
g,t ≥ p 

{ 0 } 
g,t ∀ g ∈ G; g � = c or p (c,u ) 

g,t ≥ p 
{ 0 } 
g,t ∀ g ∈

; g � = c ∀ c ∈ C; ∀ t, u ∈ N ; u < t ≤ T . We begin by observing that

he objective (11 a ) is a function only of the base-case dispatch 

p 
{ 0 } 
g,t | g ∈ G; t ∈ N ) and thus, whether or not the solution is op-

imal depends only upon the value of (p 
{ 0 } 
g,t | g ∈ G; t ∈ N ) . There-

ore, to prove the theorem, it is sufficient to show that given any 

et of base-case dispatch (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G; t ∈ N ) , since

he contingency scenario dispatch (v (c,u ) 
n,t , p (c,u ) 

g,t , q (c,u ) 
g,t | n ∈ N ; g ∈

;∀ t, u ∈ N ; u < t ≤ T ) exists satisfying (11i) to (11p) , there exists

 reduced set (v (c) 
n,t , p 

(c) 
g,t , q 

(c) 
g,t | n ∈ N ; g ∈ G; ∀ t, u ∈ N ; u < t ≤ T ) sat-

sfying (11q) ∀ c ∈ C. Then, if the selected set of base-case dispatch

v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G; t ∈ N ) is optimal, the entire solution is
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8 R. D. Zimmerman, C. E. Murillo-Sanchez (2020). MATPOWER (Version 7.1) [Soft- 

ware]. Available: https://matpower.org 
ptimal. Consider interval t = 2 . It is straightforward to see that u

an only take on one value and consequently, (11q) is trivially sat- 

sfied. 

Now, consider contingency c = c ′ and interval t = 3 . Here, u ∈
 1 , 2 } . In order to show that ∃ (v (c ′ ) 

n, 3 
, p (c ′ ) 

g, 3 
, q (c ′ ) 

g, 3 
| n ∈ N ; g ∈ G) satis-

ying (11q) , it is sufficient to show that the feasible region defined 

y (11i) to (11o) when u = 1 for (v (c ′ , 1) 
n, 3 

, p (c ′ , 1) 
g, 3 

, q (c ′ , 1) 
g, 3 

| n ∈ N ; g ∈
) intersect with that defined by (11i) to (11n) and (11p) when 

 = 2 for (v (c ′ , 1) 
n, 3 

, p (c ′ , 2) 
g, 3 

, q (c ′ , 2) 
g, 3 

| n ∈ N ; g ∈ G) , allowing us to choose

qual values for both sets. From Lemma 1 , the feasible re- 

ions defined by (11o) when u = 1 , Y = C 

|N | × ( 
∏ 

g∈G;g� = c ′ [ −R g +
p (c, 1) 

g, 2 
, R g + p (c, 1) 

g, 2 
]) × R × R 

|G| and (11p) when u = 2 , Z = C 

|N | ×
 

∏ 

g∈G;g� = c ′ [ −R g + p 
{ 0 } 
g, 2 

, R g + p 
{ 0 } 
g, 2 

]) × R × R 

|G| intersect, i.e., Y ∩ Z � =
 . Let us consider the case where p 

{ 0 } 
g, 2 

≤ p (c, 1) 
g, 2 

∀ g ∈ G; g � = c ′ . There-

ore, it is left to show that the feasible region defined by (11i) to

11n) , which is identical for all values of u , intersects with C 

|N | ×
 

∏ 

g∈G;g� = c ′ [ −R g + p (c, 1) 
g, 2 

, R g + p 
{ 0 } 
g, 2 

]) × R × R 

|G| . 
Let the feasible region defined by (11i), (11j), (11l) and (11m) be 

 = C 

|N | × ( 
∏ 

g∈G;g� = c ′ [ P g , P g ]) × { 0 } × ( 
∏ 

g∈G;g� = c ′ [ Q 

g 
, Q g ]) × { 0 } . 

rom Conjecture 1 , given feasible (q g, 3 | g ∈ G) ∃ F 3 : R 

|G| → R such

hat ∂ F 3 (p g, 3 | g ∈ G) /∂ p g, 3 ≥ 0 ∀ g ∈ G where F 3 (p g, 3 | g ∈ G) = 0

epresents the feasible region defined by (11k) and (11n) pro- 

ected onto (p (c,u ) 
g,t | g ∈ G) . Since AC-LASCOPF 1 is feasible, 

 (v (c ′ , 1) 
n, 3 

, p (c ′ , 1) 
g, 3 

, q (c ′ , 1) 
g, 3 

| n ∈ N ; g ∈ G) ∈ X ∩ Y for u = 1 such

hat F 3 (p (c ′ , 1) 
g, 3 

| g ∈ G) = 0 . Since ∂F 3 (p g, 3 | g ∈ G) /∂ p g, 3 ≥ 0 ∀ g ∈ G,

 3 ( max { P g , −R g + p (c, 1) 
g, 2 

} , 0 | g ∈ G; g � = c ′ ) ≤ 0 . Now, consider

v (c ′ , 2) 
n, 3 

, p (c ′ , 2) 
g, 3 

, q (c ′ , 2) 
g, 3 

| n ∈ N ; g ∈ G) for u = 2 and let (q (c ′ , 2) 
g, 3 

| g ∈
) = (q (c ′ , 1) 

g, 3 
| g ∈ G) . Then, since Y and Z place no constraints

n (q (c ′ , 1) 
g, 3 

| g ∈ G) , (v (c ′ , 2) 
n, 3 

, p (c ′ , 2) 
g, 3 

, q (c ′ , 2) 
g, 3 

| n ∈ N ; g ∈ G) ∈ X ∩ Z

uch that F 3 (p (c ′ , 2) 
g, 3 

| g ∈ G) = 0 and F 3 ( max { P g , R g + p 
{ 0 } 
g, 2 

} ,
 | g ∈ G; g � = c ′ ) ≥ 0 . Since the feasible region defined by

11k) and (11n) , X , Y and Z are convex when pro- 

ected onto (p (c,u ) 
g,t | g ∈ G) , ∃ (v (c ′ ) 

n, 3 
, p (c ′ ) 

g, 3 
, q (c ′ ) 

g, 3 
| n ∈ N ; g ∈ G) ∈

 

∏ 

n ∈N [ V n , V n ]) × ( 
∏ 

g∈G;g� = c ′ [ max { P g , −R g + p (c, 1) 
g, 2 

} , min { P g , 
 g + p 

{ 0 } 
g, 2 

} ]) × { 0 } × R 

(|G|−1) × { 0 } such that F 3 (p (c ′ ) 
g, 3 

| g ∈ G) = 0 .

onsequently, the feasible regions defined by (11i) to (11n) in- 

ersect with C 

|N | × ( 
∏ 

g∈G;g� = c ′ [ −R g + p (c, 1) 
g, 2 

, R g + p 
{ 0 } 
g, 2 

]) × R × R 

|G| . 
e can con conduct a similar analysis for the case where 

p 
{ 0 } 
g, 2 

≥ p (c, 1) 
g, 2 

∀ g ∈ G; g � = c ′ and show that the feasible regions

efined by (11i) to (11n) intersect with C 

|N | × ( 
∏ 

g∈G;g� = c ′ [ −R g + 

p 
{ 0 } 
g, 2 

, R g + p (c, 1) 
g, 2 

]) × R × R 

|G| . We can repeat the above analysis for

nterval t = t ′ starting with t ′ = 3 up to t ′ = T in increasing order

nd then for all contingencies c ∈ C. This concludes the proof. �

Note that nowhere in Conjecture 1 or in the proof above have 

e considered the specific form of the objective function. There- 

ore, Conjecture 1, Theorem 4 and the subsequent results would 

old for any objective function that only depend on the base-case 

ispatch, such as (1a) . E.g., one could use the objective function 

f SCOPF, where costs are minimised only for t = 1 , but with the

ntire set of LASCOPF constraints over the planning horizon. 

Now, consider the N − k contingency criterion. We formulate 

he AC-LASCOPF k , AC-LASCOPF-r k and AC-LASCOPF-ru k problems 

s extensions of AC-LASCOPF 1 according to the general LASCOPF k , 

ASCOPF-r k and LASCOPF-ru k formulations respectively presented 

n Section 3 . We obtain the following results for the formulations. 

heorem 5. If Conjecture 1 holds, then if AC-LASCOPF k is feasible 

nd has a solution for which either p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t ≥ p 

{ 0 } 
g,t ∀ g ∈ G; g / ∈
10 
 c 1 , . . . , c s } or p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t ≤ p 

{ 0 } 
g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s } ∀ s ∈ N ; s ≤

 ; ∀ c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; ∀ t, u 1 ∈ N ; u 1 = . . . = u s < t ≤ T , 

nd either p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t ≥ p 

(c 1 ,u 1 , ... ,c r ,u r ) 
g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s } or

p 
(c 1 ,u 1 , ... ,c s ,u s ) 
g,t ≤ p 

(c 1 ,u 1 , ... ,c r ,u r ) 
g,t ∀ g ∈ G; g / ∈ { c 1 , . . . , c s } ∀ r, s ∈ N ; r ≤

 ≤ k ; ∀ c 1 , . . . , c r ∈ C; c 1 � = . . . � = c s ; ∀ t, u 1 , . . . , u s ∈ N ; u 1 ≤ . . . ≤ u r ≤
 r+1 = . . . = u s < t ≤ T , then AC-LASCOPF-r k is feasible. Furthermore, 

f AC-LASCOPF k has such a solution that is optimal, then the optimal 

bjective value is equal for both AC-LASCOPF k and AC-LASCOPF-r k . 

roof. The proof follows that of Theorem 4 . �

heorem 6. If Conjecture 1 holds, then if AC-LASCOPF-r k is feasible 

nd has a solution for which either p 
(c 1 , ... ,c 

1 
s ) 

g,t ≥ p 
(c 1 , ... ,c 

2 
s ) 

g,t ∀ g ∈ 

; g / ∈ { c 1 , . . . , c s −1 , c 
1 
s , c 

2 
s } or p 

(c 1 , ... ,c 
1 
s ) 

g,t ≤ p 
(c 1 , ... ,c 

2 
s ) 

g,t ∀ g ∈ G; g / ∈
 c 1 , . . . , c s −1 , c 

1 
s , c 

2 
s } ∀ s ∈ N ; s ≤ k ; ∀ c 1 , . . . , c s −1 , c 

1 
s , c 

2 
s ∈ C; c 1 � =

 . . � = c s −1 � = c 1 s � = c 2 s ; ∀ t ∈ N ; t ≤ T , then AC-LASCOPF-ru k is feasible.

urthermore, if AC-LASCOPF-r k has such a solution that is optimal, 

hen the optimal objective value is equal for both AC-LASCOPF-r k and 

C-LASCOPF-ru k . 

roof. The proof of Theorem 4 can be generalised to prove this 

heorem. �

. Numerical results 

In this section, we present numerical results that demonstrate 

he computational advantage of the proposed reduced formula- 

ions. To do so, we consider systems of various size: the IEEE 14 

us, 30 bus and 300 bus systems ( Christie, 1999 ) and the 1354 bus

art of the European power system ( Fliscounakis, Panciatici, Cap- 

tanescu, & Wehenkel, 2013; Josz, Fliscounakis, Maeght, & Panci- 

tici, 2016 ). For every system, we chose (p 
{ 0 } 
g, 0 

| g ∈ G) to be the ac-

ive power generation provided in the case data. In addition, in or- 

er to impose ramping constraints, we set R g = ( P g − P g ) / 2 ∀ g ∈ G
here P g and P g are as provided in the case data. We only consider 

ontingencies in the first two generators, i.e., C = { 1 , 2 } , for illus-

rative purposes. Furthermore, let (d n | n ∈ N ) be the active power 

emand provided in the case data. For each system, we consider 

he following demand scenarios. 

1. Re (D n,t ) = r n,t d n where r n,t is a random number uniformly 

distributed over [0,1] ∀ n ∈ N , ∀ t ∈ N , t ≤ T , i.e., the demand

at every bus varies randomly in time independent of other 

buses. 

2. Re (D n,t ) = r t d n ∀ n ∈ N where r t is a random number uni-

formly distributed over [0,1] ∀ t ∈ N , t ≤ T , i.e., the demands

at all buses vary by the same factor randomly in time. We 

do this because, in practice, demands would vary with fac- 

tors that are almost equal to each other. This correlated vari- 

ation of demand over time would mean that the ramping 

constraints between most adjacent intervals in the system 

are likely binding. 

3. Re (D n,t ) = d n / 1 . 5 if t is odd and Re (D n,t ) = d n if t is even

∀ c ∈ C. We do this in order to deterministically simulate 

large changes in demand causing the ramping constraints in 

the system to be binding. 

ll other parameters were as provided in the case data. Our simu- 

ations were performed on an Intel(R) Core(TM) i7-6700 processor 

ith 32 gigabyte RAM using MATPOWER ( Zimmerman, Murillo- 

anchez, & Thomas, 2011 ) version 7.1 8 with the native MATLAB 

021a interior point solver, MIPS. 

https://matpower.org
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Fig. 3. Computational times for AC-LASCOPF 1 and AC-LASCOPF-r 1 for demand scenario 1. 

Fig. 4. Computational times for AC-LASCOPF 1 and AC-LASCOPF-r 1 for demand scenario 2. 
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First, for the N − 1 contingency criterion we compare the com- 

rehensive AC-LASCOPF 1 to the reduced AC-LASCOPF-r 1 for all the 

ases and scenarios. Figs. 3 , 4 and 5 show, for demand scenarios 1,

 and 3, respectively, the computational time for AC-LASCOPF 1 and 

C-LASCOPF-r 1 for different lengths of the planning horizon, T . For 

cenarios 1 and 2, we only considered the computational time of 
11 
he instances that converged, i.e., had a feasible solution. The re- 

ults reflect that for AC-LASCOPF-r 1 the number of dispatches is 

inearly dependent on T , as opposed to quadratic for AC-LASCOPF 1 
nd thus, AC-LASCOPF-r 1 is computationally more efficient, with 

n increasing advantage as the length of the planning horizon in- 

reases. Also, note that for T = 2 , LASCOPF 1 and LASCOPF-r 1 are 
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Fig. 5. Computational times for AC-LASCOPF 1 and AC-LASCOPF-r 1 for demand scenario 3. 

Table 1 

Number of decision variables and constraints for T = 10 . 

Base-case Contingency scenario 

All AC-LASCOPF 1 AC-LASCOPF-r 1 AC-LASCOPF-r 2 AC-LASCOPF-ru 2 

Variables IEEE 14 bus 380 3420 684 1368 1026 

IEEE 30 bus 720 6480 1296 2592 1944 

IEEE 300 bus 7380 66420 13284 26568 19926 

European system 32280 290520 58104 116208 87156 

IEEE 14 bus 1380 5220 1204 2568 1966 

Inequality IEEE 30 bus 2600 8640 1920 4032 3072 

constraints IEEE 300 bus 26580 91260 20460 43128 32898 

European system 122320 384120 85144 178608 136036 

IEEE 14 bus 280 2700 540 1080 810 

Equality IEEE 30 bus 600 5580 1116 2232 1674 

constraints IEEE 300 bus 6000 54180 10836 21672 16254 

European system 27080 243900 48780 97560 73170 

i  

T
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dentical since u can only take on one value such that u ∈ N ; u < 2 .

herefore, as expected, the confidence intervals for the computa- 

ional time of AC-LASCOPF 1 and AC-LASCOPF-r 1 intersect for T = 2 . 

Second, we consider the N − 2 contingency criterion since it is 

he most tractable example of the N − k contingency criterion for 

hich we can compare the computational time of AC-LASCOPF-r 2 
ith ordered contingencies to AC-LASCOPF-ru 2 with unordered 

ontingencies. The number of contingency scenario dispatches for 

C-LASCOPF-r 2 depends on 

∑ k 
k ′ =1 

|C| P k ′ ∼ 4 given |C| = k = 2 . On 

he contrary, for AC-LASCOPF-ru 2 the number of contingency sce- 

ario dispatches depends on 

∑ k 
k ′ =1 

|C| C k ′ ∼ 3 . Figs. 6 , 7 and 8 

how, for demand scenarios 1, 2 and 3, respectively, the com- 

utational time for AC-LASCOPF-r 2 and AC-LASCOPF-ru 2 for dif- 

erent lengths of the planning horizon, T . The results confirm 

hat AC-LASCOPF-ru 2 is computationally more efficient. Also, we 

ote that for all the cases above the pairs AC-LASCOPF 1 and 

C-LASCOPF-r 1 , and AC-LASCOPF-r 2 and AC-LASCOPF-ru 2 resulted 

n the same optimal objective value. 
12 
In Table 1 , we tabulate the number of decision variables and 

onstraints for the IEEE 14 bus, 30 bus and 300 bus systems, 

nd the 1354 bus part of the European power system, under the 

omprehensive and the reduced formulations for the N − 1 and 

 − 2 contingency criteria when T = 10 . Note that the bus volt- 

ges are complex and thus they count as two variables each. Also, 

ecall that for a given system, the base-case is identical for all 

roblem formulations and therefore, the number of decision vari- 

bles in (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G, t ∈ N , t ≤ T ) and number of

onstraints in (1b) to (1d) are the same. In Fig. 9 , we plot the

omputational time for every scenario in each of the 16 cases in 

able 1 against the number of decision variables. We can see that 

he computational time for each problem formulation increases 

ith the number of decision variables and the computational time 

or AC-LASCOPF 1 for a given number of decision variables is lower 

ompared to the other formulations. We attribute this to the fact 

hat it is the decision variables in the base-case that are opti- 

ised, while for the contingency scenario variables only a feasi- 
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Fig. 6. Computational times for AC-LASCOPF-r 2 and AC-LASCOPF-ru 2 for demand scenario 1. 

Fig. 7. Computational times for AC-LASCOPF-r 2 and AC-LASCOPF-ru 2 for demand scenario 2. 
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le value is sought and therefore the computation time per base- 

ase variable is expected to be longer. Among the problem formu- 

ations it is AC-LASCOPF 1 that has the lowest proportion of base- 

ase decision variables ( O(T ) ) compared to contingency scenario 

ecision variables ( O(T 2 ) ), which explains the observation. Note 

hat this does not indicate that AC-LASCOPF 1 is faster to solve than 

C-LASCOPF-r since, for a given case, the number of decision vari- 
1 

13 
bles and hence the computational time is significantly greater in 

he former as compared to the latter. 

Finally, note that in all the cases of the N − 1 contingency cri- 

erion considered above, we obtained the same optimal objec- 

ive value while solving AC-LASCOPF 1 and AC-LASCOPF-r 1 . Simi- 

arly, for all the cases of the N − 2 contingency criterion we con- 

idered, AC-LASCOPF-r and AC-LASCOPF-ru resulted in the same 
2 2 
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Fig. 8. Computational times for AC-LASCOPF-r 2 and AC-LASCOPF-ru 2 for demand scenario 3. 

Fig. 9. Scatter plot of computational times vs. number of decision variables for T = 10 . 
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ptimal objective value. These are in accordance with the claims of 

heorems 4 and 6 , respectively. 

. Conclusion 

We considered LASCOPF under the N − 1 contingency criterion. 

e presented a generalised, comprehensive LASCOPF 1 formulation 

nd observed that the dependence of the decision variables on u 

esulted in a O(T 2 ) dependence of the number of decision vari- 

bles. To make the problem scalable, we proposed the reduced 

ASCOPF-r 1 formulation, which is independent of u and hence has 

nly an O(T ) dependence. Similarly, for the N − k contingency cri- 

erion, we presented LASCOPF k with its O(T k +1 ) dependence and 

roposed the corresponding reduced LASCOPF-r k with its O(T ) de- 

endence. Furthermore, we observed that in LASCOPF-r k , the con- 

ingency scenario dispatches depend upon the tuple (c 1 , . . . , c s ) 

nd hence the number of contingency scenario dispatches varies 
14 
ith 

∑ k 
k ′ =1 

|C| P k ′ × T . We proposed LASCOPF-ru k in which the con- 

ingency scenario dispatches only depend upon the set { c 1 , . . . , c s }
nd hence the dependence reduces to 

∑ k 
k ′ =1 

|C| C k ′ × T . Then, we 

roposed DC-LASCOPF 1 and AC-LASCOPF 1 under generator con- 

ingencies. We proved that, barring borderline cases, solving 

C-LASCOPF 1 and AC-LASCOPF-r 1 are equivalent. Similarly, solving 

C-LASCOPF k , AC-LASCOPF-r k and AC-LASCOPF-ru k are equivalent. 

inally, we presented numerical results on the IEEE 14 bus, IEEE 

0 bus and IEEE 300 bus test cases, and the 1354 bus part of the

uropean power system to demonstrate the computational advan- 

age of the reduced formulations under the N − 1 and N − 2 con- 

ingency criteria. 

An interesting supplement to this work could be to empirically 

alidate Conjecture 1 for AC-LASCOPF 1 on typical test systems. One 

ay also find exact conditions on the problem parameters given 

hich the reduced formulations would always equivalent to the 

omprehensive formulations. 



L. Varawala, G. Dán, M.R. Hesamzadeh et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; March 6, 2023;23:42 ] 

F

[

D

A

A

fi

g

e

d

t

A

(  

(

c

o

c

i

c  

S

c

c

e

d

t

g  

T

c

(

h  
unding 

Digitalization of Swedish Electrical Engineering project at KTH 

grant number E-2016-0277] 

eclaration of Competing Interest 

None. 

ppendix 

ppendix A. Notation 

Sets: 

N 0 non-negative integers 

N positive integers 

R real numbers 

R ≥0 non-negative real numbers 

C complex numbers 

Indices: 

t t ∈ N 0 , t ≤ T dispatch interval 

u u ∈ N , u < t dispatch interval in which outage 

corresponding to contingency would 

take place 

n n ∈ N bus 

g g ∈ G generator 

c c ∈ C contingency 

s s ∈ N , s ≤ k number of contingencies of 

considered simultaneously 

u i u i ∈ N , u 1 ≤ . . . ≤ u s < t dispatch interval in which outage 

corresponding to i th contingency 

would take place 

c i c i ∈ C, c 1 � = . . . � = c s i th contingency 

Parameters: 

N set of buses 

G set of generators 

C set of contingencies 

T T ∈ N length of planning horizon 

k k ∈ N , k > 1 number of contingencies considered 

simultaneously 

R g R g , R g ∈ R ≥0 ramping limits for generator g

S g , S g S g , S g ∈ R ≥0 lower and upper contingency reserve 

limits for generator g

Scenarios: 

{ 0 } base-case 

{ c} , (c) contingency scenario for contingency c

(c, u ) contingency scenario for contingency c in interval u 

{ c 1 , . . . , c s } contingency scenario for unordered contingencies 

c 1 , . . . , c s 
(c 1 , u 1 . . . , c s , u s ) contingency scenario for contingencies c 1 , . . . , c s in 

intervals u 1 . . . . , u s respectively 

(c 1 . . . , c s ) contingency scenario for ordered contingencies c 1 , . . . , c s 
{ 0 ′ } base-case after recovery 

Decision variables: 

v <> 
n,t v <> 

n,t ∈ C voltage at bus n in interval t

p <> 
g,t p <> 

g,t ∈ R ≥0 active power generation by generator g in interval t

q <> 
g,t q <> 

g,t ∈ R reactive power generation by generator g in 

interval t

S set of decision variables which varies with 

formulation 

Generalised functions: 

f (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G; t ∈ N ; t ≤ T ) objective function 

h <> 
t (v <> 

n,t , p 
<> 
g,t , q 

<> 
g,t | n ∈ N ; g ∈ G) function representing 

inequality constraints 
˜ h <> 

t (v <> 
n,t , p 

<> 
g,t , q 

<> 
g,t | n ∈ N ; g ∈ G) function representing equality 

constraints 
T

15 
The decision variables and generalised functions above are de- 

ned for various scenarios, e.g. the base-case { 0 } and the contin- 

ency scenario (c) for contingency c. The scenario to which the 

ntity pertains is specified in the superscript. For brevity, we have 

efined these entities only once and used <> as a placeholder for 

he scenario. 

Notation for LASCOPF with DC power flow: 

L set of transmission lines 

l l ∈ L transmission line 

C g,t C g,t : R ≥0 → R ≥0 cost of active power generation by generator g

in interval t
˜ D n,t ˜ D n,t ∈ R ≥0 active power demand at bus n in interval t

P g , P g P g , P g ∈ R ≥0 , P g ≤ P g active power generation limits for generator g

A ng A ng ∈ { 0 , 1 } A ng = 1 if generator g is at n , 0 otherwise 

H ln H ln ∈ R power transfer distribution factor for line l

and bus n 

K l K l ∈ R ≥0 capacity for line l

Notation for LASCOPF with AC power flow: 

L set of transmission lines 

l l ∈ L transmission line 

C g,t C g,t : R ≥0 → R ≥0 cost of active power generation by generator g

in interval t

D n,t D n,t ∈ C , Re (D n,t ) ∈ 
R ≥0 

power demand at bus n in interval t where 

Re (D n,t ) is the active and Im (D n,t ) is the 

reactive power demand 

A ng A ng ∈ { 0 , 1 } A ng = 1 if generator g is at n , 0 otherwise 

Y nn ′ Y nn ′ ∈ C bus admittance factor for buses n and n ′ 
P g , P g P g , P g ∈ R ≥0 , P g ≤ P g active power generation limits for generator g

Q g Q g ∈ R ≥0 , P g ≤ P g reactive power generation limit for generator g

V n , V n V n , V n ∈ R ≥0 , V n ≤
V n 

voltage magnitude limits for bus n 

Y ln Y ln ∈ C bus branch admittance factor for line l and bus 

n 

T ln , F ln T ln , F ln ∈ { 0 , 1 } (T ln , F ln ) = (1 , 0) if line l ends at bus n , (0,1) if 

line l originates atbus n , (0,0) otherwise 

K l K l ∈ R ≥0 capacity for line l

ppendix B. Number of constraints in LASCOPF 1 

In LASCOPF 1 , the number of base-case dispatches 

v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G) is T . Since constraint sets (1b) and

1c) are defined for each base-case dispatch, there are T such 

onstraint sets each. Note that each set of constraints may consist 

f multiple constraints. In addition, there are |G| × T ramping 

onstraints in (1d) , defined for every generator g ∈ G in every 

nterval t ∈ N , t ≤ T . 

Besides the base-case dispatch, we also have |C| × T (T − 1) / 2 

ontingency scenario dispatches (v { c,u } n,t , p 
{ c,u } 
g,t , q 

{ c,u } 
g,t | n ∈ N ; g ∈ G) .

ince constraint sets (1e) and (1f) are defined separately for each 

ontingency scenario dispatch, there will be |C| × T (T − 1) / 2 such 

onstraint sets each. Ramping constraints in (1g) are defined for 

very healthy generator (in the case when one generator fails un- 

er a generator contingency, as is the case in the example of con- 

ingencies we describe in Sections 4 and 5 ). Thus, for every contin- 

ency c ∈ C in every interval t ∈ N , u + 1 < t ≤ T , where u ∈ N , u <

 , there will be 

( |G| − 1 ) × |C| × ∑ 

u ∈ N ,u<T 

(T − u − 1) = ( |G| − 1 ) × |C| 

×(T − 1)(T − 2) / 2 (12) 

onstraints of type (1g) . In addition, there will be (|G| − 1) × |C| ×
T − 1) constraints of type (1h) , since the constraint is defined for 

ealthy generators when t = u + 1 ∀ u ∈ N , u < T , i.e., for 2 ≤ t ≤ T .

herefore, the total number of constraints follows O(T 2 ) . 
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ppendix C. Proof of Lemma 3 

Consider a feasible instance of LASCOPF-r k and a feasi- 

le solution (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t , v 

(c 1 , ... ,c s ) 
n,t , p 

(c 1 , ... ,c s ) 
g,t , q 

(c 1 , ... ,c s ) 
g,t | s ∈ N ; s ≤

 ; c 1 , . . . , c s ∈ C; c 1 � = . . . � = c s ; n ∈ N ; g ∈ G; t ∈ N ; t ≤ T ) . Given the

ase-case dispatch, (v { 0 } n,t , p 
{ 0 } 
g,t , q 

{ 0 } 
g,t | n ∈ N ; g ∈ G; t ∈ N ; t ≤ T ) , ob-

erve that (8d) and (8e) together with (7g) only place con- 

traints on (v { c 1 , ... ,c s } n,t , p 
{ c 1 , ... ,c s } 
g,t , q 

{ c 1 , ... ,c s } 
g,t | n ∈ N ; g ∈ G) ∀ s ∈ N ; s ≤

 ; ∀ c 1 , . . . , c s ∈ C, c 1 , � = . . . � = , c s . First, consider interval t = t ′ ; t ′ > 1 ,

umber of contingencies s = 1 and contingency c 1 = c ′ 
1 
, and let

p 
(c ′ 

1 
) 

g,t ′ | g ∈ G) be the feasible set of dispatch. Now consider the

orresponding LASCOPF-ru k formulation and the set of dispatch 

p 
{ c ′ 

1 
} 

g,t ′ | g ∈ G) . Since the tuple (c ′ 
1 
) contains only a single element,

rom (8f) (p 
{ c ′ 

1 
} 

g,t ′ | g ∈ G) = (p 
(c ′ 

1 
) 

g,t ′ | g ∈ G) . As a result, (p 
{ c ′ 

1 
} 

g,t ′ | g ∈ G) sat-

sfies (8e) . Observe that (8d) does not constrain (p 
{ c ′ 

1 
} 

g,t ′ | g ∈ G) . 

Let us now consider s = 2 and contingencies c ′ 
1 
, c ′ 

2 
, and let

p 
(c ′ 

1 
,c ′ 

2 
) 

g,t ′ | g ∈ G) and (p 
(c ′ 

2 
,c ′ 

1 
) 

g,t ′ | g ∈ G) be the feasible sets of dispatch

or LASCOPF-r k for the contingency tuples (c ′ 1 , c ′ 2 ) and (c ′ 1 , c ′ 2 ) re-

pectively such that both sets satisfy (8e) for the same parame- 

ers. For LASCOPF-ru k , let (p 
{ c ′ 

1 
,c ′ 

2 
} 

g,t ′ | g ∈ G) be the corresponding set 

f dispatch which would then also satisfy (8e) for the same pa- 

ameters allowing us to choose (p 
{ c ′ 

1 
,c ′ 

2 
} 

g,t ′ | g ∈ G) = (p 
(c ′ 

1 
,c ′ 

2 
) 

g,t ′ | g ∈ G) =
p 
(c ′ 

2 
,c ′ 

1 
) 

g,t ′ | g ∈ G) . If t ′ = 2 , observe that (8d) does not constrain

p 
{ c ′ 

1 
} 

g, 2 
| g ∈ G) . Now consider t ′ > 2 . The feasible sets (p 

(c ′ 
1 
,c ′ 

2 
) 

g,t ′ | g ∈ G)

nd (p 
(c ′ 

2 
,c ′ 

1 
) 

g,t ′ | g ∈ G) would also satisfy (8d) when r = 1 and r =
 for c 1 = c ′ 

1 
, c 2 = c ′ 

2 
and c 2 = c ′ 

1 
, c 1 = c ′ 

2 
respectively. From (8f) ,

p 
{ c ′ 

1 
,c ′ 

2 
} 

g,t ′ | g ∈ G) is constrained by all the four constraints. Let W be 

he feasible region defined by (8e) for c 1 = c ′ 
1 
, c 2 = c ′ 

2 
. We can de-

ompose W = 

∏ 

g∈G W g , where 

 g = 

{ [ 
−R g + p 

{ 0 } 
g,t ′ −1 

, R g + p 
{ 0 } 
g,t ′ −1 

] 
if g / ∈ 

{
c ′ 1 , c ′ 2 

}
, 

R otherwise . 
(13) 

imilarly, let X be the feasible region defined by (8d) for r = 1 and

 1 = c ′ 
1 
, c 2 = c ′ 

2 
. We can decompose X = 

∏ 

g∈G X g , where 

 g = 

{ [ 
−R g + p 

{ c ′ 1 } 
g,t ′ −1 

, R g + p 
{ c ′ 1 } 
g,t ′ −1 

] 
if g / ∈ 

{
c ′ 1 , c ′ 2 

}
, 

R otherwise . 
(14) 

imilarly, let Y be the feasible region defined by (8d) for r = 1 and

 1 = c ′ 2 , c 2 = c ′ 1 , which can also be decomposed as Y = 

∏ 

g∈G Y g ,

here 

 g = 

{ [ 
−R g + p 

{ c ′ 2 } 
g,t ′ −1 

, R g + p 
{ c ′ 2 } 
g,t ′ −1 

] 
if g / ∈ 

{
c ′ 1 , c ′ 2 

}
, 

R otherwise . 
(15) 

inally, consider r = 2 and observe that our choice of (p 
{ c ′ 

1 
,c ′ 

2 
} 

g,t ′ | g ∈
) = (p 

(c ′ 
1 
,c ′ 

2 
) 

g,t ′ | g ∈ G) = (p 
(c ′ 

2 
,c ′ 

1 
) 

g,t ′ | g ∈ G) renders the feasible regions

or c 1 = c ′ 
1 
, c 2 = c ′ 

2 
and c 2 = c ′ 

1 
, c 1 = c ′ 

2 
identical. Let Z represent

his feasible region, which can be decomposed as Z = 

∏ 

g∈G Z g , 

here 

 g = 

{ [ 
−R g + p 

{ c ′ 1 ,c ′ 2 } 
g,t ′ −1 

, R g + p 
{ c ′ 2 ,c ′ 1 } 
g,t ′ −1 

] 
if g / ∈ 

{
c ′ 1 , c ′ 2 

}
, 

R otherwise . 
(16) 

n the next step, we show that for generator g = g ′ , 
e have W g ′ ∩ X g ′ ∩ Y g ′ ∩ Z g ′ = ∅ . If g ′ ∈ { c ′ 1 , c ′ 2 } , then

 g ′ ∩ X g ′ ∩ Y g ′ ∩ Z g ′ = R � = ∅ . If g ′ / ∈ { c ′ 
1 
, c ′ 

2 
} , W g ′ ∩ X g ′ ∩
16 
 g ′ ∩ Z g ′ = [ −R g ′ + max { p { 0 } 
g,t ′ −1 

, p 
{ c ′ 

1 
} 

g,t ′ −1 
, p 

{ c ′ 
2 
} 

g,t ′ −1 
, p 

{ c ′ 
1 
,c ′ 

2 
} 

g,t ′ −1 
} , R g ′ 

 min { p { 0 } 
g,t ′ −1 

, p 
{ c ′ 

1 
} 

g,t ′ −1 
, p 

{ c ′ 
2 
} 

g,t ′ −1 
, p 

{ c ′ 
1 
,c ′ 

2 
} 

g,t ′ −1 
} ] . To show that the inter-

ection above is non-empty, let us first consider (8d) for g = g ′ ,
hich is satisfied by p 

{ 0 } 
g,t ′ −1 

. After rearrangement we obtain 

R g ′ + p 
{ 0 } 
g,t ′ −1 

≤ p 
{ 0 } 
g ′ ,t ′ −2 

≤ R g ′ + p 
{ 0 } 
g,t ′ −1 

. (17) 

ow consider (8e) for g = g ′ , s = 1 and c 1 = c ′ 
1 
, which is satisfied

y p 
{ c ′ 

1 
} 

g,t ′ −1 
. After rearrangement we obtain 

R g ′ + p 
{ c ′ 1 } 
g,t ′ −1 

≤ p 
{ 0 } 
g ′ ,t ′ −2 

≤ R g ′ + p 
{ c ′ 1 } 
g,t ′ −1 

. (18) 

ow consider (8e) for g = g ′ , s = 1 and c 1 = c ′ 
2 
, which is satisfied

y p 
{ c ′ 

2 
} 

g,t ′ −1 
. After rearrangement we obtain 

R g ′ + p 
{ c ′ 2 } 
g,t ′ −1 

≤ p 
{ 0 } 
g ′ ,t ′ −2 

≤ R g ′ + p 
{ c ′ 2 } 
g,t ′ −1 

. (19) 

inally, consider (8e) for g = g ′ , s = 2 and c 1 = c ′ 
1 
, c 2 = c ′ 

2 
, which is

atisfied by p 
{ c ′ 

1 
,c ′ 

2 
} 

g,t ′ −1 
. After rearrangement we obtain 

R g ′ + p 
{ c ′ 1 ,c ′ 2 } 
g,t ′ −1 

≤ p 
{ 0 } 
g ′ ,t ′ −2 

≤ R g ′ + p 
{ c ′ 1 ,c ′ 2 } 
g,t ′ −1 

. (20) 

ince LASCOPF 1 is feasible, we know that ∃ p { 0 } 
g ′ ,t ′ −2 

and ∃ p { 0 } 
g ′ ,t ′ −1 

atisfying the above, and we can combine the above inequalities to 

btain 

−R g ′ + max 

{ 

p 
{ 0 } 
g,t ′ −1 

, p 
{ c ′ 1 } 
g,t ′ −1 

, p 
{ c ′ 2 } 
g,t ′ −1 

, p 
{ c ′ 1 ,c ′ 2 } 
g,t ′ −1 

} 

≤ R g ′ + min 

{ 

p 
{ 0 } 
g,t ′ −1 

, p 
{ c ′ 1 } 
g,t ′ −1 

, p 
{ c ′ 2 } 
g,t ′ −1 

, p 
{ c ′ 1 ,c ′ 2 } 
g,t ′ −1 

} 

, (21) 

hich implies W g ∩ X g ∩ Y g ∩ Z g � = ∅ for g ′ / ∈ { c ′ 
1 
, c ′ 

2 
} . Therefore, the

easible regions defined by (8d) and (8e) for (p 
{ c ′ 

1 
,c ′ 

2 
} 

g,t ′ | g ∈ G) inter-

ect. 

Let us now consider number of contingencies s = 3 . The above 

nalysis can first be repeated for contingencies pairwise and then 

an be extended to consider three contingencies at a time. Simi- 

arly, we can repeat the analysis for all c 1 , . . . , c s ′ ∈ C for any num-

er s = s ′ starting with s ′ = 4 up to s ′ = k in increasing order. Fi-

ally, we can repeat the analysis for all intervals t ′ ∈ N ; t ≤ T . This

oncludes the proof. 

ppendix D. Illustrative example for AC-LASCOPF 1 

In what follows, we provide an example which illustrates the 

heory developed in this article. Consider the following one-bus 

 = { 1 } three-generator G = { 1 , 2 , 3 } system with parameters as

hown in the following table. 

g ∂ C g,t (x ) /∂ x P g P g −Q 
g 

= Q g R g 

1 0 0 200 100 30 

2 1 0 200 100 20 

3 2 0 200 100 20 

Here, we neglect the shunt admittance Y 11 = 0 , resulting the 

ight hand side of (11b) and (11k) equalling zero. Also, since there 

re no transmission lines, we can ignore constraints (11f) and 

11g) . Since the objective function depends only upon the active 

ower generation, we can eliminate consideration of bus voltage 

v { 0 } 
1 ,t 

, v (c,u ) 
1 ,t 

|∀ c ∈ C; ∀ t, u ∈ N ; u < t ≤ T ) from the formulation. The

redicted demand D 1 ,t is as follows. 

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 

Re (D 1 ,t ) 0 10 20 30 50 70 100 

Im (D 1 ,t ) 50 50 50 50 50 50 50 
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Observe that none of the generators has a non-zero minimum 

eneration limit, P g = 0 ∀ g ∈ G and therefore, they may each not 

enerate at all. Therefore, the problem is feasible at t = 0 and it

ust be that p 
{ 0 } 
1 , 0 

= p 
{ 0 } 
2 , 0 

= p 
{ 0 } 
3 , 0 

= 0 . 

First, we solve AC-LAOPF without any security constraints (for- 

ally equivalent to AC-LASCOPF 1 over C = ∅ , i.e., with an empty 

et of contingencies for this system given T = 6 . Then, observe that

enerator 1 is cheaper than generator 2 which is cheaper than 

enerator 3, ∂ C 1 ,t (x ) /∂ x < ∂ C 2 ,t (x ) /∂ x < ∂ C 3 ,t (x ) /∂ x ∀ t ∈ { 1 , . . . , 6 }
nd the active and reactive power demands in every interval 

ie within the individual limits of every generator, Re (D 1 ,t ) ≤
 g , Q 

g 
≤ Re (D 1 ,t ) ≤ Q g ∀ t ∈ { 1 , . . . , 6 } ∀ g ∈ G. Also, the change in

ctive power demand between every pair of adjacent intervals 

ies within the ramping limits of every generator, −R g ≤ Re (D 1 ,t ) −
e (D 1 ,t−1 ) ≤ R g ∀ t ∈ { 1 , . . . , 6 } ∀ g ∈ G. Therefore, generator 1 can

erve the entire demand as follows. 

p 
{ 0 } 
g,t q 

{ 0 } 
g,t 

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t ∈ { 1 , . . . , 6 } 
g = 1 10 20 30 50 70 100 50 

g = 2 0 0 0 0 0 0 0 

g = 3 0 0 0 0 0 0 0 

Now, we will contrast the results obtained above to those when 

e consider contingencies. Consider contingencies in all generators 

uch that the generators may shutdown. In what follows, we solve 

C-LASCOPF 1 for C = { 1 , 2 , 3 } for a planning horizon of T = 5 . Here,

n addition to the constraints already considered, we have to en- 

ure that in the interval following an outage in any generator, the 

ealthy generators can change their generation within their ramp- 

ng limits to satisfy the demand. The generation of the healthy 

enerators should have a net increase by the amount of genera- 

ion of the contingent generator before the outage and change by 

he change in demand, i.e., 

R 2 −R 3 ≤ p 
{ 0 } 
1 ,t−1 

+ Re ( D 1 ,t ) − Re ( D 1 ,t−1 ) 

≤ R 2 + R 3 ∀ t ∈ { 2 , . . . , 5 } if generator 1 is contingent , (22) 

R 1 −R 3 ≤ p 
{ 0 } 
2 ,t−1 

+ Re ( D 1 ,t ) − Re ( D 1 ,t−1 ) 

≤ R 1 + R 3 ∀ t ∈ { 2 , . . . , 5 } if generator 2 is contingent , (23) 

R 1 −R 2 ≤ p 
{ 0 } 
3 ,t−1 

+ Re ( D 1 ,t ) − Re ( D 1 ,t−1 ) 

≤ R 1 + R 2 ∀ t ∈ { 2 , . . . , 5 } if generator 3 is contingent . (24) 

ccordingly, the least-cost base-case dispatch is as follows. 

p 
{ 0 } 
g,t q 

{ 0 } 
g,t 

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t ∈ { 1 , . . . , 5 } t = 6 

g = 1 10 20 20 20 50 - 50 - 

g = 2 0 0 10 30 20 - 0 - 

g = 3 0 0 0 0 0 - 0 - 

Observe that, given Re (D 1 ,t ) − Re (D 1 ,t−1 ) = 20 ∀ t ∈ { 4 , 5 } and

 2 + R 3 = 40 , from (22) , p 
{ 0 } 
1 ,t−1 

≤ 20 ∀ t ∈ { 4 , 5 } . In the last inter-

al t = 5 , we do not have to prepare for an outage. Therefore,

enerator 1 may generate above 20. However, the ramping con- 

traint p 
{ 0 } 
1 , 5 

− p 
{ 0 } 
1 , 4 

≤ R 1 must be obeyed. Naturally, the dispatch 

osts would be higher in this case since more expensive genera- 

ors are used. 

Observe that if we considered a planning horizon of T = 

 , the problem would be infeasible. To see this, first ob- 

erve that Re (D 1 , 6 ) − Re (D 1 , 5 ) = 30 and R 1 + R 3 = R 1 + R 2 = 50 .

rom (22), (23) and (24) , respectively we require that p 
{ 0 } 
1 , 5 

≤

17
0 and p 
{ 0 } 
2 , 5 

, p 
{ 0 } 
3 , 5 

≤ 20 . There is no possible generation such that 
 

g∈G p 
{ 0 } 
g, 5 

= 70 . 

In what follows, we illustrate the notion of the N − 2 contin- 

ency criterion by solving AC-LASCOPF 1 for C = { 1 , 2 , 3 } for a plan-

ing horizon of T = 3 . In addition to the contingency states con- 

idered before, we must consider the contingency state where 2 

f the generators have faced an outage, { 1 , 2 } , { 1 , 3 } or { 2 , 3 } . As-

uming simultaneous outages, the healthy generator should have a 

et increase in its generation by the generation of the contingent 

enerators before the outage and change in its generation by the 

hange in demand. This change should be within its ramping lim- 

ts, i.e., 

R 3 ≤ p 
{ 0 } 
1 ,t−1 

+ p 
{ 0 } 
2 ,t−1 

+ Re ( D 1 ,t ) − Re ( D 1 ,t−1 ) ≤ R 3 

∀ t ∈ { 1 , 2 } if both generators 1 and 2 are contingent , 

(25) 

R 2 ≤ p 
{ 0 } 
1 ,t−1 

+ p 
{ 0 } 
3 ,t−1 

+ Re ( D 1 ,t ) − Re ( D 1 ,t−1 ) ≤ R 2 

∀ t ∈ { 1 , 3 } if both generators 1 and 3 are contingent , 

(26) 

R 1 ≤ p 
{ 0 } 
2 ,t−1 

+ p 
{ 0 } 
3 ,t−1 

+ Re ( D 1 ,t ) − Re ( D 1 ,t−1 ) ≤ R 1 

∀ t ∈ { 2 , 3 } if both generators 2 and 3 are contingent . 

(27) 

ccordingly, the least-cost base-case dispatch is as follows. 

p 
{ 0 } 
g,t q 

{ 0 } 
g,t 

t = 1 t = 2 t = 3 t ∈ { 4 , 5 , 6 } t ∈ { 1 , 2 , 3 } t ∈ { 4 , 5 , 6 } 
g = 1 10 0 30 - 50 - 

g = 2 0 10 0 - 0 - 

g = 3 0 10 0 - 0 - 

To see how the dispatch above is obtained, observe that, 

iven Re (D 1 ,t ) − Re (D 1 ,t−1 ) = 10 ∀ t ∈ { 2 , 3 } and R 2 = R 3 = 20 , from

25) and (26) respectively, (p 
{ 0 } 
1 ,t−1 

+ p 
{ 0 } 
2 ,t−1 

) , (p 
{ 0 } 
1 ,t−1 

+ p 
{ 0 } 
3 ,t−1 

) ≤
0 ∀ t ∈ { 2 , 3 } . Also, from (27) , p 

{ 0 } 
2 ,t−1 

+ p 
{ 0 } 
3 ,t−1 

≤ 20 ∀ t ∈ { 2 , 3 } . In

he last interval t = 3 , we do not have to prepare for an outage.

lso, observe that if we considered a planning horizon of T > 3 ,

he problem would be infeasible. 
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