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We consider a generalised comprehensive Look-ahead Security-constrained Optimal Power Flow (LAS-
COPF) formulation under the N —1 contingency criterion over multiple dispatch intervals. We observe
that the number of decision variables varies quadratically with the number of intervals. To improve scal-
ability, we propose a reduced LASCOPF formulation for which the number of decision variables varies

Keywords: only linearly. We extend these formulations to the N — k contingency criterion. For reduced LASCOPF we
OR in energy observe that the number of decision variables varies with the number of k-permutations of contingencies.
Optimal power flow To improve scalability, we propose a formulation that is further reduced to vary only with the number of
Look-ahead k-combinations. Also, we show that our formulations can be extended simply to model recovery from the

N —k contingency criterion corresponding outages. Furthermore, we present LASCOPF under the N — 1 contingency criterion using DC

and AC power flow under generator contingencies. We prove that, barring borderline cases, solving the
reduced formulation is equivalent to solving the comprehensive formulation. We extend these results to
the N — k contingency criterion. Finally, we present numerical results on the IEEE 14 bus, IEEE 30 bus and
IEEE 300 bus test cases, and the 1354 bus part of the European power system using AC power flow to
demonstrate the computational advantage of the reduced formulations under the N—1 and N — 2 con-
tingency criteria.
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1. Introduction multiple consecutive dispatch intervals, viz., the planning horizon

based on short term weather forecasts, which in turn, affect the

Power system operation relies on variants of the optimal power
flow (OPF) problem (Skolfield & Escobedo, 2022). OPF entails min-
imising generation costs given a set of physical constraints for indi-
vidual dispatch intervals. However, in recent years, the increase in
the amounts of renewable energy sources has increased intermit-
tency in the available generation capacity (Bjerndal, Bjerndal, Cai,
& Panos, 2018; WWEA, 2018) and traditional energy sources are of-
ten called upon to accommodate for this. Therefore, it is important
to take energy sources’ ramping limits into account, which couples
consecutive dispatch intervals (Han, Gooi, & Kirschen, 2001).

The Look-ahead OPF (LAOPF) offers an extension to OPF that
takes ramping limits and coupling into account (Choi & Xie, 2017;
Schiro, Zheng, Zhao, & Litvinov, 2016; Xia & Elaiw, 2010). LAOPF
is intended to be robust to unanticipated changes in net demand.
Accordingly, LAOPF considers generation cost minimisation over
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net demand, i.e., the demand less the renewable generation (Lorca,
Sun, Litvinov, & Zheng, 2016). The solution to LAOPF is used to de-
termine the locational marginal prices in the next dispatch interval
and serves as a prediction for subsequent dispatch intervals (Hua,
Schiro, Zheng, Baldick, & Litvinov, 2019). Then, after the dispatch
interval is realised the problem is solved again based on an up-
dated forecast to determine the locational marginal prices for the
dispatch interval after. This follows the principle of receding hori-
zon control (Kwon & Han, 2005).

Over the years, an increasing number of Independent System
Operators (ISOs) have implemented LAOPF for the real time op-
eration of power systems (viz., multi-interval real-time markets)
such as the ISO (2019b), the ISO (2019a), the Midcontinent ISO
(Ma et al., 2009) Ontario’s Independent Electricity System Operator
(IESO) (Yu, Cohen, & Danai, 2005) and the Interconnection (2022).
ERCOT,ERCOT uses LAOPF over five minute intervals with an hour
look-ahead to obtain indicative prices. Its use is also being consid-
ered in Australia (Hesamzadeh, Galland, & Biggar, 2014).
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Apart from the coupling of consecutive dispatch intervals, ISOs
consider security against contingencies as well. Security against a
contingency entails that immediately after the contingency and as
automatic actions occur to respond to the contingency, all gen-
eration levels and line flows will stay within emergency ratings.
Thereafter, all generation levels and line flows will be returned to
non-emergency levels within a predetermined amount of time. if
generation levels and line flows exceed these limits, there is a risk
that of a cascading effect that would result in a system-wide black-
out. Since the operation follows the principle of receding horizon
control, eventually the system will be restored to being secure with
respect to another contingency; however, this may not be explicitly
represented. Security often involves ex ante preparedness against
the contingency by the dispatch in the base-case, i.e, in the case
where there is no contingency, e.g., ensuring that the system has
ramping capabilities to attain non-emergency levels. This takes the
form of constraints on the base-case that ensure that the demand
can be satisfied even despite the corresponding outage of a com-
ponent such as transmission line or a generator.

For power systems, the N —k contingency criterion is com-
monly used as a measure of security, which requires that a system
be secure against k simultaneous contingencies. Typically, power
systems are operated under the N — 1 contingency criterion. How-
ever, several markets have adopted the N — k contingency criterion
for k > 1 in order to improve security. The government of the state
of New South Wales in Australia has imposed an N — 2 planning
standard in the Sydney region transmission network (Commission,
2013) and TenneT (2017) in Netherlands considers the N — 2 con-
tingency criterion as a benchmark to test its transmission systems.

Stott, Alsac, & Monticelli (1987) proposed including security
constraints in the OPF over a single dispatch interval, viz., Security-
constrained OPF (SCOPF). Single interval SCOPF formulations, by
definition, cannot explicitly accommodate a change in dispatch and
therefore, can only explicitly model those contingencies that al-
low the dispatch to remain the same following the outage, such as
transmission line contingencies (Madani, Lavaei, & Baldick, 2017).
On the contrary, SCOPF formulations with multiple intervals are
able to model changes in dispatch following a contingency and af-
ter the automated short-term responses to the contingency, thus
allowing for more flexibility in the operation for contingencies
such as transmission line contingencies. In addition, contingen-
cies which require a change in dispatch such as generator con-
tingencies may also be modelled, thus improving security. Accord-
ingly, later works by Arroyo & Galiana (2005); Zaoui & Fliscounakis
(2006) consider two dispatch intervals, where if there is an outage
in the first interval, the dispatch in the second interval is changed.
Attarha & Amjady (2016); Karangelos & Wehenkel (2019); Zaoui
& Fliscounakis (2006) modelled SCOPF with AC power flow. Li &
McCalley (2009) proposed a decomposition method to solve SCOPF
efficiently. Huang, Pan, & Guan (2021); Laur, Nieto-Martin, Bunn, &
Vicente-Pastor (2020); Ordoudis, Pinson, & Morales (2019) consider
generation reserves as a means to recover from outages but do not
explicitly model the corresponding contingencies. Ramping limits
become relevant while considering generation reserves since the
limits constrain reserves deployment. This motivated the consid-
eration of LAOPF with generation reserves without explicitly mod-
elling generator contingencies (Han & Gooi, 2007; Han et al., 2001).

The inclusion of security constraints into LAOPF results in the
Look-ahead security-constrained OPF (LASCOPF) problem (Javadi,
Amraee, & Capitanescu, 2019). Chakrabarti & Baldick (2020) con-
sidered LASCOPF under the N — 1 contingency criterion using the
DC power flow but with a voltage-phase angle representation.
They propose a message passing based decomposition algorithm
to handle the vast computational complexity of the problem. Their
formulation considers security against transmission line contin-
gencies in every dispatch interval. However, ramping constraints
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are imposed only on the base-case (non-contingency) dispatches,
thus ignoring the effect of an outage in one dispatch interval
on subsequent ones. A similar (but simpler) LASCOPF formulation
is also used by ISOs. Murillo-Sanchez, Zimmerman, Anderson, &
Thomas (2013) developed a stochastic LASCOPF formulation under
the N—1 contingency criterion using AC power flow for use in
the event of unreliable forecasts. Alizadeh, Usman, & Capitanescu
(2022) developed a similar formulation while also considering flex-
ible resources. However, these formulations require a computation-
ally tractable solution to LASCOPF. Varawala, Hesamzadeh, Dan, &
Baldick (2022) proposed a tractable formulation for the DC power
flow while considering a comprehensive description of security
against generator contingencies under the N — k contingency cri-
terion and discussed computationally tractable approaches such
as Benders decomposition and contingency filtering (Capitanescu,
Glavic, Ernst, & Wehenkel, 2007; Papavasiliou & Oren, 2013). There
are, however, no tractable solutions for LASCOPF using non-convex
AC power flow, which, in addition to its large size, is NP hard
(Bienstock & Verma, 2019).

The layout of the rest of the article and our contributions
are as follows. In Section 2, we propose a LASCOPF formulation
with a generalised objective function and generalised constraints,
LASCOPF;. We consider security against a set of contingencies un-
der the N — 1 contingency criterion for a planning horizon of mul-
tiple dispatch intervals. We consider that outages corresponding
to any contingencies may take place in any dispatch interval and
model their effect during the remainder of the planning horizon.
Since we consider the ex post dispatch in the remainder of the
planning horizon, the number of decision variables in the prob-
lem is quadratic in the length of the planning horizon. In order to
overcome this, we propose a reduced formulation, LASCOPF-r;, for
which the decision variables are defined to be independent of the
interval of the contingency, such that there is only one set of deci-
sion variables per interval and hence, the number of decision vari-
ables are linear in the length of the planning horizon. In Section 3,
we extend the LASCOPF; and LASCOPF-r; formulations to the N — k
contingency criterion where k € N, k > 1, where N is the set of pos-
itive integers, viz., LASCOPF; and LASCOPF-r; respectively. Since we
consider multiple contingencies with outages that could occur in
any order the number of decision variables varies with the number
of possible k permutations of contingencies. To overcome this, we
propose LASCOPF-ru;, for which the number of decision variables
varies with the number of possible k permutations of contingen-
cies.

In Section 4, we present DC-LASCOPF; where we explic-
itly model a cost minimisation objective and constraints under
DC power flow and consider security against generator contin-
gencies. The objective function for both the DC-LASCOPF; and
DC-LASCOPF-r; formulations are identical and depend only upon
the base-case. Therefore, the contingency scenario decision vari-
ables only serve to add constraints on the base-case. We prove
that these constraints are identical for LASCOPF; and LASCOPF-r;
under certain realistically fulfilled conditions and therefore, the
optimal objective value is equal for both formulations. We ex-
tend our results and show that DC-LASCOPF,, DC-LASCOPF-r;
and DC-LASCOPF-ru, have the same optimal objective
value.

We present DC-LASCOPF; in order to set the stage for
AC-LASCOPF; under AC power flow which we present in Section 5.
We conjecture that certain observations made for DC-LASCOPF;
also apply to AC-LASCOPF; and therefore the same results would
apply to both. In Section 6, we demonstrate the usefulness of
the proposed AC-LASCOPF-r; and AC-LASCOPF-ru, formulations
by comparing their computational time to AC-LASCOPF; and
AC-LASCOPF-r;, respectively. Finally, we conclude in Section 7.
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2. LASCOPF under N — 1 contingency criterion
2.1. General formulation: LASCOPF;

In what follows, we develop a formulation for the look-ahead
security-constrained optimal power flow problem under the N — 1
contingency criterion (LASCOPF;). We do so for a power system
with a set of buses! A and generators G. We compute LASCOPF,
for a planning horizon of T € N dispatch intervals, assumed to be
of equal duration, for simplicity, given the present dispatch? of the
system. The present, for which the dispatch has already been cho-
sen, is represented as dispatch interval (interval, in short) 0. Our
objective is to choose the dispatch for intervals 1 to T. Under a
base-case dispatch, i.e., when no outage has taken place, the volt-
age® at bus n e A in interval t € Ng; t < T, where Ny refers to the
set of non-negative integers, is denoted by v,{ft} € C. Note that the
values of variables, such as voltage and parameters, such as de-
mand at a bus may vary continuously with time and therefore,
also during a single interval. For brevity, we refer by ‘in interval
t’ to a value at the end of interval t. The active power generation

by generator g € G is p{got} € R and the reactive power generation

is qg)t} € R. In the LASCOPF; formulation, the base-case dispatch of

e dgrln e

the system in interval ¢ is fully determined by (vift} D
N;geg).

The LASCOPF; formulation considers security under the N —1
contingency criterion against a given set of contingencies C. Con-
sider that an outage corresponding to contingency c € C may take
place in any interval u € N; u < T. Accordingly, we need to explic-
itly re-dispatch other generators (including the deployment of ca-
pacity that would be designated as spinning reserves in a conven-
tional dispatch formulation) over the subsequent intervals, i.e., be-
ginning with interval* are implicitly incorporated, e.g., for a gen-
erator contingency ¢ € G which entails the complete outage of an
operational generator, we are implicitly assuming that the stored
kinetic energy in the inertia of other generators will make up for
the shortfall in the seconds after the outage with other automated
actions operating subsequently until new dispatch instructions can
be set to generators and implemented. Accordingly, our formula-
tion obtains the dispatch across several consecutive dispatch in-
tervals that is cognisant of such automatic responses, but with
the understanding that spinning reserves would be dispatched ex-
plicitly in our formulation over several intervals to relieve the
capacity providing the automatic actions. u+ 1 until the end of
the planning horizon to make up for the shortfall. In order to
model the contingency scenario for contingency ¢, we must con-
sider the modified physical constraints that would apply to the
corresponding modified dispatch. Accordingly, a contingency sce-
nario is denoted by the tuple (c,u): in interval t > u, the voltage
at bus n, and the active and reactive power at generator g are
T Weg, p(c W e R_g and qgct € R, respectively. The dispatch of
the system under scenario (c,u) in interval t > u is determined by
WSV p 4G Ine Nige 9).

Fig. 1 illustrates our model of operation under contingency sce-
narios.

The LASCOPF; formulation over the set of variables

0}y {0} (. :
(vn[ pgt} qét}'U(CU) pfgCtU) qu,cru”CEC;”EN?geg? tue

1 See Appendix A for a comprehensive list of notation used throughout this arti-
cle.

2 In practice, this dispatch would be a re-dispatch in the real-time market com-
pared to the day-ahead market schedules.

3 For brevity, we use voltage to refer to the voltage phasor.

4 We assume that automatic responses carried out immediately after the contin-
gency
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N;u<t<T)is

rrginf(v,ﬂ?t},p{g?[}’qfr}|n eN;ge g;teN;tST), (1a)
subject to

(Base-case dispatch constraints:)

hO () i aln e Nige 0) <o, (1b)
ﬁi’(vf”} Dn e geg) (1c)
—Rg = p{} - p) | <Ry, (1d)

(Contingency scenario constraints on the corresponding dispatch:)

(5 plG. gl In e Nige G) <0, (1e)
A (v, P, gl Ine Nig e G) =0, (1)
_R <p(”’) pgﬂ) <Rgifg;éc;t>u+1, (1g)

R, <p(cu> pfg‘?tli1fﬁgifg7éC;t=u+1, (1h)

VceC;Vge G, Vt,ueN;u<t<T.

Here, (1a) is a generalised objective function that represents
minimisation over any desired base-case quantity® the objective to
be a function of the base-case dispatch only (Capitanescu, Glavic,
Ernst, & Wehenkel, 2006). This is because (1) the probability of in-
dividual outages is in practice difficult to determine, (2) the proba-
bility of individual outages is low and therefore, considering the
quantity under contingency scenarios would not affect the out-
come much and the accompanied increase in computational costs
would not be justified and (3) if a contingency actually occurs,
then LASCOPF will be re-solved for the system in the next dis-
patch interval with the lost component(s) removed, treating what
was the post-contingency state of the system as the new base-
case, so that any sub-optimality will begin to be addressed within
a dispatch interval, typically 5 to 15 minutes. Although the contin-
gency scenario quantities are not considered ex ante, based on the
principle of receding horizon control, they would be optimised ex
post where what was previously the contingency scenario would
be the base-case., e.g., total generation cost and transmission line
losses. This will turn out to be crucial in enabling a simplification
of the problem. The power system is subject to certain static phys-
ical constraints, i.e., physical constraints that apply independently
to each instant of time, such as active power generation limits and
power balance. For the base-case dispatch, (1b) and (1c) repre-
sent an aggregate of these inequality and equality constraints re-
spectively. In addition to static physical constraints, every genera-
tor g € ¢ has ramping limits Rg € R0, respectively, which constrain
the difference in its active power generation between consecutive
intervals. For the base-case dispatch, the ramping constraints are
expressed in (1d). In Fig. 1, (1d) are represented by solid arrows
(which represent no change in scenario) connecting the filled cir-
cles (which represent the base-case). It is the existence of ramping
constraints that requires consideration of multiple intervals while
operating the power system.

The static physical constraints that would apply to the contin-
gency scenario dispatch, including any constraints that characterise
the outage corresponding to the contingency, are represented in

5 A theoretically optimal approach would consider the desired quantity under all
scenarios, i.e., the base-case and the contingency scenarios and discount it with
their probabilities. However, it is customary in the literature to approximate.
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End of planning

horizon
Dizpatch () 1 2 3 T
interval 1 1 1 1 1 I w
I I I I I | Kl
t

|C> (c,u)

no outage
observed
outage ¢
""" *  observedin
interval O H'/ﬁ\

Fig. 1. Illustration of the dispatch under base-case {0} and contingency scenario (c,u) under contingency c € C in interval u € N;u < T, and the change from base-case to

contingency scenario (c, u) in interval t = u + 1 for LASCOPF;.

(1e) and (1f). For example, for a generator contingency g € C, the
characteristic constraint would describe the outage of generator g.
Other static physical constraints on other generators and the sys-
tem would replace the base-case dispatch constraints. Observe that
while the arguments of the functions represented by hiC} and Flic}
depend upon u, the parameters of the functions themselves do
not. In addition, consecutive contingency scenario dispatches from
interval u+ 1 to interval T must satisfy ramping constraints ex-
pressed in (1g). In Fig. 1, constraints (1g) are represented by solid
arrows connecting empty circles (which represent a contingency
scenario). Finally, since an outage corresponding to a contingency
in interval u would require a change from the base-case to the
contingency scenario, the ramping constraints (1h) between the
base-case dispatch in interval u and the contingency scenario dis-
patch in interval u+ 1 would apply. In Fig. 1, constraints (1h) are
represented by dashed arrows (which represent a change of sce-
nario when an outage corresponding to a contingency takes place).
The condition g # c ensures that if the contingency is a generator
contingency, i.e., ¢ € G, the ramping constraints would not apply
to generator ¢ and if the contingency is not a generator contin-
gency, i.e., ¢ ¢ G, it holds for all generators. The distinction between
(1g) and (1h) is the reason why u is required to specify a con-
tingency scenario. Our optimisation objective does not include the
costs in contingency scenarios, i.e., we do not consider the costs
under contingency scenarios ex ante. However, due to the receding
horizon control, the dispatch will have to be recomputed ex post
and this will move the post-contingency dispatch towards optimal-
ity in a receding horizon control fashion given the contingency. In
this article, we restrict our attention to the dispatch ex ante.

To represent the contingency reserve limits (Huang et al., 2021),
a conventional SCOPF formulation would need the surrogate con-
straint

~Sgr < P — P} <SgeVeec
VgeG.g4cVt,ueN;u<t<T. (11)

where S, ; € R and Set € R>o represent the lower and upper con-
tingency reserve limits respectively. On the other hand, our for-
mulation explicitly considers contingencies and ensures that gen-

erators can be re-dispatched to make up for the shortfall due to
a generator contingency. That is, the reservation of capacity and
ramping capability is done implicitly by enforcing supply-demand
balance in the post-contingency system, rather than by explicitly
defining a spinning reserve requirement. This eliminates the need
for the surrogate constraint. In fact, we can obtain the parameters
§g,[ and §g,t from our formulation as

Sg¢ = min {0, P& - pg)t}|c eC,c£gueNu< t} VteN;t<T,
(1)

Sgr=max {0, pg;“)—pf;ﬂc eC,c£gueNu< t} VieN:t<T.
(1K)

Recall that base-case dispatches are defined in every interval
t, thus the number of base-case dispatches is T. On the contrary,
contingency scenario dispatches are defined for every contingency
scenario (c,u) in every remaining interval t where c € C and t,u ¢
N,u < t < T, thus the number of contingency scenario dispatches is
ICl x Y yeryr (T —u) =|C| x T(T —1)/2. This can be inferred from
Fig. 1. Accordingly, the total number of decision variables and con-
straints of LASCOPF; increases quadratically in T. The number of
constraints scales similarly, as discussed in Appendix B. This ren-
ders the problem computationally intractable for large values of T.

Finally, observe that our formulation differs from existing for-
mulations of LASCOPF implemented at certain ISOs. Those formu-
lations only model outages that would take place in the upcom-
ing interval, i.e.,, u = 1. In addition, they may or may not consider
the effect of the outage on the remainder of the planning hori-
zon but rather only for a single interval following the outage, i.e.,
t =u+ 1= 2. In other words, they do not consider the entire set of
constraints in (1h) and may or may not consider the constraint set
(1g). On the contrary, our model enforces both (1h) and (1g) and
is thus, a more comprehensive formulation of LASCOPF.
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End of planning

. horizon
Dispatch 1 2 3 4 T
interval 1 1 1 1 1 l
/ \ (@ 1 T T 1 1 T
.\ / t
observed . . . . u
w=1" u.—2‘“ 'r.i.—?;‘\‘ u—:i\‘ .,
outage ¢ LY " T-1 ~,
“““ ¥ opbservedin ?/k V_\ v ’7 -\‘I
interval = A % / T

Fig. 2. Illustration of the dispatch under base-case {0} and contingency scenario (c,u) under contingency c e C in interval u € N;u < T, and the change from base-case to

contingency scenario (c, u) in interval t = u + 1 for LASCOPF-r;.

2.2. Reduced formulation: LASCOPF-r,

In LASCOPF;, the quadratic dependence on the number of con-
tingency scenario dispatches on T is due to their dependence on u.
In what follows, we propose LASCOPF-rq, a formulation in which
every contingency scenario dispatch is chosen to be independent of
the interval u in which the outage may take place. Accordingly, un-
der scenario (c,u) the contingency scenario dispatch in interval t
is (vffz p(ct), (C)In € N; g e G). LASCOPF-r; is essentially LASCOPF,
with the addltlonal constraint

( v P g Ine N g e Q) = ( v . gl ineN:ige Q)

VceC;Vt,ueN;u<t<T, (11)

and with S= (vnt,pét},qét}, v . qdlceCineNigegit e
N;t <T).

Constraint (11) essentially means that the contingency scenario
dispatch (U,(f?, pgt), qgt) |n e N;geG) must simultaneously satisfy
all the constraints that were satisfied in LASCOPF; separately by
the contingency scenario dispatches (v“ W, p(ct“ ,qgt'“>|n eN;ge
G) over individual values of u as illustrated in Fig. 2. Observe that
constraints (1e) and (1f) depend only on contingency ¢ and not on
u and are thus identical for (v, p{5". q{G" Ine N:ge g) over
all values of u. Consequently, each of them represents only a single
set of constraints on (vff?, pgt), qgﬂn e N;ge ). This only leaves
(1g) and (1h) as distinct constraints to be obeyed simultaneously
by (7. p$). aidIn e Nig e G).

In the reduced formulation, there is one contingency scenario
dispatch for every contingency c in every interval t > 1 and so
the number of contingency scenario dispatches is |C| x (T —1).
This can be inferred from Fig. 2. Accordingly, the number of de-
cision variables and constraints of LASCOPF-r; increases only lin-
early in T rendering the problem more computationally feasible
than LASCOPF; for large values of T.

Recall that certain ISO LASCOPF formulations only model out-
ages that would take place in the upcoming interval, ie., u=1
but consider their effect throughout the planning horizon, i.e., t €
N,1 <t <T. Our LASCOPF-r; formulation, owing to the indepen-
dence of u, LASCOPF-r;, would have the same number of decision
variables as existing ISO formulations. The only difference between
the two is the additional consideration of (1h) in LASCOPF-r; since
LASCOPF-r; considers that the outage may take place in any inter-
val of the planning horizon and therefore, the corresponding ramp-
ing constraints must be obeyed. We expect that this addition does
not increase the computational complexity much compared to ex-
isting ISO formulations while allowing for a more comprehensive
consideration of contingencies.

It follows from the definition of LASCOPF-r; that its feasible re-
gion is a subset of that of LASCOPF;.

Observation 1. If LASCOPF-r; is feasible, then LASCOPF; is feasible.

Lemma 1. For every feasible solution of LASCOPF,, the feasible re-
gions defined by (1g) and (1h) for (vnt pg[),qg)ln eN;geG;Vte
N; t < T) intersect Vc e C.

Proof. Consider a feasible instance of LASCOPF; and a feasible
solution (vn ., pg)[} qu r} (C w pgct”) qg[”)| ceCne J\/'g € Q't ue
N;u <t <T). Given the base-case dispatch, (v,1 0 pg)t}, qgt Ine
N;ge G teN;t <T), observe that (1g) and (1h) together with
(11) only place constraints on (pgt)|g cG;VteN;t<T) Vce
C. First, consider a contingency c=c and interval t=2. Let
(pg;’l)Ige G) be the feasible set of dispatch during interval t =2
for contingency scenario (¢’) occurring during interval u = 1. Now
consider the corresponding LASCOPF-r; formulation and the set of

dispatch (p(c )Ig € G). For t = 2, the only possible value that u can
take on is u =1, since u e N,u <t =2, so from (11) (p(c)|ge G) =
(p(c Dige g). As a result, (p(c)|ge G) satisfies (1h) for u = 1. Ob-
serve that (1g) does not involve (p(c )|g €g).

Let us now consider interval t =3 and let (pg;’l)|ge G) and

(pg;’z)Lge G) be the feasible sets of dispatch for LASCOPF; for
the outage occurring during intervals u =1 and u =2, and con-
sequently satisfying (1g) and (1h) respectively. For LASCOPF-rq,
let (p(c)|ge G) be the corresponding set of dispatch. From (]1)

(C )|g € G) is constrained by (1g) for u =1 and by (1h) for u =
Let Y be the feasible region defined by (1g) for u = 1. We can de—
compose Y = [y Vg, Where
[ Re+ply! ),Rg+p§f2’])] ifg#c,
R otherwise.

Vg = (2)

Similarly, let Z be the feasible region defined by (1h) for u =2,
which can also be decomposed as 2 =[], Zg, Where

o [—ﬁg-i—pg)z},ﬁg—s—pg] ifg=c,
=

R otherwise.

(3)

In the next step, we show that for generator g=g’, we have

yg/ﬂZg,:(A.lfg’:c’,thenyg/ﬂzg/ Rqé@lfg’;éc’ yg/ﬂzg/—
_ ; _ .

[-Ry + max{p;;), p‘{;}z}, Ry + mm{péf 21), Py 2}] To show that the

intersection above is non-empty, let us first consider (1h) for
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=g, u=1andt =2, which is satisfied by p;f/’;). After rearrange-

ment we obtain

= = 1
Ry + 0550 < 09 <Ry + 015V, )
Now consider (1d) for g =g and t = 2, which is satisfied by pg,)}z.
After rearrangement we obtain

Rg’+pg'2<p/1_R +p{0} (5)

Slnce LASCOPF; is feasible, we know that Elpg,1, Elp(c D and

3 p g 2 satisfying the above. Therefore, after combining the above
we obtain

(1)

—Rg« + max {pgf‘z (C 1)

,pg),}z}fﬁg+min{pg2 pgz} (6)
which implies Yy N 2, # @ for g’ # c’. Therefore, the feasible re-
gions defined by (1g) and (1h) for (p(c )|g € G) intersect.

Let us now consider interval t = 4. The dispatch (p(c )|g €g)is
constrained by (1g) for u e {1,2} and by (1h) for u = 3 First, re-
call for t =3 that constraints (1g) for u=1 and (1h) for u =2 al-
low (p(c )geg) = (C 1)|ge G) = (C 2)|ge G). If we require this
to be the case, we can see that the feasrble regions defined by
(1g) for u € {1,2} when t = 4 are identical. We can show for t = 4,
similarly to the approach for t = 3, that the feasible region defined
by (1h) for u = 3 intersects with the others. So far we have shown
that feasible regions intersect up to t = 4. We can repeat the above
analysis for interval t =t’ starting with t' =5 up to t' =T in in-
creasing order and then for all contingencies c € C. This concludes
the proof. O

3. LASCOPF under N — k contingency criterion
3.1. Comprehensive formulation: LASCOPF,

In the following section, we propose LASCOPF,, a gener-
alised formulation for LASCOPF under the N —k contingency
criterion. LASCOPF, differs from LASCOPF; in that we require
the system to be secure against k contingencies over the plan-
ning horizon. We consider temporally ordered sequences of
seN;s <k contingencies (cq,...,Cs|C1,...,Cs€C;C1 # ... #Cs).
For contingencies, it is also necessary to specify the sequence
of intervals (uq,...,us|uy,...,useN;u; <...<us <T) in which
the corresponding outages may take place. Observe that we
have allowed multiple outages to take place in the same
interval.® A contingency scenario is denoted by the tuple
(c1,uq,...,Cs, Us): in interval t > us the dispatch of the sys-
tem is (U(Ct JUp s Cs Us) p(C1 JUp e Cs,Us) q(Cg U, Cs,y Us)|n e N: ge g)
Accordmgly, the LASCOPF,, formulatlon over the set of variables

0} (C1,Up,esCsolls) - (C1,lqemnsCsols) (C1,U7smmns
= ORL B gt i gkl

N,s<kc1,.. ,CGeCC1 # .. ;écs,nej\/gegtm JUs €

Nyju; <...<us<t<T)is

msinf< O,pgt,qg[|ne/\/gegteNt<T) (7a)
subject to

(Base-case dispatch constraints, (7b) to (7d):) (1b) to (1d),
(Contingency scenario constraints on the corresponding dis-
patch:)

hiﬁ ..... cs](vlgcg,ul,....cs.u,)’ pgc;,ul,...,c; JUs) qéctl Ui, c,.u))|n c /\/;ge g> <0, (7b)

6 The contingency criterion securing against k contingencies sequentially is re-
ferred to, in the literature, as N —1—1...k times and simultaneously as N — k. The
adjustment requirement is in general greater for the latter case. Since our formu-
lation secures against simultaneous contingencies, we have chosen to refer to our
contingency criterion as the stricter N — k criterion.
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flicl ..... cs}<vrgc;.ttl....,cs.Lt) péq JUq,...,Cs,Us) qécl Juq,. cs,us)|n e/\f;ge g)

=0, (70)
—Rg < p(cl U Cslls) pécg,_ullw..cs,us) < Rg
ifgg{cr,....cslst>us+1, (7d)
—Rg < Pg?”l """ ) pgjt}—l <R
ifg¢lo,....chiup=ust=us+1, (7e)
Ry = plfge ) pGte ) <Reifg g {e. o)
U < Uppg =Usit = Us+ 1, (71)

Vr,seN;s <k;Vcq,...,
Nyu; <...<us<t<T.

Constraints (7b) and (7c) are analogous to (le) and (1f) in
LASCOPF;, respectively. Since these are static constraints, they only
depend on the sets of contingencies {cy,...,cs} and not on their
order. In addition, consecutive contingency scenario dispatches for
dispatches under the same contingency scenario (cq, uq, ..., Cs, Us)
must satisfy ramping constraints expressed in (7d). At the point
of transition from the base-case to (cq, uq, ..., Cs, Ug), ramping con-
straints expressed in (7e) would apply. Observe that a transition
from the base-case would instead take place if all correspond-
ing outages would take place in the same interval u; =... = us.
Similarly, at the point of transition from the contingency sce-
nario (cy,uq,..., Cr, Ur) to scenario (cq, uq, ..., Cs, Ug), ramping con-
straints expressed in (7f) would apply. In this case, all outages cor-
responding to contingencies c,,; to ¢s would take place in the
same interval u,,; =...=us. The example in Appendix D illus-
trates the N — k contingency criterion.

Owing to the dependence of contingency scenario dispatches on
the intervals (uq,...,us) in which the outages would take place,
the numbers of contingency scenario dispatches and accordingly,
the decision variables and constraints and follow O (T**1) render-
ing LASCOPF,, computationally intractable for large values of T.

cse€CiC1#...4C;VgeG; Vt,uy, ..., us €

3.2. Reduced formulation: LASCOPF-r;,

To overcome the O(T¥*1) dependence of the number of dis-
patches on T, similar to LASCOPF-r;, we propose LASCOPF-r;
under the N -k contingency criterion. Here, under contin-
gency scenario (cq,uq,...,Cs,Us) the dispatch in interval t is
W CS),p(Cg """ CS),q(Cg """ CS)|n € N;g<@). Note that the indexing
in the superscript of the decision variables is on the basis of un-
ordered sets {cq,..., ¢s} in LASCOPF-ru,, whereas the indexing is
on the basis of ordered sets (cy, ..., ¢s) in LASCOPF-r;. Accordingly,
LASCOPF-1; is essentially LASCOPF, with the additional constraint

(U'("c;.ul ..... Cs,Us) Pécl Uy, ...,Cs,Us) qécl JUq,....Cs, us)|n e/\/’;ge g)

:<v1(16; pgtl ..... ,Cs) q(ctl 44444 C’)|ne/\/;geg>
VseN;s<kVcy,...,cs€Ci01 # ... #£Cs;

Vt,ug,...,useN;up <...<us <t <T, (7g)
and with =% pl. gl v, pla S gla - Ds e nis <

kici,....cs€Cc1#...#Cc:neN;geG;teN;t<T).

Observation 2. If LASCOPF-1}, is feasible, then LASCOPF, is feasible.
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Lemma 2. For every feasible solution of LASCOPF-r,
the feasible regions defined by (7d), (7e) and (7f) for
(U(C1 “““ &) pg} """ &), qg} """ “neN;geG:VeeN:t <T) intersect
VseN;s<kVey,....cs€Cicy #...#Cs

Proof. The proof of Lemma 1 for the N —1 contingency criterion
can be generalised to the N —k contingency criterion. We begin
by proving that the feasible regions intersect for contingency sce-
nario dispatches with a single contingency and proceed by consid-
ering contingency scenario dispatches with increasing number of
contingencies. O

Incorporating the additional constraint, we obtain the

following formulation for LASCOPF-rj over the set of vari-
(c1,..

ables (vnt,p;t},qét], ,(fg """ Cs,pgg ,qgt s e N;s <

k;c1,...,cseC C1#...2C;neN;g8eGteN;t<T).

n}sinf(v,ﬂot,pgt,qgtme/\/gegteNt<T) (8a)
subject to

(Base-case dispatch constraints, (8b) to (8d):) (1b) to (1d),
(Contingency scenario constraints on the corresponding dispatch if
t>1:)

hicl AAAAA c;}(vr(:g ..... ) péC; ..... G5 ’qg; ..... DlneN ge g) 0. (8b)
B (v g PIne Nigeg) =0, (89
“Rg < p{ — ) <Rgifg ¢ {cr.....c}ift>2.  (8d)
—Rg < p“g - p({gf’t}f1 <Rgifg¢ {c1,..., ), (8e)

VrseN;r<s<kyVcy,...,cse€C;c1#...#¢Cs; Vg e
G;Vt,uy,...,us e N;u; <...<us <t <T. Here, (7d) and (7f) have
been represented jointly as (8d).

Since separate contingency scenario dispatches are defined only
for every contingency sequence (cp,...,Cs) in every interval t,
the number of contingency scenario dispatches are Z’,j,zl lclp, x T
where "P, represents the number of k permutations of n. Accord-
ingly, LASCOPF-r;, is more computationally feasible than LASCOPF,,
for large values of T. However, the dependence of the number on
IIp, could still render LASCOPF-r, computationally intractable for
large values of k, despite it being easier to solve than LASCOPF,.

3.3. Unordered contingencies: LASCOPF-ru;,

To overcome the Zf/zl IIp,, dependence of the number of dis-
patches on k, we propose LASCOPF-ru,. Here, given the sequence of
contingencies (cq,...,Cs) the contingency scenario dispatch in in-
terval t is (v,{f} """ &} pif} """ C‘},qgg """ “Hne N g e G). LASCOPF-ruy

is LASCOPF-r;, ‘with the additional constraint

(vt~ Pt gVl e Nig e 9)

=<U,{,‘C; ,,,,, Cs’pg,ctl ..... cs}ngtl ..... C"}lneN;geg)
VseN;s<kVcy,...,cseCic1#...4c; VteN; t <T,
(8f)

and with S — (vnt P;ot} qg)[} {61 ,,,,, cs} p;c; csh q;c;

kicy,....,cs€Cic1 # .. ;écs,ne/\f gegteN;t<T).

s e Ny s <

Observation 3. If LASCOPF-ru, is feasible, then LASCOPF-r;, and
consequently, LASCOPF,, are feasible.

Lemma 3. For every feasible solution of LASCOPF-1,, the feasible re-
gions defined by (8d) and (8e) for (v{c1 """ CS},pgg """ CS},qgg """ “Hn e
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N;ge G, VteN;t <T) intersect VseN;s<k;Vcq,...,cs€C;c1 #
.. £ Cs
Proof. See Appendix C. O

Since separate contingency scenario dispatches are defined only
for every contingency set {ci,...,cs} rather than sequence in ev-
ery interval t, the number of contingency scenario dispatches are
YK _, ICy x T where "C; represents the number of k combina-
tions of n. Accordingly, LASCOPF-ru; is more computationally fea-
sible than LASCOPF-r, for large values of k.

3.4. Recovering from an outage

The LASCOPF, formulation can be extended to include re-
covery of the failed components from outages. Recovery of a
failed component entails bringing the component back online
and accordingly dispatching generators. Recovery can be ac-
commodated in the LASCOPF, formulation by removing the
requirement that c; #...#cs in the definition of the set of
decision variables, S such that S = (vn[,pz{zot},qét} Cpnntais)

(C1,Uq,....Cs,us) - (Cq,U7,. cs,us)l

Pg:’ gt
Gg;t,uq,..., UseN;up <...<us <t<T). Let
consider the contingency

pécé HomCata), qg;’““'"'“d'“d)|n eN;ge@G) in interval t where

ug <t<T. If a single contingency ¢ appears twice in the string
of contingencies (cq,..., cq), then it represents a dispatch in a
system that was previously affected by a corresponding outage
but has since recovered. If ¢’ appears thrice, it represents that the
outage has recurred since its first recovery and so on.

Recall that constraints (7b) and (7c) are static, i.e,
would apply to a given contingency scenario dispatch
(U(q g, Cgallg) pécl JUq,e,Cqallg) q(q UGy, ud)|n eN: ge g) only
based on its active contmgenc1es {cq...., cs} where s < d. The set
of active contingencies {c;, ..., ¢} > ¢’ if and only if ¢’ is contained
in the tuple (cq, ..., c4) an odd number of times. If s = 0, then the
base-case dispatch constraints would apply.

In order to define LASCOPF-r;, (7g) would apply as defined.
However, to define LASCOPF-ru, (8f) would have to be modified
as

(Uﬁlc; ..... cq) pfgct] ,,,,, Cq qéct]

SEN;SEk»C]yN-,CsEC,TIGN;ge
deN;d<k and
scenario  dispatch (y(cl U eCillg)

Cd)|ne/\/;geg)

- (v,{f; ----- @) pla--ol gla-Slin ¢\ g e g)
VdeN;s<d<k;Vcy,....,.cgeC;VteN; t <T. (9)
Note that if s =0, instead of using the base-case dispatch

(vn[,pg[ qgt [ne N;geG) on the right hand side we de-
fine a second base-case dispatch with the superscript {0’} as
(v,ﬂ?t/},p‘{g?t’],qz{g”n e N;g8€G) so that recovery does not impose
any constraints on the original base-case dispatch. This new base-
case dispatch will satisfy the same constraints as the original base-
case dispatch but will not factor into the objective function. This
will allow Lemma 3 to hold and will also allow some results that
we will present in the following sections.

4. LASCOPF with DC power flow

In what follows, we introduce a particular formulation
for LASCOPF; under the DC power flow model, DC-LASCOPF;
(Varawala et al., 2022). We consider the set of contingencies to
be generator contingencies, i.e., C € G. Under an outage corre-
sponding to a generator contingency, the failed generator cannot
generate. Since DC power flow does not consider reactive power,
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the DC LASCOPF1 formulation is defined over the set of variables
(pgf pgct”)|cec;ge GittueNu<t<T)as

i {0}
m;nZ chvt<pg.t ) (10a)
t=1 gegG
subject to
(Base-case dispatch constraints:)
S P =" D (10b)
ge§g neN
P, < pl) <P, (10¢)
K <Y Hin| Y AngplS) — Dne | <K, (10d)
neN geg
~Re < Pl — Pyt 1 <Re. (10e)

(Generator contingency scenario constraints on the corresponding
dispatch:)

pi =0ifg=c, (10f)

Y p =" Dus. (10g)

geg neN

P, <PV <Pgifg#c. (10h)

—Rg < p(cu) pgt’li)] <Rgifg#ct>u+1, (10i)
<p(”t“) pz{;ot} | SRgifg#ct=u+1, (10j)

VceC;Vge G, VlieL;Vt,ueN;u <t <T.

For every generator g< G in interval t e N;t < T, the cost of
generating active power pg: € Rog is Cg¢(pgt) € Rso. For every bus
ne N in interval t € N;t < T, the active power demand is Dn’t €
R.(. For every generator g € G, the minimum and maximum ac-
tive power generation limits are Py, Py € R, respectively where
Py < ﬁg. Ang = 1 if generator g is located at bus n and Apg = 0 oth-
erwise Vn e N;ge G. For transmission line | € £, the maximum
power flow is K; € R.q. Hj, € R is the power transfer distribution
factor for transmission line | and bus n Vn e N;Vl e L.

Objective function (10a) is the total generation cost in the
base-case dispatch over the entire planning horizon. For the base-
case dispatch, the power balance, active power generation limits,
transmission line limits and ramping constraints are (10b), (10c),
(10d) and (10e), respectively. When an outage corresponding to a
generator contingency takes place, the failed generator cannot gen-
erate for the remainder of the planning horizon which is enforced
by constraint (10f). In addition, for the generator contingency sce-
nario dispatch’, the power balance and active power generation
limits are (10g) and (10h), respectively. The ramping constraints are
(10i) and (10j). Note here that since the contingency scenario dis-
patch is only defined for intervals after which the outage would
take place, i.e., t > u, the constraints are accordingly only defined
for these intervals. Under severe outages such as those correspond-
ing to generator contingencies, transmission line limits are often

7 A theoretically optimal approach would consider load-shedding as a possible
action and weigh its associated cost against the increased cost due to consideration
of security constraints that prevent load-shedding. However, in practice, the cost of
load-shedding is typically so high compared to generation costs that it is rarely the
optimal outcome. If low cost load-shedding is available and set up to be triggered
through dispatch signals, then, in principle, it could be considered in our LASCOPF
formulation.
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relaxed to increase flexibility (Chapter 8, Wood, Wollenberg, &
Sheblé, 2014). In what follows, we characterise the structure of
(10b) and (10g).

Observation 4. If DC-LASCOPF; is feasible, then the feasible re-
gions defined by (10b) for (p 0}|geg) and (10g) for (p(“')|ge

G)VceC;YueN;u<t<T are 1dent1ca1 and convex. Furthermore,
3F:RI9 - R such that OF (pgtlgeG)/dpgr >0VgeG VteN
such that the feasible regions can be represented by F(pg:|g e
g)=

This observation is instrumental for obtaining the results in
the rest of the section and also towards developing the theorems
for AC-LASCOPF; in the following section. We now continue with
proposing DC-LASCOPF-r; which is essentially DC-LASCOPF; with
the additional constraint

(pg;“) lg e g) - <pgg|ge g) VeeC:VtueNu<t<T, (10k)

and with S = (pgt,péft)lc €eCigeGteNt<T).

It is intuitive to expect that, barring borderline cases, an op-
timal solution for DC-LASCOPF; exists, noting that there may be
other optimal solutions, for which the contingency scenario active
power generation would all not be less than the base-case active
power generation for all healthy generators based on the net loss
of generation. In what follows, we show that if this holds, then
solving DC-LASCOPF; and DC-LASCOPF-r; are equivalent.

Theorem 1. If DC-LASCOPF; is feasible and has a solution for which
either p(“’) > pg)[ VgeGig#c or p(”’) p{ VgeGig#c VYce
C:VYt,ueN;u<t<T, then DC- LASCOPF r is feaszble Furthermore,
if DC-LASCOPF; has such a solution that is optimal, then the optimal

objective value is equal for both DC-LASCOPF; and DC-LASCOPF-ry.

Proof. The proof follows that of Theorem 4 presented in the next
section. O

Note here that the condition that there be a feasible solution of
LASCOPF; such that the contingency scenario active power gener-
ation meets the given requirements is only required to prove the
equivalence between the formulations. The condition is not explic-
itly included as a constraint in either formulation and accordingly,
either formulation may have solutions that do not satisfy this con-
dition.

Now, consider the N —k contingency criterion. We formulate
the DC-LASCOPF;, DC-LASCOPF-r, and DC-LASCOPF-ru;, problems
as extensions of DC-LASCOPF; according to the general LASCOPF,
LASCOPF-r;, and LASCOPF-ru, formulations respectively presented
in Section 3. We obtain the following results for the formulations.

Theorem 2. If DC-LASCOPF,< is feasible and has a solution

(€1.Uq,....Cs,Us)

for  which  either Pet’ >pgthegg¢{cl,...,c}
or p(ctlul c:.us)<pét VgeG.g¢{cr.....cs} VseN;s <
k;Veqy,...,cseCcr#...#c; V1 eNyuy=...=us <t <T

and either p<cl'“1 """ Cs‘”5)>p(cl‘”1 """ Cr.ur) Vgeg;ggé{c],..‘,cs} or

p;(gctl JUq,...,Cs,Us) > p(q JUp .. Craliy) Vg e g¢ {C] ..... Cs} VrseN:T <
s<k;Vcq,... creC Cl1#...#C Vtuy,..., useN;uy <...<Ur <
U1 =...=Us <t <T, then DC-LASCOPF-1} is feasible. Furthermore,
if DC-LASCOPF; has such a solution that is optimal, then the optimal
objective value is equal for both DC-LASCOPF, and DC-LASCOPF-r;,.

Proof. The proof follows that of Theorem 1 can be generalised to
the N — k contingency criterion. O

Theorem 3. If DC-LASCOPF-r, is feasible and has a solution for
2
16 > pler@) g e Gig ¢ (e, ¢ gl c2)

which  either pg_[
<pDVgeggelan. .,

~eH

or p(c1 cs_1.¢l,c2} VseN;s<
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k;Veq, ..., C1.CLCReCicr#.. . #C g #C A VteN;t <T,
then DC-LASCOPF-ru,, is feasible. Furthermore, if DC-LASCOPF; has
such a solution that is optimal, then the optimal objective value is
equal for both DC-LASCOPF-r;, and DC-LASCOPF-ru,.

Proof. The proof follows that of Theorem 1. O
5. LASCOPF with AC power flow

In what follows, we introduce LASCOPF; under AC power flow,
which we refer to as AC-LASCOPF; and we show that due to sim-
ilarities between DC-LASCOPF; and AC-LASCOPF; the analysis de-
veloped in the previous section would also apply to AC-LASCOPF;.
We consider the set of contingencies to be generator contingen-
cies, i.e., C € G. The AC-LASCOPF; formulation is defined over the
set S= (v,{ﬂ}, P{g?t}, qg]t} V(C u), pfgct”), qéc W ceCineN;gegitiue
N;u<t<T)as

T
i {0}
rr}ganZCgI(pgt) (11a)
t=1 geG
subject to
(base-case dispatch constraints:)
> Ang (P + 10f%) = D = Vi) " ¥ vl (11b)
g v
P, < p; <P, (11¢c)
-Q, <q% <Q,. (11d)
V, < % <V, (11e)
ZTm vam <Ki, (1)
ZFm ne vaw <K, (11g)
—Rg < pl% - Pl <R, (11h)

(Generator contingency scenario constraints on the corresponding
dispatch:)

P =0ifg=c, (11i)
g5 =0ifg=c (11j)
ZAng(pgi”)ﬂq“”)) Dnt —v“”ZY;,v“w* (11K)
g

P, < p{ <Pgifg#c. (111)
—Qg =g = Qgifg#c. (11m)
V, < [57] < V. (11n)
—Rg < pG" - P <Rgifg#cit>u+1, (110)
Ry <p{ - pl% | <Reifg#ct=u+1, (11p)

VceC,VneN;VgeG;VleL;Vt,ueN;u<t<T.
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For every pair of buses n,n’ € NV, the bus admittance factor is
Y, € C. For every bus ne A in interval t e N;t < T, Dyt € C rep-
resents the complex power demand where Re(Dy¢) € R.q is the
active power demand and Im(Dy ) € R is the reactive power de-
mand. For every generator g< G, the reactive power generation
limit is Qg € Ryo. For every bus n e N, the minimum and maxi-
mum voltage magnitude limits are V,,, V, € R respectively where
V, <Vn. Yy, € C is the bus branch admittance factor for transmis-
sion line | and bus n Vn e N;Vl € L. Ty, and F,, take on the value
1 if transmission line | end at bus n or originates at bus n respec-
tively and are O otherwise.

For the base-case dispatch, the power balance, reactive power
generation limits, voltage magnitude limits and transmission line
limits are (11b), (11d), (11e), and (11f) and (11g), respectively
(Chapter 8, Wood et al., 2014). When an outage corresponding to a
generator contingency takes place, the failed generator cannot gen-
erate for the remainder of the planning horizon which is enforced
by constraints (11i) and (11j). Accordingly, for the generator contin-
gency scenario dispatch, the power balance, reactive power genera-
tion limits and voltage magnitude limits are (11k), (11m) and (11n),
respectively. The illustrative example in Appendix D highlights the
effect of considering generator contingency scenario dispatches on
the base-case dispatch.

We make the following Conjecture for AC-LASCOPF; similar to
Observation 4 for DC-LASCOPF;.

Conjecture 1. If AC-LASCOPF; is feasible, then there exists a con-
vex set of values of (p(c ”)|ge G) that are feasible w.r.t. (11k) and

(11n) such that a feasible (v(cu)lgeg) exists, given feasible

(C“)Ige G) YceC:YueN;u <t <T. Furthermore, 3F : RI9! — R
such that OF (pgt|g € G)/0pgt > 0Vg e G Vt € N such that the fea-
sible regions can be represented by F(pg¢lge€ G) =0

We propose AC-LASCOPF-r; which is essentially AC-LASCOPF;
with the additional constraint

(V. pl0. g Ine Nige 6) = (v, pQ. a\lIn e N g € G)
VeceC;Vt,ueN;u <t <T, (11q)

and with S= (vnt,p{gt} q;[}, ,(fg p(“? q(c)|cec neN;gegGte

N; t < T). In what follows, we show that 1f AC-LASCOPF; has a so-
lution for which active power generation for all healthy generators
in the contingency scenario is either not less than or not greater
than that in the base-case for all healthy generators, then solving
AC-LASCOPF; and AC-LASCOPF-r; are equivalent.

Theorem 4. If Conjecture 1 holds, then if AC- LASCOPF1 is fea-
sible and has a solution for which either p(c W > p{ VgeG. g#

c or p(“’)>p theg g#c VceCVt,ueN;u<t<T, then
AC- LASCOPF r lS feasible. Furthermore, if AC-LASCOPF; has such a
solution that is optimal, then the optimal objective value is equal for
both AC-LASCOPF,; and AC-LASCOPF-r;.

Proof. Consider a feasible instance of AC-LASCOPF; with a solu—
tion for which either p(c L p . 'Vgegig#cor p(c W > pll vg e
G;g#c Ycec(C;Vt, ueN u <t<T We begin by observmg that
the objectlve (11a) is a function only of the base-case dispatch
(p |ge G;t e N) and thus, whether or not the solution is op-

tlmal depends only upon the value of (p |ge G;t € N). There-
fore, to prove the theorem, 1t is sufﬁc1ent to show that given any

set of base-case dispatch (v t,p{0 qgt IneN;geg;teN), since

gt
the contingency scenario dispatch (vfft“>,p“t”),q“t”)|n eN;ge

G:Vt,ueN;u <t <T) exists satisfying (11i) to (11p) there exists
a reduced set (v,(fg, péft), quct)ln eN;geG:Vt,ueN;u<t<T) sat-
1sfy1ng (llq) Vc € C. Then, if the selected set of base-case dispatch

(vn 0 pg)[ , qgt [neN;geg;t eN) is optimal, the entire solution is
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optimal. Consider interval t = 2. It is straightforward to see that u
can only take on one value and consequently, (11q) is trivially sat-
isfied.

Now, consider contingency ¢ = ¢’ and interval t = 3. Here, u
{1,2}. In order to show that 3 (vr(f;), pg,) (© )In e N;geg) satis-
fying (11q), it is sufficient to show that the feasmle region defined
by (11i) to (110) when u=1 for (U,Sf;‘1),p(6;1),q(c3l)|neN;ge
G) intersect with that defined by (11i) to (11n) and (11p) when
u=2 for (vff;’” p(c 2),q(°32)|n e N;ge @), allowing us to choose
equal values for both sets. From Lemma 1, the feasible re-
gions defined by (110) when u=1, ¥ = CW x ([Tgeq.guc[—Rg +

pgzl),Rg-t-p(c‘l)])xRxR|g| and (11p) when u=2, 2z=CcWl x

(Mgeg-guc'|—Rg + pfgz}, Rg + p{O}]) x R x RI9 intersect, ie, YN Z #
¢@. Let us consider the case where p{o} < péc’;) Vg e G; g # c. There-

fore, it is left to show that the fea51ble region defined by (11i) to
(11n), which is identical for all values of u, intersects with CWVI x

(Mgegigec|—Re + D5 Ry + p31) x R x RI9.,

Let the feasible reglongeﬁned by (11i), (11j), (111) and (11m) be
X =CcWlx (ngg;g;ec/ [Bgv Pg]) x {0} x (Hgsg;gqéc/ [Qgﬂ Qg]) x {0}.
From Conjecture 1, given feasible (qg3lge ¢) IF : RI9 — R such

that 0F(pg3lge G)/0pg3 > 0VYge G where F(pg3lge§) =0
represents the feasible region defined by (11k) and (11n) pro-

jected onto (pfgc;“)|g €G). Since AC-LASCOPF; is feasible,
E| (vff;),pg;) ( 1)|n eN;geG)exny for u=1 such

that F;,(p(C 1)|g €G) =0. Since 0F(pg3lgec§)/dps3>0Vgeg,

F (max({P, ,—Rg+p“”} Olge g:g#¢) <0.

(c,2) péc 2)

g): (qg31)|ge G). Then, since Y and Z place no constraints
(C 1)Igeg) (v(c,z) (5/2) (52)|neNgeg)eXﬁZ

such that Fg(p(C Digeg) = and  F(max{Pg. Ry + Pfg,z}}’
O0lge G;g#c)>0. Since the feasible region defined by
(11k) and (11n) X, Y and Z are convex when pro-
jected onto (p “)|g €g), 13 (vff; pfg%) q(‘ JIneN;geg)e
(ITnenlVn, Val) x (ngg;g#f’[max{ﬁ , —R + P(C )} min{Pg,
Rg+ pé?%}]) x {0} x RUGI-D) x {0} such that F3(pg3) lgeg) =

Consequently, the feasible regions defined by (lli) 0 (11n) in

tersect with CWI x ([Tgeg. gz [—Rg + p(‘ D Re + p ]) x R x R'g‘
We can con conduct a similar analy51s for the case where
p{gz} > pgzl) Vge G;g#c and show that the feasible regions
defined by (11i) to (11n) intersect with CWI x ([Tyeq.gue[—Re +
pg_)z},ﬁg-i- pg’zl)]) x R x RI9I, We can repeat the above analysis for
interval t = t’ starting with t’ =3 up to t’ =T in increasing order
and then for all contingencies c € C. This concludes the proof. O

Now, consider

(O qg32)|nej\/ geG) for u=2 and let (q(c Dige

on

Note that nowhere in Conjecture 1 or in the proof above have
we considered the specific form of the objective function. There-
fore, Conjecture 1, Theorem 4 and the subsequent results would
hold for any objective function that only depend on the base-case
dispatch, such as (1a). E.g., one could use the objective function
of SCOPF, where costs are minimised only for t = 1, but with the
entire set of LASCOPF constraints over the planning horizon.

Now, consider the N —k contingency criterion. We formulate
the AC-LASCOPF;, AC-LASCOPF-r, and AC-LASCOPF-ru, problems
as extensions of AC-LASCOPF; according to the general LASCOPF,,
LASCOPF-r;, and LASCOPF-ru, formulations respectively presented
in Section 3. We obtain the following results for the formulations.

Theorem 5. If Conjecture 1 holds, then if AC- LASCOPF,{ is feasible
and has a solution for which either p(c1 U eCoslis) { I Vgegig¢

10
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{c1,....cs) or p“1 U eaCsls) pé?t} VgeGig¢{cr,....cs) VseN;s <
k;Veq, ..., cse(,’c1;é...;écs;Vt,u1eN;u1: L=us<t<T,

and either pgg’”l’“"cs‘”S) > pgtl‘”l‘“"c“"r) VgeG,gé¢{ci,....cs} or
pécg A Cails) pgg’”l’"”c“”’) VeeG gé¢{cr,....,cs)  VrseN;r<
s<kVc,...,creCicr #...4¢;Vt,uy,...,.us eN; Uy < ... < Ur <
U1 =...=Us <t <T, then AC-LASCOPF-r, is feasible. Furthermore,

if AC-LASCOPF,, has such a solution that is optimal, then the optimal
objective value is equal for both AC-LASCOPF, and AC-LASCOPF-r}.

Proof. The proof follows that of Theorem 4. O
Theorem 6. If Conjecture 1 holds, then if AC-LASCOPF-r,, is feasible

()

and has a solution for which either Pgt

(T cl
Ggglor....coq.cl.2)  or  pie© spét Dvgegigy
{c1,....cs_1.cl, 2} VseN;s<kVcq,..., C_1.¢l, 2 eCicy #

L #Cs_1 £ £Vt eN;t <T, then AC-LASCOPF-ruy, is feasible.
Furthermore, if AC-LASCOPF-r;, has such a solution that is optimal,
then the optimal objective value is equal for both AC-LASCOPF-r;, and
AC-LASCOPF-ruy.

Proof. The proof of Theorem 4 can be generalised to prove this
theorem. O

6. Numerical results

In this section, we present numerical results that demonstrate
the computational advantage of the proposed reduced formula-
tions. To do so, we consider systems of various size: the IEEE 14
bus, 30 bus and 300 bus systems (Christie, 1999) and the 1354 bus
part of the European power system (Fliscounakis, Panciatici, Cap-
itanescu, & Wehenkel, 2013; Josz, Fliscounakis Maeght, & Panci-
atici, 2016). For every system, we chose (p |g € G) to be the ac-
tive power generation provided in the case data In addition, in or-
der to impose ramping constraints, we set Ry = (Pg — P,)/2Vgeg

where Pg and P, are as provided in the case data. We only consider
contingencies in the first two generators, i.e., C = {1, 2}, for illus-
trative purposes. Furthermore, let (dy|n € V') be the active power
demand provided in the case data. For each system, we consider
the following demand scenarios.

1. Re(Dn ) = rpdy where 1 is a random number uniformly
distributed over [0,1] Vne N,Vt e N,t <T, i.e., the demand
at every bus varies randomly in time independent of other
buses.

2. Re(Dpt) =r¢dy Yn € N where 1; is a random number uni-
formly distributed over [0,1] Vt e N,t < T, i.e., the demands
at all buses vary by the same factor randomly in time. We
do this because, in practice, demands would vary with fac-
tors that are almost equal to each other. This correlated vari-
ation of demand over time would mean that the ramping
constraints between most adjacent intervals in the system
are likely binding.

3. Re(Dpt) =dn/1.5 if t is odd and Re(Dn;) =dy if t is even
VceC. We do this in order to deterministically simulate
large changes in demand causing the ramping constraints in
the system to be binding.

All other parameters were as provided in the case data. Our simu-
lations were performed on an Intel(R) Core(TM) i7-6700 processor
with 32 gigabyte RAM using MATPOWER (Zimmerman, Murillo-
Sanchez, & Thomas, 2011) version 7.1 with the native MATLAB
2021a interior point solver, MIPS.

8 R. D. Zimmerman, C. E. Murillo-Sanchez (2020). MATPOWER (Version 7.1) [Soft-
ware]. Available: https://matpower.org


https://matpower.org
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Fig. 4. Computational times for AC-LASCOPF; and AC-LASCOPF-r; for demand scenario 2.

First, for the N — 1 contingency criterion we compare the com-
prehensive AC-LASCOPF; to the reduced AC-LASCOPF-r; for all the
cases and scenarios. Figs. 3, 4 and 5 show, for demand scenarios 1,
2 and 3, respectively, the computational time for AC-LASCOPF; and
AC-LASCOPF-r1; for different lengths of the planning horizon, T. For
scenarios 1 and 2, we only considered the computational time of

the instances that converged, i.e., had a feasible solution. The re-
sults reflect that for AC-LASCOPF-r; the number of dispatches is
linearly dependent on T, as opposed to quadratic for AC-LASCOPF,
and thus, AC-LASCOPF-r; is computationally more efficient, with
an increasing advantage as the length of the planning horizon in-
creases. Also, note that for T =2, LASCOPF; and LASCOPF-r; are
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Table 1
Number of decision variables and constraints for T = 10.

Base-case  Contingency scenario
All AC-LASCOPF,; AC-LASCOPF-r4 AC-LASCOPF-r,  AC-LASCOPF-ru,
Variables IEEE 14 bus 380 3420 684 1368 1026
IEEE 30 bus 720 6480 1296 2592 1944
IEEE 300 bus 7380 66420 13284 26568 19926
European system 32280 290520 58104 116208 87156
IEEE 14 bus 1380 5220 1204 2568 1966
Inequality IEEE 30 bus 2600 8640 1920 4032 3072
constraints  IEEE 300 bus 26580 91260 20460 43128 32898
European system 122320 384120 85144 178608 136036
IEEE 14 bus 280 2700 540 1080 810
Equality IEEE 30 bus 600 5580 1116 2232 1674
constraints  IEEE 300 bus 6000 54180 10836 21672 16254
European system 27080 243900 48780 97560 73170

identical since u can only take on one value such that u e N;u < 2.
Therefore, as expected, the confidence intervals for the computa-
tional time of AC-LASCOPF; and AC-LASCOPF-r; intersect for T = 2.

Second, we consider the N — 2 contingency criterion since it is
the most tractable example of the N — k contingency criterion for
which we can compare the computational time of AC-LASCOPF-r,
with ordered contingencies to AC-LASCOPF-ru, with unordered
contingencies. The number of contingency scenario dispatches for
AC-LASCOPF-r, depends on Y%_, I°IP, ~ 4 given |c| =k =2. On
the contrary, for AC-LASCOPF-ru, the number of contingency sce-
nario dispatches depends on Y¥_, I°IC, ~ 3. Figs. 6, 7 and 8
show, for demand scenarios 1, 2 and 3, respectively, the com-
putational time for AC-LASCOPF-r, and AC-LASCOPF-ru, for dif-
ferent lengths of the planning horizon, T. The results confirm
that AC-LASCOPF-ru, is computationally more efficient. Also, we
note that for all the cases above the pairs AC-LASCOPF; and
AC-LASCOPF-rq, and AC-LASCOPF-r, and AC-LASCOPF-ru, resulted
in the same optimal objective value.

12

In Table 1, we tabulate the number of decision variables and
constraints for the IEEE 14 bus, 30 bus and 300 bus systems,
and the 1354 bus part of the European power system, under the
comprehensive and the reduced formulations for the N—1 and
N — 2 contingency criteria when T = 10. Note that the bus volt-
ages are complex and thus they count as two variables each. Also,
recall that for a given system, the base-case is identical for all
problem formulations and therefore, the number of decision vari-
ables in (vi,?t}, pé?t}, qgjt}ln eN;geG,teN,t<T) and number of
constraints in (1b) to (1d) are the same. In Fig. 9, we plot the
computational time for every scenario in each of the 16 cases in
Table 1 against the number of decision variables. We can see that
the computational time for each problem formulation increases
with the number of decision variables and the computational time
for AC-LASCOPF; for a given number of decision variables is lower
compared to the other formulations. We attribute this to the fact
that it is the decision variables in the base-case that are opti-
mised, while for the contingency scenario variables only a feasi-
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ble value is sought and therefore the computation time per base- ables and hence the computational time is significantly greater in
case variable is expected to be longer. Among the problem formu- the former as compared to the latter.

lations it is AC-LASCOPF; that has the lowest proportion of base- Finally, note that in all the cases of the N —1 contingency cri-
case decision variables (O(T)) compared to contingency scenario terion considered above, we obtained the same optimal objec-
decision variables (O(T?2)), which explains the observation. Note tive value while solving AC-LASCOPF; and AC-LASCOPF-r;. Simi-
that this does not indicate that AC-LASCOPF; is faster to solve than larly, for all the cases of the N — 2 contingency criterion we con-
AC-LASCOPF-r; since, for a given case, the number of decision vari- sidered, AC-LASCOPF-r, and AC-LASCOPF-ru, resulted in the same

13
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optimal objective value. These are in accordance with the claims of
Theorems 4 and 6, respectively.

7. Conclusion

We considered LASCOPF under the N — 1 contingency criterion.
We presented a generalised, comprehensive LASCOPF; formulation
and observed that the dependence of the decision variables on u
resulted in a O(T?) dependence of the number of decision vari-
ables. To make the problem scalable, we proposed the reduced
LASCOPF-r; formulation, which is independent of u and hence has
only an O(T) dependence. Similarly, for the N — k contingency cri-
terion, we presented LASCOPF, with its O(T*+!) dependence and
proposed the corresponding reduced LASCOPF-r;, with its O(T) de-
pendence. Furthermore, we observed that in LASCOPF-r;, the con-
tingency scenario dispatches depend upon the tuple (cq Cs)
and hence the number of contingency scenario dispatches varies

.....

14

with 3_, /P, x T. We proposed LASCOPE-ru;, in which the con-
tingency scenario dispatches only depend upon the set {cq,..., ¢}
and hence the dependence reduces to Zf/zl I¢IC,y x T. Then, we
proposed DC-LASCOPF; and AC-LASCOPF; under generator con-
tingencies. We proved that, barring borderline cases, solving
AC-LASCOPF; and AC-LASCOPF-r; are equivalent. Similarly, solving
AC-LASCOPF;,, AC-LASCOPF-r,, and AC-LASCOPF-ru; are equivalent.
Finally, we presented numerical results on the IEEE 14 bus, IEEE
30 bus and IEEE 300 bus test cases, and the 1354 bus part of the
European power system to demonstrate the computational advan-
tage of the reduced formulations under the N—1 and N — 2 con-
tingency criteria.

An interesting supplement to this work could be to empirically
validate Conjecture 1 for AC-LASCOPF; on typical test systems. One
may also find exact conditions on the problem parameters given
which the reduced formulations would always equivalent to the
comprehensive formulations.
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The decision variables and generalised functions above are de-
fined for various scenarios, e.g. the base-case {0} and the contin-
gency scenario (c) for contingency c. The scenario to which the
entity pertains is specified in the superscript. For brevity, we have
defined these entities only once and used <> as a placeholder for
the scenario.

Notation for LASCOPF with DC power flow:

Decision variables:

vir vppeC voltage at bus n in interval t

Psi Psi €Rso active power generation by generator g in interval t

Az Ggf €R reactive power generation by generator g in
interval t

S set of decision variables which varies with
formulation

Generalised functions:

f(vﬁ,pé?},qg\n eN;geGiteN;t<T)
he= (V57 Pe7 Qi Ine Nige §)

objective function

function representing
inequality constraints
function representing equality
constraints

he> 57, p57. 457 Ine Nige G)
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None.
L set of transmission lines
Appendix I lel transmission line
Cge Cge :Rog > Ry cost of active power generation by generator g
. . in interval t
Appendix A. Notation Dy Dnt € Rag active power demand at bus n in interval ¢
P, Pg PPy € Rog, P, <Py active power generation limits for generator g
. An, Ang € {0, 1} Ang =1 if generator g is at n, 0 otherwise
Sets: g g g
Hy, Hp, eR power transfer distribution factor for line |
No non-negative integers _ _ and busn
N positive integers K, K; e Rop capacity for line [
R real numbers . .
R.o non-negative real numbers Notation for LASCOPF with AC power flow:
C complex numbers
Indices: L set of transmission lines
: l leL transmission line
¢ teNo.t<T dispatch interval (o Gyt 1 Rog > Ry cost of active power generation by generator g
u ueNu<t dispatch interval in which outage in interval ¢ L.
corresponding to contingency would Dn¢ Dpt € C,Re(Dnt) € power demand at bus n in interval t where
take place R0 Re(Dp,) is the active and Im(Dy) is the
n nenN bus reactive power demand
g geg generator Ang Ang €{0,1} Ang = 1 if generator g is at n, 0 otherwise
c cec contingency Yon Yo € C bus admittance factor for buses n and n’
s SeN.s <k number of contingencies of P, Py P, PgeR.g, P, <Py active power generation limits for generator g
T considered simultaneously Q, Qg €R.9.P, <P,  reactive power generation limit for generator g
u; UeNu <...<us<t dispatch interval in which outage VoV Vy.Vi€Ro0,V, < voltage magnitude limits for bus n
corresponding to ith contingency Vi . .
would take place Yin Y, eC bus branch admittance factor for line | and bus
G ceC,C1#...#4C ith contingency n o .
T Bn Tino Fn € {0, 1} (T, Bp) = (1,0) if line [ ends at bus n, (0,1) if
Parameters: line I originates atbus n, (0,0) otherwise
K K; € Rog capacity for line [
N set of buses
G set of generators
c set of contingencies
T TeN length of planning horizon . . .
k keNk>1 number of contingencies considered Appendix B. Number of constraints in LASCOPF,
simultaneously
Ry Rg,Rg € Rop ramping limits for generator g In LASCOPF;, the number of base-case dispatches
S5 SpSgeReo }9""? *f‘“d UPPertCO“““ge“CV reserve W%, pg)}, qéot} [neN;ge@) is T. Since constraint sets (1b) and
m . : . .
1mits Tor generator & (1c) are defined for each base-case dispatch, there are T such
Scenarios: constraint sets each. Note that each set of constraints may consist
of multiple constraints. In addition, there are |G| x T ramping
{o} base-case . . .
e © contingency scenario for contingency ¢ constraints in (1d), defined for every generator ge G in every
(c,u) contingency scenario for contingency c in interval u interval t e N, ¢t <T.
{1, ..., ¢} contingency scenario for unordered contingencies Besides the base-case dispatch, we also have |C| x T(T —1)/2
oo Gs i i i i contingency scenario dispatches (vif’[”}, {CQ”}, q{ct'”} [neN;geg).
(c1,uy...,Cs,us)  contingency scenario for contingencies ¢, ..., cs in . . f) an f% g v f "
intervals u, ... u, respectively Since constraint sets (1e) and (1f) are defined separately for eac
(€1...,Cs) contingency scenario for ordered contingencies ci, ..., Cs contingency scenario dispatch, there will be |C| x T(T —1)/2 such
{0} base-case after recovery constraint sets each. Ramping constraints in (1g) are defined for

every healthy generator (in the case when one generator fails un-
der a generator contingency, as is the case in the example of con-
tingencies we describe in Sections 4 and 5). Thus, for every contin-
gency c € C in every interval t e Nyu+1 <t <T, where u e N,u <
T, there will be

(G- xlelx > (T-u-1)=(g]-1)x|cC|
ueN,u<T
x(T=1)(T -2)/2 (12)
constraints of type (1g). In addition, there will be (|G| —1) x |C] x
(T — 1) constraints of type (1h), since the constraint is defined for
healthy generators when t =u+1VueN,u<T,ie, for2<t<T.
Therefore, the total number of constraints follows O(T2).
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Appendix C. Proof of Lemma 3

Consider a feasible instance of LASCOPF-r, and a feasi-
ble solution (Unt p;[}’qét}’ 1(1cg AAAAA CS),p(Cl ,,,,, cs)’ qécrl CS)lseN;SS
kici,....cs€Cicq # .. ;écs,ne./\/ geg teN;t<T). Given the
base-case dispatch, (vnt,pgt,qgt IneN;geG;teN;t<T), ob-
serve that (8d) and (8e) together with (7g) only place con-
straints on (1), pifg o q;fg """ “NneN;geg) VseN;s=
k:¥cq,....cs€C,c1,# ... #, Cs. First, consider interval t =t/;t’ > 1,
number of contingencies s =1 and contingency ¢; =c}, and let

;Cg, |g € G) be the feasible set of dispatch. Now consider the

correspondmg LASCOPF-ru;, formulation and the set of dispatch

(p‘{gcg,} |g € G). Since the tuple (c}) contains only a single element,
J
from (8f) (p;fg,} lgeg) =
isfies (8e). Observe that (8d) does not constrain (pg I |g €g).
Let us now consider s=2 and contingencies c},c}, and let

;Ct, %) lgeG) and (p(C2 v |g € G) be the feasible sets of dispatch
for LASCOPF-r;, for the contingency tuples (c},c}) and (c},c) re-

spectively such that both sets satisfy (8e) for the same parame-

g€ G). As a result, (p g€ G) sat-

@) t,|

ters. For LASCOPF-ruy, let (p{c1 cZ}|g € G) be the corresponding set

of dispatch which would then also satisfy (8e) for the same pa-
(c}.¢5)

rameters allowing us to choose (p ‘ 2}Ige G) = (pgt, lgeg) =
;Ctz,cl lgeG). If t' =2, observe that (8d) does not constrain
(pg2 |g € G). Now consider t’ > 2. The feasible sets (p( I 2)Ige g)

and (p;tz, 1)|ge G) would also satisfy (8d) when r=1 and r=

2 for ¢y =cf.c; =), and ¢, =c}.c; =), respectively. From (8f),
(pgcg, C2}|ge G) is constrained by all the four constraints. Let W be

the feasible region defined by (8e) for ¢; = c}.c; = ¢}. We can de-
compose W = []gcg Wg, Where

n 0y p {0} ;
We = {[_Rg’Lpg.r'ngerg,r’l] ifg¢ {c.c}. (13)
R

otherwise.

Similarly, let X be the feasible region defined by (8d) for r =1 and
€1 =€}, ¢ = ¢,. We can decompose X = [[y; A5, where

= c [
S | R L
R

Similarly, let Y be the feasible region defined by (8d) for r =1 and
€1 =), ¢ =¢;, which can also be decomposed as ¥ = [Tyg Ve,
where

Vg = {[ Rg+p§r'}1ng+p§ril]
R

Re+p 1] ifgg{ci.c}.

otherwise.

(14)

ifg ¢ {c}.c}.
otherwise.

(15)

Y
Finally, consider r =2 and observe that our choice of (pgg,'cz}

(c}.¢5) (ch.c}) . .
g) = (pg v lged) = (pg 7| g€ G) renders the feasible regions
for ¢y =cf.c; =¢} and ¢, =c}.c; = identical. Let Z represent
this feasible region, which can be decomposed as Z = [],; Z,

where

S Y
2 [ Rerpii S
R

lg e

Rg+p§f/ ’}] ifge{ci.c,},
otherwise.

(16)

for generator g=g,
If g efc.c,}, then
g ¢ {c}.c}, Wy N Xy N

In the next step, we show that
we have Wg/ N Xg/ N yg/ N Zg/ =0{.
We NXg NYVy N2y =R #0. If

16
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_I_R {0} (e} () CECY
yg/ﬂzg—[—Rngmax{pgt, l,pgt, 1 Pgt 1P
{ci} {cy}

+min{p!°) g1 P10 Pgir
section above is non-empty, let us first consider (8d) for g=g/,

)Ry

1,19 I l}] To show that the inter-

which is satisfied by p Ot}, ;- After rearrangement we obtain
~Re + Pyt = Py < Re + Py (17)
Now consider (8e) for g=g', s=1 and ¢; = ¢}, which is satisfied
by pfg [,} |- After rearrangement we obtain

C C
Re+pl0), < p0 , <Ry +plS), (18)

Now consider (8e) for g=g', s=1 and ¢y = ¢/, which is satisfied

by P; t,} ,- After rearrangement we obtain

C: C.
~Ry +p§,;}] < pg ', <Rg +p§;i].

Finally, consider (8e) for g=g’, s=2 and ¢; = c}.c, = ¢}, which is
{C1 Cz}

(19)

satisfied by P, After rearrangement we obtain

t-1"

[ c;.C
_Rg' —‘,—p‘i[l/ 2} < p;_t/ < Rg + pét]/ 2}. (20)
Since LASCOPF; is feasible, we know that 3 pé, b and 3 pg [, 1

satisfying the above, and we can combine the above inequalities to
obtain

—§g+ma><{p o1 pi,i‘/}] péci}l pi,?/ CZ}}
) {0} { } { } {Cl Cz}

<Ry +m1n{p (21)

which implies Wy N Xz N Yy N Zg # @ for g’ ¢ {c]. cz} Therefore, the
{ 1 2}

-1 Pgpl1s Pgrt1s Pgp 1

feasible regions defined by (8d) and (8e) for (p
sect.

Let us now consider number of contingencies s = 3. The above
analysis can first be repeated for contingencies pairwise and then
can be extended to consider three contingencies at a time. Simi-
larly, we can repeat the analysis for all cq, ..., ¢y € C for any num-
ber s =’ starting with s’ =4 up to s’ =k in increasing order. Fi-
nally, we can repeat the analysis for all intervals t’ € N; t < T. This
concludes the proof.

lg € G) inter-

Appendix D. Illustrative example for AC-LASCOPF;

In what follows, we provide an example which illustrates the
theory developed in this article. Consider the following one-bus
N = {1} three-generator G = {1,2,3} system with parameters as
shown in the following table.

g 0Cg ¢ (x)/0x P, Pg -Q,=Q Ry
1 0 0 200 100 30
2 1 0 200 100 20
3 2 0 200 100 20

Here, we neglect the shunt admittance Y;; =0, resulting the
right hand side of (11b) and (11k) equalling zero. Also, since there
are no transmission lines, we can ignore constraints (11f) and
(11g). Since the objective function depends only upon the active
power generation, we can eliminate consideration of bus voltage
(vl t,v(C W¥ceC;Vt,ueN;u <t <T) from the formulation. The
predicted demand Dy is as follows.

t=0 t=1 t=2 t=3 t=4 t=5 t=6
Re(D:,) 0 10 20 30 50 70 100
Im(D;;) 50 50 50 50 50 50 50
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Observe that none of the generators has a non-zero minimum
generation limit, P, =0Vge G and therefore, they may each not
generate at all. Therefore, the problem is feasible at t =0 and it
must be that p{]O} p{Z[}) = pgo(}) =0.

First, we solve AC-LAOPF without any security constraints (for-
mally equivalent to AC-LASCOPF; over C = ¢, i.e, with an empty
set of contingencies for this system given T = 6. Then, observe that
generator 1 is cheaper than generator 2 which is cheaper than
generator 3, 9C; ((x)/0x < 0Cy(x)/0x < 0G5 (x)/0x Vt € {1,...,6}
and the active and reactive power demands in every interval
lie within the individual limits of every generator, Re(D;;) <
Fg,gg <Re(D1;) <QgVte{l,...,6} VgeG. Also, the change in
active power demand between every pair of adjacent intervals
lies within the ramping limits of every generator, —Rg < Re(Dy ) —
Re(D1 1) <RsVt e {l,...,6} Vg e G. Therefore, generator 1 can
serve the entire demand as follows.

P 057

t=1 t=2 t=3 t=4 t=5 t=6 te{l,..., 6}
g=1 10 20 30 50 70 100 50
g=2 0 0 0 0 0 0 0
g=3 0 0 0 0 0 0 0

Now, we will contrast the results obtained above to those when
we consider contingencies. Consider contingencies in all generators
such that the generators may shutdown. In what follows, we solve
AC-LASCOPF; for C = {1, 2, 3} for a planning horizon of T = 5. Here,
in addition to the constraints already considered, we have to en-
sure that in the interval following an outage in any generator, the
healthy generators can change their generation within their ramp-
ing limits to satisfy the demand. The generation of the healthy
generators should have a net increase by the amount of genera-
tion of the contingent generator before the outage and change by
the change in demand, i.e.,

—Rs < pi’}_| +Re (D1,) — Re (D111)
§R2+R3 Vt e {2,...,

R
5} if generator 1 is contingent, (22)
-R; —-R3 < pzt ; +Re(D1¢) —Re(Dir1)
<Ri;+R3Vte{2,...,5})if generator 2 is contingent, (23)
~Ri —Ry = p) | +Re (Dr) —Re (D11)
<Ry +R, Vt €{2,...,5}if generator 3 is contingent. (24)

Accordingly, the least-cost base-case dispatch is as follows.

{0} {0}

2 Ag¢
t=1 t=2 t=3 t=4 t=5 t=6 tefl,....,5} t=6
g=1 10 20 20 20 50 - 50 -
g=2 0 0 10 30 20 - 0 -
g=3 0 0 0 0 0 - 0 -
Observe that, given Re(D;.;) —Re(Di; 1) =20Vt e {4,5} and
R, + R3 = 40, from (22), pgot} 1 <20Vt e{4,5}). In the last inter-

val t =5, we do not have to prepare for an outage. Therefore,
generator 1 may generate above 20. However, the ramping con-
straint p{lé p{loi <R; must be obeyed. Naturally, the dispatch
costs would be higher in this case since more expensive genera-
tors are used.

Observe that if we considered a planning horizon of T =
6, the problem would be infeasible. To see this, first ob-
serve that Re(D;g)—Re(D;5) =30 and R;+R3=R; +R; =50.

From (22), (23) and (24), respectively we require that p{O}
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10 and p25 p{ } < 20. There is no possible generation such that

deg péog =70.

In what follows, we illustrate the notion of the N —2 contin-
gency criterion by solving AC-LASCOPF; for C = {1, 2, 3} for a plan-
ning horizon of T = 3. In addition to the contingency states con-
sidered before, we must consider the contingency state where 2
of the generators have faced an outage, {1, 2}, {1,3} or {2, 3}. As-
suming simultaneous outages, the healthy generator should have a
net increase in its generation by the generation of the contingent
generators before the outage and change in its generation by the
change in demand. This change should be within its ramping lim-
its, i.e.,

~Rs < p\% , +pi” | +Re(Di¢) —Re(Die1) <R
Vt € {1, 2} if both generators 1 and 2 are contingent,
(25)

7§2 < pg?371 + pg(,)t}—l + Re (Dl,t) —Re (D]V[,]) < Ez
Vt € {1, 3} if both generators 1 and 3 are contingent,
(26)
—Ry < P{z?[},l + p§?§,1 +Re (D1¢) —Re (Dy-1) <Ry
Vt € {2, 3} if both generators 2 and 3 are contingent.
(27)

Accordingly, the least-cost base-case dispatch is as follows.

{0} {0}

pgt qg(

t=1 t=2 t=3 tef456} te{l,2,3} te{456)
g=1 10 0 30 - 50 -
g=2 0 10 0 - 0 -
g=3 0 10 0 - 0 -

To see how the dispatch above is obtained, observe that,
given Re(Dy;) —Re(Dq1¢_1) = 10Vt € {2, 3} and Ry = R3 =20, from
(25) and (26) respectively, (p“ 1+ {0}

2t 1) (p“ 1+ P3¢9) =
10Vt € {2.3}. Also, from (27), p} | +pl¥ | <20Vt e{2.3). In

the last interval t = 3, we do not have to prepare for an outage.
Also, observe that if we considered a planning horizon of T > 3,
the problem would be infeasible.
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