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Abstract: Recent technology advances in the field of ride-by-wire technology for motorcycle
(namely active braking and full electronic throttle) open the way to the design of innovative
control strategies to improve two-wheeled vehicles stability. As such, it is of growing importance
to devise control oriented models of the bike dynamics to be employed for control design
purposes. This paper proposes an analytical model of a two-wheeled vehicle tuned to capture
the coupling between longitudinal variables (i.e. traction and braking torque) and out-of-plane
modes. The model is derived from first principles. The model parameters are identified from a
complete multi-body simulator. The proposed model offers a good tradeoff between complexity
and accuracy.

1. INTRODUCTION

Active chassis control systems (i.e., traction and braking
control systems, semi-active suspensions) are common in
most commercial cars. In two-wheeled vehicles, instead,
these control systems are being developed with a signifi-
cant time delay. This is due to many factors: cultural, eco-
nomical and technological. For example, motorcycle riders
do not usually accept electronic control systems that may
alter the natural riding feeling. Moreover, the market of
two-wheeled vehicles is smaller than that of four-wheeled
vehicles and thus motorcycle manufacturers have less re-
sources to dedicate to research and development. Finally
and most interesting from the technological point of view,
motorcycle dynamics are more complex than four-wheeled
vehicles one. In fact, in motorcycles in-plane and out-of-
plane dynamics are coupled, Sharp [2001]. Therefore, the
derivation of control-oriented models and to design model-
based control systems is not trivial.

In the scientific literature several models of motorcycle dy-
namics have been derived, see Sharp [1971], Limebeer et al.
[2001], Sharp et al. [2004, 2005], Cossalter and Lot [2002],
Cossalter et al. [2004, 2010] and the reference therein. In
these works, a multi-body approach has been adopted to
derive models of the entire vehicle. For example, in Sharp
et al. [2004] the vehicle has been considered composed
of seven rigid bodies: front and rear wheel, front and
rear unsprung mass, the chassis which includes the rider’s
lower body, the handlebar and the rider’s upper body.
The forces at the tire/road contact point are computed
according to the Magic Formula (see Pacejka [2002]) and
relaxation equations with a time-varying time constant.
More recently, in Cossalter et al. [2010], several suspen-
sions schemes, the flexibility of the sprocket absorber and
a three degrees of freedom passive rider model have been
⋆ This work has been partially supported by MIUR project ’New
methods for Identification and Adaptive Control for Industrial Sys-
tems’.

considered. These models are suitable for simulation pur-
poses and modal and sensitivity analysis, as they faithfully
describe the dynamic behavior of the motorcycle. However,
they are too complex to design model-based control sys-
tems.

The design of model-based control system requires mod-
els that are easily analyzed and can be synthetically de-
scribed. For example in Tanelli et al. [2009], a 4th order
model of the weave and wobble dynamics of the motorcycle
has been derived. The model presented in that work was
then used to design algorithms to control a semi-active
steering damper (see De Filippi et al.).

Recently the concept of active stability control of two-
wheeled vehicles has been introduced in De Filippi et al.
[2010, 2011], where control strategies that increase the sta-
bility of the motorcycle by acting on the driving and brak-
ing torque have been presented. The controllers have been
tuned on a black-box model identified from simulations
performed in BikesimTM, an experimentally validated full-
fledged commercial motorcycle simulation environment
based on the AutoSim symbolic multi-body software Sharp
et al. [2005], tuned to fit a high-performance motorcycle.

This work aims at providing a control-oriented model of
the motorcycle dynamics that considers both longitudinal
and lateral forces exerted by the tires and has as inputs the
steering torque and the front and rear wheel torques. The
proposed model is based on first principles and it is useful
for control system design and for analyzing the interaction
of the control system presented in De Filippi et al. [2010,
2011] with the vehicle parameters. To the best of authors’
knowledge, the control-oriented models presented in the
literature do not fit for this purpose, since they mainly
focus on the design of steering controller and thus do
not consider the wheel torques as input (see, for example
Saccon et al. [2011], Getz [1995]). The model is validated
against BikesimTM.
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The rest of the paper is structured as follows: Section 2
is devoted to the derivation of the model, while Section 3
addresses parameters estimation and model validation on
simulated data. Finally the paper is concluded with some
remarks and an outlook to future work.

2. CONTROL-ORIENTED MODEL DERIVATION

In deriving the model, the vertical dynamics have been
neglected, i.e., the suspensions have been ignored and the
longitudinal and lateral forces exerted by the tire at the
contact point with the road have been linearized. Three
different reference frames have been adopted to derive the
model (see Figure 1):

- The inertial reference frame (XY Z): a right-handed
time-unvarying reference frame fixed in the space;

- The body reference frame (xyz): a reference system
fixed in the center of gravity of the main frame of
the motorcycle with the z-axis parallel to the vehicle
vertical axis and points upwards; the x-axis indicates
the forward direction and the y-axis completes a
right-handed frame.

- The intermediate reference frame (X ′Y ′Z ′): a time-
varying non-inertial reference system centered at the
front wheel contact point. The Z ′-axis is parallel
to the Z-axis, the Y ′-axis is perpendicular to both
the Z- and x-axes, while the X ′-axis completes a
dextrose trio. This reference system can be obtained
by rotating the inertial reference around the Z-axis
by an angle equal to the yaw angle of the vehicle.

Fig. 1. Pictorial representation of the reference systems
used to derive the model.

The model has 7 degrees of freedom (dof): the x position
of the contact point between the rear tire and the road
expressed in the inertial reference frame; the side-slip angle
β of the vehicle calculated at the intersection of the vehicle
vertical axis and the axis between the front and rear tire
contact points; the yaw angle ψ of the vehicle expressed in
the inertial reference frame; the roll angle ϕ of the vehicle
expressed in the body reference frame; the steering angle
δ; the front wheel angle ϑf and rear wheel angle ϑr. The
input variables of the model are the rear wheel torque
τrw (positive and negative); the front wheel torque τfw
(negative) and the steering torque τs exerted by the rider.
To derive the model, a force or torque balance has been
written for each dof and two different equations have been
added to evaluate the front and rear vertical loads that act
on the wheels. In what follows, the symbols cθ, sθ and tθ
stand for cos(θ), sin(θ) and tan(θ), respectively.

The torque balance (in the body reference frame) around
the lateral axis of the front and rear wheel (see Figure 2)
yields

Jiwyϑ̈ = rFxi + τiw , i = f, r (1)

where Jiwy and r are the inertia and the radius of the
wheel, respectively, and Fxi is the longitudinal force ex-
erted by the tire defined as

Fxi = Fzikλiλi, i = f, r, (2)

and Fzi is the vertical load of the wheel, kλi is the tire
longitudinal stiffness and

λ = −
ẋ+ ϑir

ẋ
(3)

is the longitudinal slip. The chain pull effect is willingly
neglected.

Fig. 2. Schematic view of the forces and torques acting at
the wheel.

The torque balance computed around the steering axis in
the body reference frame (see Figure 3) yields

Jsδ̈ =sǫMxf − Jfwyϑ̇f (cǫϕ̇+ sǫcϕψ̇)+

+ cǫcϕMzf − (rsǫ − d)cϕFyr+ (4)

− (rsǫ − d)sϕFzf − csteer δ̇ + τs,

where ǫ is the caster angle, csteer is the damping coefficient
of the steering damper and

Mxf = Fzfrtfwtϕ+sǫδ (5)

is the moment around the longitudinal axis due to the
lateral displacement rtfw of the front tire/road contact
point. Note that in Equation (5) the term ϕ + sǫδ is the
camber angle of the front wheel (see Cossalter [2002]).
Moreover, in Equation (4), the term

Mzf = Fzf (kmzfc(ϕ + sǫδ) + kmzfααf )− Fxfrtfwtϕ+sǫδ
(6)

is the moment around the vertical axis. This term includes
two contributions: the former depends on the front wheel
camber angle and the front wheel side-slip angle αf = δ−
tβ+bmψ̇+ẋ and works against alignment, the latter is due
to the lateral deformation of the front tire and tends to
align the plane of the tire in the direction of the velocity.
Note that, in Equation (4), the lateral force

Fyf = Fzf (kαfαf + kcf (ϕ+ sǫδ)) (7)

linearly depends on the front tire side-slip angle and
camber angle. Finally, the term Jfwyϑ̇f (cǫϕ̇ + sǫcϕψ̇) in
Equation (4) is a gyroscopic moment generated by the roll
and yaw motion and it tends to reduce the steering angle.

The longitudinal force balance in the body reference frame
(see Figure 4) is given by
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Fig. 3. Schematic view of the forces and torques acting at
the steering assembly.

mm

[
ẍ− (βẋ − hmφ̇cosφ)ψ̇

]
= Fxf + Fxr + Fdrag, (8)

wheremm is the mass of the vehicle and rider, and Fdrag =
−1/2ρCdAaeroẋ

2 is the drag force due to aerodynamic
effects and it depends on the air density coefficient ρ, the
drag coefficient Cd, the frontal cross section Aaero and the
forward speed ẋ.

Fig. 4. Schematic view of the forces and torques acting at
the chassis along the longitudinal direction.

The force balance along the lateral axis in the body
reference frame (see Figure 5) yields

mm(βẍ + β̇ẋ) +mm(hmcϕϕ̈− hmsϕϕ̇
2) =

= −mmẋψ̇ + Fyr + Fyf − sϕFlift,
(9)

where hm is the height of the center of mass, Flift =
−1/2ρClAaeroẋ

2 is the lift force due to the aerodynamic
(Cl is the lift coefficient) and

Fyr = Fzr(kαrαr + kcrϕ) (10)

is the lateral force exerted by the rear tire at the contact
point with the road. Note that, in this case, the camber
angle of the rear tire is equal to the roll angle of the
vehicle. Note that in equation (9), the term βẍ+ β̇ẋ is the
acceleration of the contact point between the vertical axis
in the body reference frame and the axis between the front
and rear tire contact points. The term hmcϕϕ̈ − hmsϕϕ̇

2,
instead, is the acceleration of the center of gravity due
to the roll motion of the vehicle, while mmẋψ̇ is the
centrifugal force acting at the center of gravity of the
chassis.

Moreover, the torque balance computed around the longi-
tudinal axis in the body reference frame (see Figure 6) is
given by

Jmxϕ̈ =Mxr +Mxf + Jrwycϕψ̇ϑ̇r+

+Jfwy(cϕψ̇ + cǫδ̇)ϑ̇f − hmcϕ(Fyr + Fyf )+
−hmsϕ(Fzr + Fzf ),

(11)

Fig. 5. Schematic view of the forces and torques acting at
the chassis along the lateral direction.

where Jmx is the rotational inertia of the chassis around
the longitudinal axis and

Mzr = Fzr(kmzrcϕ+ kmzrααr)− Fxrrtrwtϕ (12)

is the moment around the vertical axis due to the rear
wheel force. This term, as the one due to the front
wheel defined in Equation (5), includes two contributions:
the former depends on the rear wheel camber angle and
the rear wheel side-slip angle αr = −β + t−1

amψ̇/ẋ
and

works against alignment, the latter is due to the lateral
deformation of the rear tire and it tends to align the
plane of the tire in the direction of the velocity. Moreover,
in Equation (11), the terms Jrwycϕψ̇ϑ̇r and Jfwy(cϕψ̇ +

cǫδ̇)ϑ̇f are gyroscopic moments due to the yaw motion that
tend to stabilize the vehicle by decreasing the roll angle.

Fig. 6. Schematic view of the forces and torques acting at
the chassis around the longitudinal axis.

Finally, the torque balance around the vertical axis of the
intermediate reference frame (see Figure 7). With such
reference frame, the vertical forces Fzf and Fzr do not
generate a torque. Thus, the torque balance can be written
as

(Jmys
2
ϕ + Jmzc

2
ϕ)ψ̈ =Mzr +Mzf+

−Jfwyϕ̇ϑ̇f − Jrwycϕϕ̇ϑ̇r+
−amFyr + hmsϕFxr + bmFyf + hmsϕFxf + sϕMpitch,

(13)
where Mpitch = 1/2ρCpAaeroLwbẋ

2 is the pitching mo-
ment due to the aerodynamic forces, Cp is the pitch
moment coefficient and Lwb is the distance between the
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center of pressure and the center of gravity. Note that this
component is null if the motorcycle is ridden straight.

Fig. 7. Schematic view of the forces and torques acting at
the chassis around the vertical axis.

To take into account the dynamic behavior of the tires,
the tire relaxation length has been introduced in the
computation of the side-slip angles, i.e.,

α̇i = −
ẋ

Lyi
(αi − αi0), i = f, r (14)

where Lyi is the tire relaxation length assumed to be
constant and αi0 is the steady-state value of the side slip
angle.

Equations (1)-(14) represent a 11th order nonlinear dy-
namical model, the state vector being

x =
[
ϕ δ ϕ̇ δ̇ ẋ β̇ ψ̇ ϑ̇r ϑ̇f αr αf

]
′

.

The nonlinear system depends on the front and rear
vertical load. Thus, to solve the dynamical system, two
additional equations are needed to evaluate the unknown
vertical loads. To this end, the force balance along the ver-
tical axis of the intermediate reference frame (see Figure
8)

mm(hmsϕϕ̈+hmcϕϕ̇
2) = mmg+cϕFlift+Fzr+Fzf (15)

has been considered, where g = 9.81m/s2 is the gravita-
tional acceleration. Note that the term hmsϕϕ̈ + hmcϕϕ̇

2

is the lateral acceleration of the center of gravity.
The torque balance around the lateral axis of the inter-
mediate reference frame yields

0 = amFzr + hmcϕFxr − bmFzf + hmcϕFxf+

+cϕMaero + Jfwysϕϕ̇ϑ̇f + Jrwysϕϕ̇ϑ̇r.
(16)

By substituting in Equation (15) the expression of the roll
angular acceleration given in Equation (11) and consider-
ing the linear dependency of the longitudinal and lateral
forces on the vertical loads, starting from Equations (15)-
(16) Fzf and Fzr can be expressed as a combination of the
state variables.

By linearization the following linear model is obtained

ẋ = Ax+Bu, (17)

where u = [τs τrw τfw] is the input vector.

Fig. 8. Schematic view of the forces acting at the chassis
along the vertical axis.

3. GRAY-BOX PARAMETERS IDENTIFICATION

Once the model has been derived, some parameters need
to be estimated to evaluate the model effectiveness and
suitability for control system design. The model anal-
ysis and a gray-box parameter identification have been
performed using Bikesim as reference. Specifically, three
different simulation experiments have been carried out,
i.e.,

- sinusoidal sweep of the input steering torque;
- sinusoidal sweep of the front wheel torque;
- sinusoidal sweep of the rear wheel torque.

All the input signals range from 0.5 up to 20Hz and
the simulations have been performed at a given constant
forward speed ẋ = 130km/hwith a roll angle ϕ = 30◦. The
roll angular rate time histories provided as outputs by the
simulator and the model were considered for parameter
identification purposes.

The employed parameter estimation procedure numeri-
cally minimizes the following cost function

J = γϕ̇τsJϕ̇τs + γϕ̇τrwJϕ̇τrw + γϕ̇τfw
Jϕ̇τfw

(18)

where

Jϕ̇u =

N∑
k=1

(ϕ̇sim(k)− ϕ̇mod(k))
2, u = τs, τrw, τfw, (19)

and the values of γϕ̇u are selected to properly weight the
cost functions. In Equation (19), N is the number of data,
ϕ̇sim and ϕ̇mod are the simulator and model roll rate
outputs, respectively.
Several parameters have been considered for optimization:
in Appendix A the values of these parameters are collected
in a table.

To validate the linear model (17), several simulations
have been carried out. In Figure 9 the results obtained
comparing the roll rate model output with the multi-
body simulator one at ẋ = 130km/h in straight-running
are depicted. The input of the system is an impulse-like
steering torque performed by the rider. As can be seen,
the agreement between the simulator and the model can
be regarded as quite satisfactory.
As the cost function based on which the parameters were
estimated considered explicitly the roll rate only, to further
validate the model we compared the steer angle model
output with the multi-body simulator one. The results
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Fig. 9. Time history of the roll rate response to an impulse-
like steering torque input: model (solid line) and
simulator (dashed line).

are shown in Figure 10, where the model and simulated
roll angle time responses are reported. As can be seen,
also in a genuine validation test the agreement between
the analytical model and the simulator can be regarded as
very satisfactory.
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Fig. 10. Time history of the steering angle response to an
impulse-like steering torque input: model (solid line)
and simulator (dashed line).

Finally, in Figures 11 the time histories of the roll rate
when the input is a step-like front wheel braking torque
are depicted. This simulation has been carried out at a
steady-state forward speed ẋ = 130km/h with 30◦ of roll
angle. As can be seen by inspecting the figures, the results
are quite satisfactory also in this setting. Similar results
have been obtained considering as input the rear wheel
torque.

Since the A matrix in (17) strongly depends on the
linearization point, wobble and weave strongly depends on
the velocity and roll angle. Thus, to further validate the
model, Figure 12 shows the map of the model eigenvalues
as a function of the speed (the speed is increased from 50
to 170 km/h) and the roll angle (the roll angle is increased
from 10 to 30 degrees). As can be seen, the weave and
wobble modes characteristics are well captured by the
model, and are in good agreement with what discussed in
Sharp and Limebeer [2004], where a sport bike model was
considered. Figure 12 shows that the weave mode moves,
with the speed, within a frequency range of [1.4, 4.3]Hz,

10 10.5 11 11.5 12 12.5 13
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time [s]

R
o
ll 

ra
te

 [
d
e
g
/s

]

 

 

Simulator

Model

Fig. 11. Time history of the roll rate response to a step-like
front wheel braking torque input: model (solid line)
and simulator (dashed line).

whereas the wobble within approximately [7.8, 9.7]Hz. The
damping of the weave mode consistently decreases as speed
increases; this is true also for the wobble mode, even if the
damping variation with speed is more limited. Moreover,
the damping of these modes decreases as the roll angle
increases: however, the damping is more sensitive to the
forward speed than to the roll angle.

−50 −40 −30 −20 −10 0

−60

−40

−20

0

20

40

60

Real part

Im
a

g
in

a
ry

 p
a

rt

 

 

weave

wobble

capsize

speed
increase

speed
increase

Fig. 12. Map of the model eigenvalues as a function of
the speed and the roll angle: the speed is increased
from 50km/h to 170km/h while the roll angle is 10◦

(circle), 20◦ (square), 30◦ (triangle).

Finally, Figure 13 depicts the map of the model eigenvalue
as a function of the damping coefficient of the steering
damper. The obtained results agree with the literature:
higher the damping coefficient of the steering damper is,
less damped the weave mode is and vice versa. The capsize
mode is not influenced by the steering damper.

4. CONCLUDING REMARKS AND OUTLOOK

In the present paper a control oriented model of the
motorcycle dynamics has been derived. The model has
been derived with the specific goal of a model as simple
as possible but able to capture all the dynamics rele-
vant to active stability control of two-wheeled vehicles.
For this reason tyre dynamics and tyre force have been
explicitly considered. The resulting model is an 11th order
nonlinear system. Although seemingly high in order, the
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Parameter Initial value Final value

mm [kg] 274.8 274.8
am [m] 0.723 0.723
bm [m] 0.647 0.647
hm [m] 0.5 0.573 (+14%)
r [m] 0.278 0.278
ǫ [deg] 27.72 27.72

Jmx [Nm
2] 17 17

Jmz [Nm
2] 30 26.56 (-11%)

Jmy [Nm
2] 40 52.97 (+32%)

Js [Nm
2] 0.41 0.43 (+6%)

Jrwy [Nm
2] 0.64 0.64

Jfwy [Nm
2] 0.48 0.48

kλr [−] 23 23
kαr [rad−1] 11 13 (+18%)
kcr [rad−1] 0.87 0.87

kmzrα [rad−1] 0.2565 0.2565
kmzrc [rad−1] 0.0247 0.0247

rtrw [−] 0.0603 0.0603
kλf [−] 26 26

kαf [rad−1] 12.36 16.13 (+30%)
kcf [rad−1] 1.11 1.11

kmzfα [rad−1] 0.2565 0.2565
kmzfc [rad−1] 0.0247 0.0247

rtfw [−] 0.0388 0.0388

Table 1. Numerical values of the vehicle pa-
rameters

availability of the actual equations represents an advan-
tage with respect to the classical Jacobian linearization
approach commonly used in the literature. The model can
be employed with advanced nonlinear model-based control
system design and analysis tools.

5. VALUES OF THE MODEL PARAMETERS

See Table 1.
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