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Ahstract- This paper presents a control architectnre based 
on a linear MPC formnlation that addresses the lane keeping 
and obstacle avoidance problems for a passenger car driving 
on low cnrvatnre roads. The proposed control design deconples 
the longitndinal and lateral dynamics in two snccessive stages. 
First, plansible braking or throttle profiles are defined over the 
prediction horizon. Then, based on these profiles, linear time
varying models of the vehicle lateral dynamics are derived and 
nsed to formnlate the associated linear MPC problems. The 
solntions of the optimization problems are nsed to determine for 
every time step, the optimal braking or throttle command and 
the corresponding steering angle command. Simnlations show 
the ability of the controller to overcome mnltiple obstacles and 
keep the lane. Experimental res nits on an antonomons passen
ger vehicle driving on slippery roads show the effectiveness of 
the approach. 

I. INTRODUCTION 

Over the last two decades, the increased presence of elec
tronics and software in vehicles has allowed the introduction 
of several active safety systems, e.g., Anti-lock Braking 
System (ABS), Electronic Stability Control (ESC), Adaptive 
Cruise Control (ACC). Nevertheless, the number of fatal 
road traffic incidents due to driver distraction and speeding 
is still significantly high [1]. Recent advances in sensing 
technologies and 3D environment reconstruction [2]-[4] have 
opened up new possibilities and have provided a base for 
the design of advanced autonomous and semi-autonomous 
guidance systems. 

Because of its capability of systematically handling non
linear time-varying models and constraints, and operating 
close to the limits of admissible states and inputs, Model 
Predictive Control (MPC) has been widely used to address 
the autonomous vehicle guidance problem [5]-[10]. In [5], 
the MPC problem has been formulated as a quadratic pro
gram (QP) by limiting the intervention to the steering, and 
linearizing the vehicle dynamics around a constant vehicle 
speed and small slip angles. In [8]-[10], the authors address 
the problem of integrated braking and steering control by 
using a hierarchical control architecture. A high-level con
troller generates an obstacle-free trajectory, while a low level 
controller tracks this planned trajectory. In order to combine 
braking and steering, both levels implement a nonlinear 
MPC formulation which requires the online solution of a 
non-convex optimization problem. In order to reduce the 
real-time computational complexity, in [9], the authors have 
proposed the use of a spatial vehicle model which simplifies 
the problem. However, the nonlinear nature of the model 
used in the MPC problem significantly limits the maximum 
prediction horizon implementable. 

In this paper, we propose a linear MPC-based control 
architecture suitable for vehicles driving in low curvature 
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Fig. I. Illustration for the bicycle model. 

roads, such as highways. It addresses the lane-keeping and 
obstacle avoidance problems by combining steering and 
braking actions. In particular, the paper presents two main 
contributions: first, under the assumption of a large radius of 
curvature, we derive a linear time-varying (LTV) model of 
the vehicle lateral dynamics, as a function of the longitudinal 
braking or throttle profile; second, we use this model to for
mulate a linear MPC problem for lane-keeping and obstacle 
avoidance, accounting for both the longitudinal and lateral 
dynamics. The linearity of the model allows us to recast the 
MPC problem as a set of convex QPs and, hence, to reduce 
the overall computational complexity of the problem. 

The rest of the paper is organized as follows: in Section 
II, we introduce the extended bicycle model and show how it 
can be simplified to obtain a LTV model of the vehicle lateral 
dynamics. In Section III, we show how the objectives of lane 
keeping and obstacle avoidance are formulated as convex 
constraints on the vehicle's states and inputs. In Section 
IV, we introduce the linear MPC formulation. In Section V, 
we demonstrate the effectiveness of the proposed controller 
through hardware-in-the-loop simulations and experiments 
on a real passenger vehicle. Finally, in Section VI, we 
provide some concluding remarks and outline future work. 

II. VEHICLE MODEL 

In this section, we present a modified version of the vehi
cle bicycle model [6] and the corresponding simplified LTV 
model of the lateral dynamics used in the MPC formulation. 

A. The extended bicycle model 

In this paper we are using a modified version of the clas
sical bicycle model, that also accounts for the longitudinal 
and lateral load transfers while computing the forces acting 
on the tires. Therefore, the extended bicycle model can be 
considered as a trade-off between the classical bicycle model 
and the four wheel vehicle model [11]. 

Bicycle model equations 

The notation used in the vehicle model is shown in 
Figure 1. The vehicle dynamics are described by the fol-
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Fig. 2. Sketch of the vehicle and modeling notation for the computation 
of the longitudinal and lateral load transfers. 

lowing set of differential equations: 

mx = Fx II + Fx Ir + FXrl + FXrr - kdX2 
my = -mx'lj; + FYIl + FYIr + FYrl + FYrr 
I;j; = a (FYIl + FyIJ - b(FYrl + FYrJ, 

(la) 
(lb) 
(lc) 

where x and y deno.te the longitudinal and the lateral speed 
of the vehicle, and 'Ij; denotes the yaw rate. The constants m 
and I denote the vehicle's mass and rotational inertia about 
the yaw axis, respectively, and a and b denote the distances 
from the center of gravity (CoG) to the front and rear 
axles, respectively. In Equation (la), -kdX2 represents the 
aerodynamic longitudinal force with kd = !pCdSd, where p 
is the air density, Cd is the aerodynamic drag coefficient and 
Sd is the vehicle frontal cross section. Fx .. and Fy .. (where 
* = I, r, • = l, r) are the tire forces acting along the vehicle 
longitudinal and lateral axes relative to each wheel. These 
forces are related to the forces Ix .. and Iy .. acting along 
the wheel longitudinal and lateral axes, respectively, through 
an equality for the rear wheels (Fxr• = Ixr., Fyr• = IyrJ 
and a rotation depending on the steering angle J for the 
front wheels (FXI• = IXI. cos(J) - IyI• sin(J), FYI. = 

IXI. sin(J) + IyI• cos(J) . 

Tire forces 

In connection to the computation of the longitudinal and 
lateral load transfers, we introduce the following assumption. 

As sumption 1: In the load transfer computation, the effect 
of the aerodynamic forces acting on the vehicle is negligible. 
Considering the sketch in Figure 2, we can derive the forces 
acting along the vehicle vertical axis of each wheel Fz .. due 
to the load transfer as, 

bFz - eFx FZII = 2(a + b) 
F _ aFz + eFx 

Zrl - 2(a+b) 

eFy 
2c ' 

eFy 
2c ' 

F _ bFz - eFx eFy 
Zir - 2(a + b) + 2c ' 

aFz + eFx eFy 
Fzrr = 2(a+b) +�. 

(2) 

where Fx = �*=f r·.=l r Fx .. , Fy = �*=f r·.=l r Fy .. 
and Fz = mg are' the 'cumulative forces acting on the 
wheels along the longitudinal, lateral and vertical vehicle 
axes, respectively; the constants c and e denote respectively 
the vehicle width and the height of the CoG and 9 is the 
gravitational acceleration. 

The second input of the model is the braking ratio, denoted 
as fJ, with fJ = -1 corresponding to maximum braking and 
fJ = 1 corresponding to maximum throttle. We introduce the 
following assumptions regarding the longitudinal forces: 

Assumption 2: The rotational inertia of the wheels is 
negligible. The torque Tx .. about the wheel's axis produces 

Fig. 3. The curvilinear coordinate system. The dynamics are derived about 
a curve defining the centerline of a track. The coordinate s defines the arc
length along the track. 

a longitudinal force Ix .. = Tx .. /r, where r is the wheel's 
radius. 

Assumption 3: The low level controller of the longitudinal 
dynamics distributes the forces as 

(3) 
where tJ denotes the friction coefficient between the tire 

and the road surface. 
Note that Fz .. and, consequently Ix .. , depend on Fx and 
Fy. The force component Iy .. can be computed using a 
simplified version of the semi-empirical Pacejka formula [l2] 
as Iy .. = J(tJFz.J2 - fLo sin(C arctan(Ba*)), where C 
and B are tire parameters calibrated using experimental data. 
The variable a* denotes the slip angles of the front and rear 
wheels, which can be computed as, 

af = 
y + a'lj; 

- J . , 
x 

y - b'lj; 
ar = --. - . 

x 
(4) 

Substituting (3) in the expression of Iy .. , we obtain an al
ternate representation of the lateral forces which emphasizes 
the linear relationship between Iy .. and Fz .. 

Iy .. = tJFz .. � sin(C arctan(Ba*)). (5) 

As we will show in the subsection II-B, this linear relation
ship allows us to decouple the longitudinal dynamics from 
the lateral dynamics. 

Road curvilinear coordinate system 
Figure 3 shows the curvilinear coordinate system describing 
the interaction between the vehicle and the road, which can 
be used to derive the following kinematic equations: 

e1jJ = 'Ij; - 'lj;s 
ey = y cos( e1jJ) + x sin( e1jJ) (6) 

S = -p_(xcos(e1jJ) - ysin(e1jJ)), 
p - ey 

where e1jJ and ey denote the heading angle error and the lat
eral position error relative to the road centerline, respectively, 
and s denotes the projected vehicle position along the road 
centerline. p and 'lj;s are the radius of the cur,:ature and the 
heading of the road centerline, respectively. 'lj;s is the time 
derivative of 'lj;s and depends on s according to the relation 
�s = s/ p .  We also define 'lj;r = 

dfss as the derivative of 'lj;s 
with respect to the curvilinear coordinate s. 'lj;r is the inverse 
of p and is assumed to be known. 

The differential equations (l)-(6) completely define the 
extended bicycle model. 
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B. A LTV model for the vehicle lateral dynamics 

In this subsection we present the simplifications required 
to obtain a LTV model of the lateral dynamics from the 
extended bicycle model. The discretized version of this 
model will be used in section IV to formulate the MPC 
problem. 
The following assumptions are introduced. 

Assumption 4: The braking ratio fJ(t) is assuIl!ed to be 
constant over the prediction horizon (i.e., fJ (t) = fJ). 

Assumption 5: The vehicle is driven in a typical highway 
scenario (i.e. high speed limit and low curvature lane), which 
implies that: 

• the heading angle error is small (i.e., e,;, '::::: 0), 
• the steering angle necessary to reach the tire saturation 

is small (i.e., J '::::: 0). 
Assumption 5 also implies: cos( J) '::::: 1, sin( J) '::::: J '::::: 
0, cos(e,;,) '::::: 1, sin(e,;,) '::::: e,;" -;;!e; '::::: l. 
In summary we can rewrite the vehicle model as: 

mx = mgp,fJ - kdX2 

my = -mx� + FYI + FYr 

I;j; = aFYI - bFYr 
e,;, = � - x'I/Jr 
ey = y + xe,;, 

s = x, 

(7 a) 
(7b) 
(7c) 
(7d) 
(7e) 
(7f) 

where Fy, = FY,1 + FY,r' Additionally Fx .. = Ix .. and 
Fy.. = Iy .. , where * = I, r; • = r, l. Note that (7a) 
and (7f) completely define the longLtudinal dynamics of the 
vehicle. Therefore, given the input fJ, the initial speed x(to) 
and position s (to) of the vehicle, the differential equations 
(7a) and (7f) can be integrated to obtain explicit expressions 
of the speed x(t) and position s(t), respectively. 

The only nonlinearity in the remaining differential equa
tions (7b )-(7 e) is contained in the terms FYI (a I) and 
FYr (ar), whose expressions can be rewritten by combining 
(2), (4) and (5) as 

(b- efJ)mg p 
FYI =p, 1 - fJ2 sin(C arctan(BaI )), 

a + b 
(a + efJ)mg p 

Fy =p, 1- fJ2sin(Carctan(Bar)). r 
a + b 

(8) 

Figure 4 displays Fy, (a*) for a given value of fJ and shows 
how Fy, can be bounded by two linear functions, 

where C*u and C*L are functions of the parameters in 
(8). The corresponding slip angle intervals in which the 
upper and lower approximations are valid are denoted as 
[-a*,limu, a*,limu land [-a*,limL' a*,limL], respectively. 
Itoll denotes the maximum acceptable error in the linear 
approximations of the tire lateral forces. 
These approximations allow us to define the following two 
LTV models of the lateral vehicle dynamics: 

• Conservative lateral dynamics model: This model un
derestimates the cornering ability of the vehicle. In 
particular, FYI and Fyr _ in (7b) are approximated 
by Ch(fJ)aI and CrL(fJ)ar, respectively, _and FYI 
and FYr in (7 c) are approximated by C h (fJ) a I and 
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Fig. 4. Plots of the lateral force computed with the simplified Magic 
Formula (FY"MP)' with the lower (FY"L) and the upper (Fy"u) linear 
approximation, for a given value of the vertical force and longitudinal force. 

Cru (fJ)ar. Therefore, the resulting conservative lateral 
dynamics model can be expressed as: 

my = -mx� + ChaI + CrLar 

I;j; = aChaI - bCruar 

e,;, = � - x'I/Jr 
ey = y + xe,;, 

j= u, 

(9) 

where a I = (iHt,'/J - J) and ar = Y-xb,j,. The term 
"conservative" emphasizes the robustness of the model 
to the nonlinear tire characteristics. This model plays 
the main role in the MPC formulation. 
Note that the steering angle J has been added to the 
state space, while the new input variable is the steering 
rate, denoted by u. This modification allows us to 
keep the inputs constant over certain time intervals 
while continuously varying the steering angle. A similar 
modification has been introduced in the next model. 

• Overreacting lateral dynamics model: This model over
estimates the cornering ability of the vehicle. In particu
lar, FYI an� FYr in (7b) are approximated by C Iu (fJ)a I 
and Cru (fJ)aro respectively, and FYI and FYr in (7c) 
are approximated by C Iu (fJ)a I and CrL (fJ)ar, re
spectively. The resulting overreacting lateral dynamics 
model can be written as, 

my = -mx� + CIuaI + Cruar 

I;j; = aCIuaI - bCrLar 

e,;, = � - x'I/Jr 
ey = y + xe,;, 
j= u, 

where aI = y+�a,j, - J and ar = Y-�b,j,. x x 

(10) 

Both models hold for slip angles a I and ar inside the 
intervals 

(11) 

where a I,lim = min { a I,limu , a I,limL} and ar,lim = 
min{ ar,limu, ar,limL}' Even if the slip angles doesn't have 
the same sign over the horizon, through simulations it 
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has been possible to observe that the vast maJonty of the 
trajectories obtained with the nonlinear model are bounded 
by that ones predicted with the two presented liner models. 
C. Model discretization 

Equations (7a), (7f), (9) and (10) describe linear 
continuous-time models. Their discretization is performed in 
two steps using a forward Euler approximation with a dis
cretization time step f::,.t. Firstly, given the initial longitudinal 
position S j and speed :i; j at tj and the braking or throttle 
effort fJ, the longitudinal states can be computed over the 
prediction horizon Hp as 

!t�+1 . =!t� . + f::,.tmgfJ - f::,.tkd(!t�)2 ,J ,J ,J 
-j3 -j3 + f::,.rj3 sk+l,j =sk,j Xk,j 
tHI =tk + f::,.t 

(12) 

f k . . H 1 h -j3 --j3 . d t-or = J, .. , J + p - , w ere S j ,j = S j, x j ,j = x j an j = 
t j. x� . and s� . represent the longitudinal speed and posi-,J ,J _ 

tion, respectively, at time tk, predi�ted at ti_me tj. _Secondly, 
. h d -/3 { -/3 -/3 } usmg t e compute sequences Sj = Sj,j'''' Sj+Hp-l,j 

and i:� = {!t�,j'''' !t�+Hp-l,j}' and a suitable discretization 
scheme, the models (9) and (10) can be used to obtain LTV 
models of the lateral vehicle dynamics to be used in the MPC 
formulation. We denote the discretized conservative lateral 
dynamics model by 

�cm,j3 = A cm,j3 �cm,j3 + Bcm,/3 u/3 . (13) k+I,J k,J k,J k,J k,J' 
and the discretized overreacting lateral dynamics model by 

�om,j3 = Aom,j3�om,j3 + Bom,/3u/3 . (14) k+I,J k,J k,J k,J k,J' 
for a given value of fJ. The state vector of the models is 
d fi d c*,j3 {.*,j3 "i,*,j3 *,j3 *,j3 s:*,j3} d th e ne as C,k,j = Yk,j' 'f/k,j , e1jJ k,j , ey k,j , Uk,j , an e 
input is the steering rate u� '. ,J 

III. SAFETY CONSTRAINTS 

In this section, we show how the requirements of keeping 
the vehicle in the lane while avoiding obstacles and operating 
in a stable region can be expressed as constraints on the 
vehicle's states and input. 
A. Actuator limits 

The use of an Active Front Steering (AFS) unit to drive 
the steering angle imposes bound on the steering angle and 
its derivative. These bounds can be represented as linear 
constraints on the input and the state vector: 

-6lim :S; 6�:� :S; 6lim (1Sa) 
. j3 . 

-6lim :S; Uk,j :S; 6lim, (1Sb) 
for k = j, .. , j + Hp - l. 
B. Slip angles bounds 

The conservative and overreacting lateral dynamics model 
are valid for values of a I and ar satisfymg (11). This 
requirement can be expressed as linear constraints on the 
state vector: 

1·*,13 + �*,13 1 
Yk,j a k,j _ K

*,13
:< . 

• (3 Uk,j "aj,hm, 
Xk,j 

for k = j, .. , j + H p - l. 

1 i;*,13 - b�*'131 
k,J k,J :< .(3 -......::: ctr,lim, 

Xk . ,J 
(16) 
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Fig. 5. Structure of the obstacle avoidance controller. 

C. Lane boundaries 

Lane boundaries can be easily introduced in the model as 
constraints on the lateral position error ey �',�: 

(17) 

for k = j, .. , j + Hp - 1, where lw denotes the lane width. 

D. Obstacle avoidance constraints 

Finally, we show how static and moving obstacles can 
be expressed as additional linear constraints on the lateral 
position error ey �,/3. We introduce the following assumptions: ,J 

Assumption 6: The current and the future positions of 
all obstacles in the proximity of the vehicle are known as 
function of time. 

Assumption 7: The controller knows the side of the ob
stacle on which it is safe to pass. 

These assumptions allow us to map the obstacles' posi
tions to a safe region on the road defined by its left and 
right bounds ey,leIt (t, s) and ey,right (t, s), respectively. Note 
that these bounds are a function of time t and position S 
along the road. The pre-computation of s� defines a unique 
correspondence between tj and S�,j (i.e. Sk,j(tk) for a given 
fJ, and allows us to recast the obstacle avoidance problem as 
LTV constraints on the lateral position error: 

ey,right(tk, Sk,j(tk)) :S; ey�:� :S; ey,leIt(tk, Sk,j(tk)), (18) 

for k = j, .. , j + H p - l. 

E. Summary of constraints 

The constraints (1Sa), (16), (17) and (18) can be compactly 
written as 

for k = j, .. , j + H p -1, where Sfi is time-varying sequence ,J 
of convex sets. The inequality (1Sb) can be rewritten as 
uffi E U for k = j, .. ,j + Hp - 1, where the set U is k,j 
convex. 

IV. CONTROLLER DESIGN 

In this section we describe the MPC architecture used to 
address the obstacle avoidance problem. As shown in Figure 
5, we decompose the controller into three sequential blocks: 
longitudinal profiles generation (A), MPC problems (B) and 
post-computation (C). 



A. Longitudinal profiles generation 
The longitudinal profiles generator block is responsible 

for defining a set of n(3 possible braking ratio commands 
E = {,81, .. , ,8nfJ} and a reference braking ratio fJrej com
puted using a PI controller which tracks a given reference 
speed Vrej. In our work, we have investigated two different 
definitions of the set of braking ratios: 

• n(3 braking ratios: In this approach, we consider the 
braking ratios to be n(3 uniformly spaced points in the 
interval [,81, ,8nfJ]' While ,81 is set to -1, ,8nI! depends 
on the sign of fJrej: if fJrej � 0, then fJnfJ = 0; 
otherwise ,8nfJ = fJrej. 

• 3 braking ratios. This definition of the braking ratios set 
E = {,81' ,82, ,8nfJ} is a consequence of the observation 
that the optimal braking ratio fJ* changes slowly with 
time. Hence, $iven the last two optimal braking ratios 
fJ; and fJ;p, fJ is computed as follows: 

{ {fJ; - !::"fJ, fJ;, fJ; + !::"fJ} if fJ; = fJ;p 
E = {fJ;, fJ; + !::,.fJ, fJ; + 2!::"fJ} if fJ; > fJ;p 

{fJ; - 2!::"fJ, fJ; - !::,.fJ, fJ;} if fJ; < fJ;p, 

where the perturbation !::"fJ is a parameter to be chosen. 
B. MPC problems 

This block formulates and solves the constrained finite 
time optimal control problem at each time step. Using (12) 
for every §i, i = I, '" nf3, the sequence of longitudinal 
positions sf' and speeds !if' over the prediction horizon Hp 
is computed. The MPC formulation predicts the vehicle's 
states using both the conservative lateral dynamic model and 
the overreacting lateral dynamic model. The states predicted 
over the horizon Hp using conservative lateral dynamic 
model play the main role and they appear both in the cost 
function and in the constraints. The overreacting lateral 
dynamic model, instead, has an auxiliary role and it is used 
with a shorter prediction horizon Hp2 in the constraints 
definition. The MPC problem can be synthesized as follows: 

(19a) 

subj. to �cm,(3i - Acm,(3i�cm,(3i + Bcm,(3iu(3i (l9b) k+l,j - k k,j k k,j' 
k=j,,,,j+Hp- 1 

em ,(3, = Aom,(3;em,(3, + Bom,(3,u - (19c) k+l,) k k,) k k,(3,' 
k = j, ",j + Hp2 - 1 

k = j, ",j + Hp - 1 (l9d) 
ccm,(3i E ,;;(3, k J' J' + H 1 '>k,j �k,j = ,  '" p -
com,(3, �(3, k . . + H 1 '>k,j E =-k,j = J, ",J P2 -
�cm,rIi = �om,(3i = �(tj), ) ,) ) ,) 

(1ge) 

(l9f) 

(l9g) 

where J N (�jm,(3i , Uf') is a convex quadratic function de
pend�ng on the _states, thE: slip angles and the input. 
ccm,(3i {CCm,(3i ccm,(3i ccm,(3i } ' th '>j = '>j,j , '>j+l,j ' ' ' ' '>j+Hp-l,j IS e se-
quence of states over the prediction horizon Hp pre
dicted at time tj, and updated according to the _dis-
cretized conservative latera! dynamics model (l3). t;m,(3i = 

{com,(3; com,(3i ccm,(3, }' th f t t '>j,j , '>j+l,j , ' " '>j+Hp2 -1 ,j IS e sequence 0 s a  es 

over the prediction horizon Hp2 predicted at time tj, and 
updated according to the discretized overreacting lateral 
dynamics model ( �4). uf:j _ E IRmr is_ the kth vector of the 
input sequence uti = {uf,j ' ''' , Uf+H _1,JT E IRmrHp. 
Since the models and the constraints are finear, it is possible 
to formulate every MPC problem as a QP. Each MPC 
controller in Figure 5 returns the optimal steering rate ui 
and the optimal value of the cost function itlat. In order 
to reduce the computational complexity, the input is kept 

,. H . (. (3i (3i constan�lor every 
. �

tIme-st�s I.e. uj+iH,+k,j = U.H iHi; j 
for k - I, "., Ht 1, z - 0, "., �Hp/ Hz)). WIth thIS 
simplification the number of optimization variables can be 
significantly reduced, speeding up the computations. 

C. Post-computation 
In the post-computation block, the optimal cost functions 

itlat are augmented by adding a quadratic term representing 
th� deviation of ,8i from fJrej as follows, 

it = fi�lat + II,8i - fJrejll�fJ' 
The optimal braking ratio fJ* and the corresponding steering 
rate J* can be then computed as, 

(fJ*)*) = {(fJ;,Jn : it = min(f{, ",f�fJ)}' 
V. SIMULATION AND EXPERIMENTAL RESULTS 

In this section we present the obtained results through 
simulations and real experiments. 

A. Simulation setup description and results 
Hardware-in-the-Ioop simulations of the controller are per

formed on a dSPACE rapid prototyping system consisting of 
a DS140l MicroAutoBox (IBM PowerPC 750FX processor, 
800 MHz) and a DS1006 processor board (Quad-core AMD 
Opteron processor, 2.8 GHz). The controller runs on the 
MicroAutoBox, and the DS 1006 board simulates the vehicle 
dynamics using a nonlinear four wheel vehicle model with 
a Pacejka tire model. 
The simulations have been performed using the following 
parameters: Hp = 45, Hp2 = 20 and Hi = 3. The considered 
scenarios consist of a straight slippery road (M = 0.3) with 
one or more static obstacles. The edge of each obstacle is 
at a distance of 2 m from the road centerline. Note that no 
tolerance has been added to the lane or obstacle bounds to 
account for the vehicle's width. 

Figure 6 shows the path of the vehicle while avoiding a 
single obstacle, while Figure 7 shows the path of the vehicle 
while avoiding two obstacles. The vehicle is able to avoid 
the obstacles and return to the lane centerline in both cases. 
Moreover, the vehicle travels close to the obstacle while 
avoiding it. 

B. Experimental setup description 
The experiments were performed on a Jaguar S-type 

vehicle (m = 2050 kg, I = 3344 kg-m2) at the Smithers 
winter testing center (Raco, MI, U.S.A.) on tracks covered 
with packed snow (M ;::::: 0.3). A picture of the vehicle and the 
environment is shown in Figure 8. The vehicle is equipped 
with an Active Front Steering (AFS) system and four wheel 
independent braking. An Oxford Technical Solutions (OTS) 
RT3002 sensing system is used to measure the position and 
orientation in the inertial frame, and the vehicle velocities 
in the body frame. The OTS RT3002 system comprises 
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Fig. 6. Simulation 1: The vehicle avoids one obstacle with an entry speed 
of 50 kph. 
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Fig. 7. Simulation 2: The vehicle avoids two obstacles with an entry 
speed of 50 kph. 

of a differential GPS, an IMU and a DSP. The real-time 
computations are performed on a dSPACE DSI005 Autobox 
system which consists of a PowerPC 750GX processor 
running at 933 MHz. 
The simulations have been performed using the following 
parameters: Hp = 30, Hp2 = 20 and Hi = 3. 
The test scenario consists of a straight road with a single 
obstacle. The edge of the obstacle is a distance of l.5 m 
from the road centerline. The path of the vehicle is shown 
in Figure 9. It is seen that the vehicle avoids the obstacle 
and returns to the road centerline with a low overshoot. The 
performance is similar to that seen in simulations. Note that 
the scenario with two obstacles was not considered in the 
experiments due to the lack of testing time. 

VI. CONCLUSIONS 

We have presented a LTV model of the vehicle dynamics, 
and used it to formulate an MPC problem for obstacle 
avoidance and lane keeping. The linearity of the model 
and convexity of the constraints is used to recast the MPC 
problem as a set of QP subproblems. The low computational 
complexity of each subproblem allows us to solve the MPC 

1 
Fig. 8. Experimental setup: Jaguar S-Type test vehicle driving on snow 

20 40 60 80 X[m] 100 120 140 

Fig. 9. Experimental result: The vehicle is able to avoid the obstacle 
with an entry speed of 50 kph. 

problem in real-time while using long prediction horizons. 
Future work involves exploring customized embedded QP 
solvers for the fast solution of each QP. 
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