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Abstract— In this paper, we investigate the problem of how
to optimally control a heavy-duty vehicle following another
one, commonly referred as “ad-hoc” or “non-cooperative pla-
tooning”. The problem is formulated as an optimal control
problem that exploits road topography information and the
knowledge of the preceding vehicle speed trajectory to compute
the optimal engine torque and gear request for the vehicle
under control. The optimal control problem is implemented
by dynamic programming and is tested in a simulation study
that compares the performance of multiple longitudinal control
strategies. The proposed look-ahead adaptive cruise controller
is able to achieve fuel saving up to 7 % with respect to the use
of a reference controller, by combining the benefits of adjusting
the inter-vehicular distance according to the future slope with
those of alternating phases of throttling and coasting.

I. INTRODUCTION

Throughout the last two decades developed countries have
put enormous efforts in reducing man-related greenhouse
gas emissions and energy consumption [1], [2]. While in
almost all sectors those efforts were successful, greenhouse
gas emissions related to road freight transportation are still
increasing [3], [4]. This is mainly imputable to the un-
matched flexibility of using heavy-duty vehicles for freight
transport and to the continuously increasing request for trans-
ported goods. Because of the strong link between economical
growth and amount of transported goods [5], inverting this
trend is extremely difficult.

In this paper, we study how vehicle-following control
strategies can be exploited to reduce the fuel consumption
and, consequently, the greenhouse gas emissions of heavy-
duty vehicles. In particular, we investigate how the benefits
of short inter-vehicular distance and freewheeling can be
combined to maximize the fuel savings.

Thanks to the fuel reduction potential, the adoption of
these control strategies is not only beneficial for the envi-
ronment but also for transportation businesses. The impact
of the fuel cost for a single long-haulage truck is estimated
to account for more than one third [6] of the total cost for
operating a long-haulage truck. When long-haulage truck
will be autonomous, this percentage is expected to raise
significantly thanks to the absence of the truck driver in
the cabin and the possibility to continuously drive the truck.
In order to maintain competitiveness, we believe that the
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Fig. 1. Sketch of the problem under study.

adoption of these control strategies will be therefore crucial
for the autonomous transportation companies of the future.
A 15 % fuel consumption reduction (achievable with these
control strategies as shown in Section VI) for an autonomous
truck driving 20 hours a day for 350 days a year translates
into approximately 30 thousand euros saved each year per
truck1.

Vehicle platooning is a well-known control problem with
research papers on the topic appearing since the sixties. The
majority of these works studied platooning as a mean for
increasing traffic density [7], reducing road accidents [8], [9]
and facilitating the deployment of autonomous vehicles [10]
(refer to [11] for a full survey). Those works, therefore,
focused on solving problems related to string stability [12],
[13], platoon safety [9] and wireless network control [14]
(refer to [11] for a full survey). Only in the recent years
the fuel saving potential of platooning gained the interest
of the research community and industry. Thanks to the
particular shape of heavy-duty vehicles, the short inter-
vehicular distance achievable with platooning control creates
a slipstream effect that results in the reduction of the fuel
consumption. Tests conducted in controlled environment and
flat road showed that by using simple PI controllers to track a
defined gap policy, follower heavy-duty vehicles can save up
to 10 % of fuel [15], [16]. However, the varying topography
of real roads requires the use of more sophisticated con-
trollers (referred as “look-ahead”) that rely on the optimal
control framework to embed road topography information.
In the literature, the optimization problem returned by the
optimal control problem has been solved both using quadratic
programming [17] and dynamic programming [18]. These
approaches, however, are not suitable to explore the benefits
of freewheeling strategies while driving in a platoon forma-
tion.

1The calculation assumes a truck average speed of 80 km/h, a fuel
efficiency of 0.3 l/km and a fuel cost of 1.30 e/l.
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Fig. 2. Formulation of the optimal control problem.

In this work, we study the control problem of how to fuel-
optimally follow a vehicle whose future trajectory is assumed
to be known, as sketched in Figure 1. The contributions of
this paper are threefold. First, the optimal control problem
is formulated in such a way that both the benefits from
keeping a short inter-vehicular distance and from the use of
freewheeling can be explored. Second, the implementation of
the optimal control problem through dynamic programming
is discussed. Finally, a comparison of the performance of
multiple longitudinal control strategies achievable with the
proposed controller is presented. The simulation study shows
how it is possible to combine the benefits of short inter-
vehicular distance with those of freewheeling, reaching fuel
saving of up to 18 % by keeping a minimum distance of 20
m.

The remainder of the paper is organized as follows. Sec-
tion II introduces the optimal control problem formulation,
while Sections III and IV characterize it by presenting the
vehicle model, the fuel model and the model constraints.
Section V discusses the dynamic programming implemen-
tation. Section VI presents the simulation study. Finally,
Section VII concludes the paper suggesting possible future
research directions.

II. OPTIMAL CONTROL PROBLEM

The problem of minimizing the vehicle fuel consumption
is formulated as the optimal control problem sketched in
Figure 2. Topography information is assumed to be available
and, if a preceding vehicle exists, its future speed trajectory
is assumed to be known by the vehicle under control. This
can be achieved by communication or by estimation. Such
scenario can be interpreted as a non-cooperative or ad-hoc
platoon, where the following vehicle computes the optimal
input given the knowledge of the trajectory of the preceding
vehicle.

Remark It is not in the scope of the paper to take updates
of the preceding vehicle speed trajectory into account. Even
if changes in the preceding vehicle trajectory can be easily
exploited using a receding horizon framework, the optimality

of bang-bang control trajectories can lead to sharp increases
of the cost function when the preceding vehicle trajectory is
updated. This can happen, for example, during a downhill,
if the vehicle under control follows a costing trajectory that
leads to the minimum allowed distance at the end of the
downhill. If the preceding vehicle speed trajectory is updated
with a slower one, the feasibility of the problem requires
the vehicle under control to brake, resulting therefore in a
inefficient behavior. A discussion on how this problem can
be overcome when a receding horizon approach is used is
presented in Section VII. In this work, we assume that the
preceding vehicle exactly follows the communicated speed
trajectory.

The vehicle under control is modeled as a hybrid system.
Its continuous states are the vehicle speed v and the distance
to the preceding vehicle d (collected in the vector x =
[v, d]T), while its discrete state is the current gearbox/clutch
state g. Its continuous control input are the engine torque T
and braking force Fb (collected in the vector u = [T, Fb]

T),
while its discrete control input is the gearbox request gr. The
vehicle model includes:

• the non-linear longitudinal dynamics

ẋ = f1(x, Fe, Fb), (1)

where Fe is the longitudinal force generated by the
powertrain;

• the gearbox/clutch dynamics modeled by the timed
automaton

(g+, τ+) = f2(g, gr, τ), (2)

where τ is the automaton clock;
• the transmission model defining the static relation be-

tween the engine variables (engine torque T and speed
ω) and the chassis variables (longitudinal powertrain
force Fe and vehicle speed v), i.e.,

Fe = Fe(g, T ), ω = ω(v, g). (3)

In order to limit the model complexity, the engine
inertia is approximated to zero. This allows to ignore
the engine dynamics and to define the engine speed as
a state-dependent variable rather than a state, resulting
in a significantly reduced complexity of the dynamic
programming implementation.

The expressions of the vehicle model functions f1(·, ·, ·),
f2(·, ·, ·), Fe(·, ·) and ω(·, ·) are discussed in Section III.

The objective of the optimal control problem is to min-
imize the vehicle fuel consumption over the time horizon
H , ∫ t0+H

t0

q(T, ω)dt, (4)

where q(·, ·) is the static map describing the fuel flow
as a function of the engine operation point and t0 is the
optimization initial time. The vehicle is subjected to input
and state constraints summarized by

c(x, u, g, gr) ∈ C. (5)



TABLE I
MODEL PARAMETERS

ga gravitational acceleration m/s2 9.81
cr rolling coefficient - 0.005
Cd,0 nominal drag coefficient - 0.6
Cd,1 first drag reduction coefficient m−1 12.8
Cd,2 second drag reduction coefficient m 19.7
τfw freewheel minimum time s 8
τshift gear-shift time s 1
ωmin minimum engine speed rpm 500
ωmax maximum engine speed rpm 2000

These constraints include speed limits, bounds on the dis-
tance range, on the engine speed/torque and on the braking
force. The full characterization of these constraints and the
expression of q(·, ·) is given in Section IV.

By adding initial conditions on the states

x(t0) = x0,

g(t0) = g0,
(6)

the optimal control problem can be summarized by the
formulation in Figure 2.

The optimal control problem is implemented using dy-
namic programming. This is motivated by the discrete
dynamics of the gearbox and the non-linearities in the
longitudinal dynamics and fuel consumption models that
make the overall optimization problem extremely nonlinear.
The dynamic programming implementation is discussed in
Section V.

III. VEHICLE MODEL

In this section we present the vehicle model used in the
optimal control problem formulation. The vehicle model is
composed of the longitudinal dynamics and the powertrain
model. The powertrain model is split, in its turn, into the
gearbox/clutch dynamics model and the static transmission
model.

A. Longitudinal dynamics

The longitudinal vehicle dynamics introduced in (1) are
described by the differential equations

ẋ =

[
v̇

ḋ

]
= f1(x, Fe, Fb) =

[
1

m
(Fe + Fb + Fext(x))

vf − v

]
.

(7)

The first equation represents the force balance with respect
to the longitudinal direction, where the term

Fext(x) = −mg sinα(sf − d)−mgacr −
1

2
ρCd(d)v2

collects all the external forces acting on the vehicle, i.e.,
the gravitational, the rolling and the aerodynamic forces,
respectively. The second equation defines the distance dy-
namics. The time-variant parameters vf and sf represent the
longitudinal position and speed of the rear end of the pre-
ceding vehicle, respectively. The state-dependent parameter

engine gearbox
clutch final

drive
wheels

γg(g) γf

Te, ω

r

Fig. 3. Illustration of the powertrain.

α(s) denotes the road slope at longitudinal position s. These
parameters are assumed to be known. The definition of the
remaining static parameters, and their values, are provided
in Table I.

The aerodynamic coefficient Cd is expressed as a non-
linear function of the distance to the preceding vehicle d
according to

Cd(d) = Cd,0

(
1− Cd,1

d+ Cd,2

)
, (8)

where Cd,0, Cd,1 and Cd,2 are static parameters whose
value is displayed in Table I (see [18] for a more detailed
discussion).

Remark If the vehicle under control is driving alone (i.e
there is no preceding vehicle), the longitudinal dynamics
model (7) can be still used with minor changes. In particular,
the state d is redefined as the distance to a virtual vehicle
driving at a constant speed and Cd(d) as the constant value
Cd,0.

B. Gearbox/clutch dynamics

An illustration of the whole powertrain is displayed in
Figure 3. In this section, we focus on modeling the discrete
dynamics characterizing the gearbox and the clutch. This
model, combined with the correct characterization of the
transmission (presented in the next subsection), allows to
capture the absence of transmitted power during gear shifts
and freewheeling.

The gearbox/clutch dynamics is modeled by the timed
automaton displayed in Figure 4 and previously introduced
by equation (2). The state of the automaton is g ∈ {−1, 0}∪
G, where G = {i ∈ N|i ∈ [gmin, gmax]} represents the set of
the admissible gears. If g ∈ G, the clutch disks are closed
and gear g is engaged. If g = 0, the clutch disks are open
and the vehicle is freewheeling. Finally, if g = −1, the clutch
disks are open and a gear shift is taking place. The control
input of the automaton is gr ∈ {0}∪G. If gr ∈ G, gear gr is
requested, while, if gr = 0, freewheeling is requested. The
time requirements on the gear shifts and the freewheeling
are ensured by edge guards and location invariants.

The gearbox starts in the engaged gear condition, i.e.,
g0 ∈ G. This is modeled by the central macro-state in the
automaton of Figure 4 that collects all the state g ∈ G. From
this macro-state, two transitions are possible:



g = −1,
τ ≤ τshift

g = i
g = 0,

τ ≤ τfw

gr = 0

g := 0

τ := 0

τ ≥ τfw

gr > 0

g := gr

g 6= gr > 0

g := −1
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τ = τshift g := gr

gear shift gear engaged freewheeling

Fig. 4. Model of the gearbox/clutch dynamics.

• if the requested gear gr switches to 0, the gearbox jumps
to the freewheeling state, i.e., g = 0. In order to avoid a
premature deterioration of powertrain components and
driver discomfort, the fast switching between engaged
gear and freewheeling is limited by requiring that the
freewheeling is maintained for a time longer than τfw.
This is achieved by resetting the automaton clock τ ,
when the gearbox jumps to g = 0, and by defining the
location invariant τ ≤ τfw for the freewheeling state and
the guard τ ≥ τfw on the edge leaving the freewheeling
state. If we are not interested in exploiting freewheeling,
the requested gear set can be redefined as gr ∈ G.

• if the requested gear gr switches to a value in the set
G different from g, the gearbox jumps to the gear-shift
state, g = −1. The gearbox stays in the gear-shift state
for a time of τshift, before jumping to the engaged gear
macro-state with g = gr.

C. Transmission model

Here, we discuss the static transmission model introduced
in equation (3) that defines the relation between the en-
gine variables and the chassis variables as function of the
gearbox/clutch state g. This model completes the powertrain
model sketched in Figure 4.

The torque T generated by the engine acts on the engine
side of the clutch. If the clutch disks are open (i.e, g ∈
{−1, 0}, no torque is transmitted by the gearbox/clutch
group. If a gear is engaged (i.e, g ∈ G), the torque
is amplified by a factor γg(g) depending on the specific
engaged gear g. In order to account for the transmission
losses, an efficiency gear-dependent term η(g) is included in
the torque model transmission. The torque on the gearbox
shaft is transmitted to the wheel shaft by the final drive that
amplifies it by a constant factor γf . Finally, the torque on
the wheel shaft is transfered on the road by the wheels. The
longitudinal force Fe generated by the road/wheel contact
can be therefore summarized by

Fe(g, T ) =

{
0, if g ∈ {−1, 0},
η(g)γg(g)γf

r T, if g ∈ G,
(9)

where r is the wheel radius.
In a similar way we can compute the relation between the
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Fig. 5. Realistic BSFC map of a 450 hp engine used in the simulation.
The map has been obtained by modifying the original map of a real Scania
engine.

vehicle speed and the engine speed, obtaining

ω(g, v) =

{
ωmin, if g ∈ {−1, 0},
γg(g)γf

r v, if g ∈ G.
(10)

Note that, when the clutch is open, the engine is assumed to
rotate at the minimum allowed engine speed ωmin.

IV. FUEL MODEL AND VEHICLE CONSTRAINTS

In this section, we present the fuel consumption model
and the vehicle constraints.

A. Fuel model

The vehicle fuel consumption is computed by integrating
the fuel flow over time as introduced in (4). In this work,
the fuel flow is modeled as a static map of the engine
torque T and engine speed ω, i.e., q(T, ω). This map is
related to the more-known brake specific fuel consumption
(BSFC) map that defines the engine efficiency (generated
engine power per consumed fuel) as a function of the
engine torque and speed. The BSFC map can be obtained by
gridding the torque/speed space and measuring the engine
fuel consumption and the generated power for each grid
point. Figure 5 displays the BSFC map of the engine used
in the simulation. This map represents a 450 hp engine that
has been obtained by modifying the original map of a real
Scania engine.

B. Vehicle constraints

In this section, we present the constraints acting on the
vehicle model summarized by (5):

• the engine speed and torque are bounded by

ωmin ≤ ω ≤ ωmax,

Tmin(ω) ≤ T ≤ Tmax(ω).
(11)

The limitations on the engine speed and the upper
bound on the torque are necessary to guarantee the



correct functioning of the engine. The lower bound
on the torque, instead, represents the braking engine
torque when no fuel is injected. These limits have been
depicted in Figure 5 as black lines;

• the vehicle speed is bounded by

vmin ≤ v ≤ vmax (12)

in order to take speed limits into account. For the sake of
simplicity, the speed limits are assumed to be constant,
although space-varying speed limits can be handled with
no increase of the problem complexity;

• the distance is bounded by

dmin ≤ d ≤ dmax. (13)

In the case of the vehicle-following scenario, the lower
and upper bounds represent the safe and maximum
distance allowed for platooning, respectively. In the case
of the vehicle driving-alone, the bounds on the distance
can be chosen large enough such that the resulting
optimal trajectory do not reach them. Note that bounds
on the distance are necessary for solving the optimal
control problem with dynamic programming.

• the braking force is bounded by

Fb,min ≤ Fb ≤ 0. (14)

V. DYNAMIC PROGRAMMING IMPLEMENTATION

In this section, we first discuss how the optimal control
problem summarized in Figure 2 is implemented using
dynamic programming and, second, we analyze the com-
plexity of such implementation as function of the dynamic
programming parameters.

A. Bellman equation

In order to use the dynamic programming framework,
discretization over time, and over the continuous input and
states, is carried out. We denote with nv , nd, nT and nFb

the
number of discretization points for the speed, the distance,
the torque and the braking force, respectively. ∆t denotes
the discretization time, while N = dH/∆te the number of
time steps over the prediction horizon2. The new discretized
inputs and states are represented by adding the time step
subscript i to the original variables, e.g., xi = x(i∆t). Such
discretization allows to apply the Bellman equation [19]
to the presented optimal control problem, obtaining the
following expression:

Ji(xi, gi) = min
ui,gr,i

{
φj(xi, gi, ui, gr,i)

+ J̃i+j(ψj(xi, gi, ui, gr,i), gr,i)
}
,

(15)

where
• Ji(xi, gr,i) represents the cost-to-go at time i∆t (i.e.,

the optimal fuel consumption from i∆t until the end of
the horizon H) as function of the current state [xi, gi]

T;

2The operator d·e denotes the upper integer approximation of the argu-
ment.

• φj(xi, gi, ui, gr,i) represents the local fuel cost from
time i∆t to time (i+j)∆t by starting from state [xi, gi]

T

and applying input [ui, gr,i]
T. The fuel cost has been

obtained by simulating the vehicle model (1–3) and
integrating (4);

• ψj(xi, gi, ui, gr,i) represents the state xi+j obtained by
simulating the vehicle model (1–3) for time j∆t with
initial condition [xi, gi]

T and input [ui, gr,i]
T;

• J̃i(·, ·) extends the map Ji(·, ·) to the points between
the discretized states by linear interpolation.

The aforementioned simulations between the dynamic pro-
gramming time steps are carried out using the explicit Euler
method with discretization time ∆tsim ≤ ∆t. By defining
the final cost JN (·, ·) = 0 and proceeding backward, equa-
tion (15) can be exploited to compute a closed-loop control
law for each time step i ∈ {0, .., N − 1}.

Unlike the conventional Bellman equation, the number of
local time steps j is not limited to 1, but is a function of
the current state and input, i.e., j = j(xi, gi, ui, gr,i). This
is exploited, for example, when we compute the argument
of min{·} in equation (15) for gi ∈ G and gr,i = 0 (i.e, the
cost of requesting freewheeling when a gear is engaged),
and τfw > ∆t. Since, after requesting freewheeling, no
control input can affect the state for a time span of τfw,
the vehicle model can be simulated for a time of j∆t, where
j = dτfw/∆te. In this way, the clock τ of the automaton does
not need to be treated as a state in the dynamic programming
implementation resulting in a reduced complexity of the
algorithm.

B. Complexity analysis

At each time step i ∈ {0, .., N − 1} and for each pair
(xi, gr,i), we solve the Bellman equation (15). Solving each
instance of the Bellman equation requires to compare as
many cost values as the number of possible input com-
binations. We note however that the inputs T and Fb are
intuitively mutually exclusive, i.e., it is inefficient to throttle
and brake at the same time. The complexity C of the dynamic
programming implementation is therefore

C = O(Nnvnd(nT + nFb
)ng), (16)

where ng denotes the number of gears including freewheel-
ing, if exploited. If necessary for real-time implementation,
the complexity can be further reduced, for example, by
limiting the state space to the robust control invariant set.

VI. SIMULATION STUDY

In this section, we analyze the performance of the pro-
posed controller by means of simulations. After introducing
the simulation setup, we compare the performance of multi-
ple longitudinal control strategies achieved with the proposed
controller, including control strategies for the vehicle driving
alone and following another one. The study is conducted
considering different masses of the vehicle under control and
same mass for the preceding one. This allows to analyze how
the performance of the various control strategies is affected
by the mass distribution in the platoon.



Fig. 6. Benchmark highway stretch between the cities of Södertalje and
Jönåker, Sweden (Map data ®2017 Google).

TABLE II
CONTROLLER PARAMETERS

all control strategies

H prediction horizon s 3800
∆t DP discretization time s 4

∆tsim DP integration time s 1
vmin minimum speed m/s 19
vmax maximum speed m/s 25.5
nv DP speed discr. points - 21
Tmin minimum torque Nm −500
Tmax maximum torque Nm 2400
nT DP torque discr. points - 37
Fb,min minimum distance kN −20
Fb,max maximum distance kN 0
nFb

DP braking force discr. points - 51
gmin minimum allowed gear - 13
gmax maximum allowed gear - 14

driving-alone control strategies

dmin minimum distance m −100
dmax maximum distance m 100
nd DP distance discr. points - 157

vehicle-following control strategies

dmin minimum distance m 20
dmax maximum distance m 100
nd DP distance discr. points - 63

A. Simulation setup

The vehicle under control is characterized by the param-
eters’ values displayed in Table I and is simulated using the
model presented in Section III. The benchmark road is the
highway stretch of 91 km displayed in Figure 6 between the
cities of Södertalje and Jönåker, Sweden. The topography
profile of such road is considered moderately hilly, with
a slope grade varying between ±3 %. The values of the
controller parameters are displayed in Table II.

The simulations run on a PC with a two-core CPU running
at 2.4 GHz and 8 GB of memory RAM. The computation of
the optimal closed-loop control law over the whole horizon
H takes 1170 and 355 s for the driving-alone and the vehicle-
following cases, respectively.

TABLE III
FUEL CONSUMPTION REDUCTION [%]

driving-alone vehicle-following

vehicle
mass

look-ahead
w/o

freewheel

look-ahead
w/

freewheel

constant
distance

look-ahead
ACC w/o
freewheel

look-ahead
ACC w/

freewheel

30 t 0 4.1 12.4 14.5 18.6

40 t 0 3.1 8.9 12.5 15.5

50 t 0 2.7 5.1 10.3 12.7

B. Longitudinal control strategies comparison

In this section, we compare the performance of multiple
longitudinal control strategies achieved with the proposed
controller formulation. The mass of the vehicle under control
varies in the different simulation sets between 30, 40 and 50
t. The preceding vehicle, when present, has a mass of 40 t for
all the simulations. The control strategies that we compare
are divided in the two following categories:

• driving-alone control strategies:
– look-ahead w/o freewheeling: the vehicle under

control optimizes its speed trajectory exploiting
road topography information without using free-
wheeling. This is achieved by redefining Cd(d) =
Cd,0 and gr ∈ G;

– look-ahead w/ freewheeling: similarly to the pre-
vious case but allowing freewheeling, i.e., gr ∈
{0} ∪ G;

• vehicle-following control strategies3:
– constant distance: the vehicle under control keeps

a fixed distance from the preceding one, equal to
minimum allowed distance;

– look-ahead ACC w/o freewheeling: the vehicle un-
der control optimizes its speed trajectory exploiting
topography information and the knowledge of the
preceding vehicle speed trajectory without using
freewheeling, i.e., gr ∈ G;

– look-ahead ACC w/ freewheeling: similarly to the
previous case but allowing freewheeling, i.e., gr ∈
{0} ∪ G.

The fuel consumption reduction for all combinations of
control strategies and vehicle masses is summarized in Ta-
ble III. The saved fuel is normalized with respect to the fuel
consumption of the look-ahead w/o freewheeling controller
case.

Starting by the analysis of the driving-alone control strate-
gies, we can notice that the exploitation of freewheeling
allows to save between 2.7 and 4.1 % of fuel. In order to
understand why, we can turn our attention to Figure 7 that
shows a portion of the simulation results (between km 15
and 25) for the 40 t vehicle case. In the freewheeling case,
the vehicle under control exhibits the so-called pulse & glide
behavior. By alternating phases of freewheeling and traction

3The preceding vehicle has a mass of 40 t, uses the look-ahead w/o
freewheeling control strategy and its trajectory is known to the vehicle under
control.
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Fig. 7. Simulation results for a heavy-duty vehicle of 40 tons driving alone
and using look-ahead control with and without freewheeling. The torque
displayed in the last plot includes the engine torque and a scaled version of
the braking force.

at the optimal torque (approximately 2 kNm, see Figure 5),
the vehicle is able to use the engine in a more efficient way,
resulting in the registered reduction in fuel consumption.

Let’s now focus on the vehicle-following control strategies
and, in particular, in the homogeneous platoon case (summa-
rized in the second row of Table III), for which simulation
results are displayed in Figure 8. Here, we recall that the
preceding vehicle uses the look-ahead w/o freewheeling
control. The registered fuel consumption reduction in all
three cases is due to the reduced aerodynamic drag caused
by the short inter-vehicular distance. The constant distance
case represents the reference case, where the vehicle is
controlled such that the distance is always equal to the
minimum allowed. Although the aerodynamic drag reduction
is maximized, as noticeable in the last plot of Figure 8, the
vehicle under control often needs to brake. The braking is
due to two reasons:

• first, the reduced aerodynamic drag translates in braking
when the preceding vehicle is costing;

• second, since the preceding vehicle experiences the
changes of slope grade before the vehicle under control,
in order to keep a fixed distance, the vehicle under
control needs to apply a larger longitudinal force when
the slope grade is decreasing, and a smaller longitudinal
force when the slope grade increases. The smaller
longitudinal force phases can result in the braking of the
vehicle under control when the preceding is exhibiting a
close-to-coasting behavior. This behavior has been also
experienced in the experiments presented in [20], where
a constant headway gap has been used.

The optimization that takes place in the two look-ahead
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Fig. 8. Simulation results for a 40 t vehicle using multiple vehicle-
following control strategies3. The torque plot is explained in the caption
of Figure 7.

ACC cases, guarantees that the described braking phases
are avoided. This results in a reduced fuel consumption
with respect to the constant distance case, as summarized in
Table III. Furthermore, the availability of freewheeling in the
last case allows the vehicle to pulse & glide while keeping a
short inter-vehicular distance, resulting in an additional fuel
saving comparable to the fuel-saving achieved by pulsing &
gliding in the driving-alone control case.

Finally, we analyze the vehicle-following control strategies
for the heterogeneous platoon case (summarized in the first
and third row of Table III). The constant distance controller
performance deteriorates relatively to the look-ahead ACC
cases with the increase of the controlled vehicle mass. This
is due to the increase of the costing acceleration during
downhills with the vehicle mass. This is noticeable in the
simulation results for the 50 t vehicle case displayed in
Figure 9, where the vehicle under control needs to brake
more (and therefore wastes more energy) with respect to
the 40 t vehicle case displayed in Figure 8. This problem
is handled by the look-ahead ACC controllers by increasing
the inter-vehicular distance before downhills, as evident in
Figure 9.

To conclude, the use of look-ahead control strategies turns
up to be more relevant in heavier follower vehicle cases.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we studied the problem of how to fuel-
optimally follow a vehicle whose future speed trajectory is
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Fig. 9. Simulation results for a 50 t vehicle using multiple vehicle-
following control strategies3. The torque plot is explained in the caption
of Figure 7.

known. We proposed an optimal control problem formulation
that describes the problem and we discussed how such
problem can be solved by dynamic programming. By means
of simulations, we showed how the proposed controller
is able to combine the benefits of keeping a short inter-
vehicular distance with those of freewheeling, achieving fuel
saving up to 18 % with respect to the use of a look-ahead
control.

The simulation study showed promising results in the
scenario where the preceding vehicle future trajectory is
fully known. We believe that continuing the efforts toward
the design of a commercially deployable product will be
extremely beneficial for both the freight transport sector
and our environment. This requires to study how to handle
uncertainties and updates in the preceding vehicle trajectory,
and to focus on the real-time implementability problem.

A possible research direction consists in extending the
presented work by applying a receding horizon approach to
the proposed controller. In such framework, however, it is
important to ensure that the updated trajectories of the pre-
ceding vehicle do not excessively deteriorate the performance
of the vehicle under control (e.g., by leading it to brake).
This could be achieved, for example, by controlling the
preceding vehicle with a similar optimal control framework
that exploits the knowledge of the follower vehicle state in
its optimization.

Another research direction consists in investigating the
applicability of reinforcement learning (also known as neuro-

dynamic programming) methods on the presented problem.
Simulation results have shown that the vehicle under control
alternates between a finite number of optimal behaviors (i.e.,
optimal torque traction, freewheeling and braking). If we are
able to learn for which regions in the state-parameter space
each behavior is optimal, we could syntetize a fast online
controller suitable for real-time implementation.
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