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An autoregressive process with Markov regime is an autoregressive
process for which the regression function at each time point is given by
a nonobservable Markov chain. In this paper we consider the asymptotic
properties of the maximum likelihood estimator in a possibly nonstationary
process of this kind for which the hidden state space is compact but not
necessarily finite. Consistency and asymptotic normality are shown to follow
from uniform exponential forgetting of theinitial distribution for the hidden
Markov chain conditional on the observations.

1. Introduction. An autoregressive process with Markov regime, or Markov-
switching autoregression, is a bivariate process{(Xk,Yk)}, where{Xk} is a Markov
chain on a state spaceX and, conditional on{Xk}, {Yk} is an inhomogeneous
s-order Markov chain on a state spaceY such that the conditional distribution
of Yn only depends onXn and laggedY ’s. The process{Xk}, usually referred to
as theregime, is not observable and inference has to be carried out in terms of the
observable process{Yk}. In general we can write a model of this kind as

Yn = fθ(�Yn−1,Xn; en),

where {ek} is an independent and identically distributed sequence of random
variables that we denote the innovation process (thee’s are not the innovation
process in Wold’s sense, however),�Yk � (Yk, Yk−1, . . . , Yk−s+1) and {fθ } is a
family of functions indexed by a finite-dimensional parameterθ . Of particular
interest are the linear autoregressive models for which

fθ (�Yn−1,Xn; en) =
s∑

i=1

ai(Xn; θ)Yn−i + en.

Received May 2001; revised September 2003.
1Supported by the EU TMR network Statistical and Computational Methods for the Analysis of

Spatial Data.
2Supported by a grant from the Swedish Research Council for Engineering Sciences.
AMS 2000 subject classifications.Primary 62M09; secondary 62F12.
Key words and phrases.Asymptotic normality, autoregressive process, consistency, geometric

ergodicity, hidden Markov model,identifiability, maximum likelihood, switching autoregression.

2254



MLE FOR SWITCHING AUTOREGRESSION 2255

These models were initially proposed by Hamilton (1989) in econometric
theory; the number of states of the Markov chain is in this context most often
assumed to be finite, each state being associated with a given state of the
economy [see Krolzig (1997), Kim and Nelson (1999) and references therein].
Linear autoregressive processes with Markov regime are also widely used in
several electrical engineering areas including tracking of maneuvering targets
[Bar-Shalom and Li (1993)], failure detection [Tugnait (1982)] and stochastic
adaptive control [Doucet, Logothetis and Krishnamurthy (2000)]; in such cases
the hidden state is most often assumed to be continuous. Nonlinear switching
autoregressive models have recently been proposed in quantitative finance to
model volatility of log-returns of international equity markets [see, e.g., Susmel
(2000) and Chib, Nardari and Shephard (2002)]. A simple example of such a model
(referred to as SWARCH for switching ARCH) is

Yn = fθ (�Yn−1,Xn)en,

where once again{Xk} is either a discrete or a continuous Markov chain. Another
important subclass of autoregressive models with Markov regime are the hidden
Markov models (HMMs), for which the conditional distribution ofYn does
not depend on laggedY ’s but only onXn. HMMs are used in many different
areas, including speech recognition [Juang and Rabiner (1991)], neurophysiology
[Fredkin and Rice (1987)], biology [Churchill (1989)], econometrics [Chib,
Nardari and Shephard (2002)] and time series analysis [de Jong and Shephard
(1995) and Chan and Ledolter (1995)]. See also the monograph by MacDonald
and Zucchini (1997) and references therein.

Most works on maximum likelihood estimation in such models have focused on
numerical methods suitable for approximating the maximum likelihood estimator
(MLE). In sharp contrast, statistical issues regarding asymptotic properties of
the MLE for autoregressive models with Markov regime have been largely
ignored until recently. Baum and Petrie (1966) proved consistency and asymptotic
normality of the MLE for HMMs in the particular case where both the observed
and the latent variables take values is finite spaces. These results have recently been
extended in a series of papers by Leroux (1992), Bickel and Ritov (1996), Bickel,
Ritov and Rydén (1998) (henceforth referred to as BRR), Jensen and Petersen
(1999) (henceforth referred to as JP) and Bakry, Milhaud and Vandekerkhove
(1997). BRR followed the approach taken by Baum and Petrie (1966) and
generalized their results to the case where the hidden Markov chain{Xk} takes a
finite number of values, but the observations belong to a general space. JP extended
these results to HMMs with the regime taking values in a compact space, proving
asymptotic normality of the MLE and a local consistency theorem.

Around the same time, Le Gland and Mevel (2000) [see also Mevel (1997)]
independently developed a different technique to prove consistency and asymptotic
normality of the MLE for HMMs with finite hidden state space. Their work
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was later extended to HMMs with nonfinite hidden state space by Douc and
Matias (2001). This approach is based on the observation that the log likelihood
can be expressed as an additive function of an extended Markov chain. These
techniques, which are well adapted to study recursive estimators (that are updated
for each novel observation), typically require stronger assumptions than the
methods developed in BRR and JP.

None of the theoretical contributions mentioned so far allows for autoregression,
but are concerned with HMMs alone. For autoregressive processes with Markov
regime, the only theoretical result available up till now is consistency of the
MLE when the regime takes values in a finite set [Krishnamurthy and Rydén
(1998) and Francq and Roussignol (1998)]. In the present paper we examine
asymptotic properties of the MLE when the hidden Markov chain takes values in a
compact space, and we do allow for autoregression in the observable process. Our
results include consistency and asymptotic normality of the MLE under standard
regularity assumptions (Theorems 1 and 4) and consistency of the observed
information as an estimator of the Fisher information (Theorem 3 withθ∗

n being the
MLE). These results generalize what is obtained in the above-mentioned papers to
a larger class of models, and we obtain them through a unified approach. We also
point out that the convergence theorem for the MLE is global, as opposed to the
local theorem of JP. Moreover, the nonstationary setting is treated in Section 7.

The likelihood that we will work with is the conditional likelihood given initial
observations�Y0 = (Y0, . . . , Y−s+1) and the initial (but unobserved) stateX0.
Conditioning on initial observations in time series models goes back at least to
Mann and Wald (1943). In our case we, in addition, also condition the likelihood
on the unobserved initial state. The reason for doing so is that the stationary
distribution of{(Xk,Yk)}, and hence the true likelihood, is typically infeasible to
compute. Thusn, denoting the number of factors in the likelihood—the “nominal”
sample size—iss less than the actual sample size. Usingp as a generic symbol for
densities we can express the conditional log likelihood as

logpθ(y1, . . . , yn|ȳ0, x0)

= log
∫

· · ·
∫

pθ(x1, . . . , xn, y1, . . . , yn|ȳ0, x0)µ(dx1) · · ·µ(dxn)(1)

= log
∫

· · ·
∫ n∏

k=1

qθ(xk−1, xk)

n∏
k=1

gθ (yk|ȳk−1, xk)µ(dx1) · · ·µ(dxn),

whereµ and qθ(·, ·) are a reference measure and the transition density for the
hidden chain, respectively, andgθ (yk|ȳk−1, xk) is the conditional density ofyk

given ȳk−1 andxk. In the particular case when{Xk} is finite-valued, taking values
in {1,2, . . . , d} say, this log likelihood can be expressed as

logpθ(y1, . . . , yn|ȳ0, x0) = log1T
x0

(
n∏

k=1

QθGθ(yk|ȳk−1)

)
1,(2)



MLE FOR SWITCHING AUTOREGRESSION 2257

whereQθ = {qθ(i, j)} is the transition probability matrix of the Markov chain{Xk},
Gθ(y|ȳ) = diag(gθ (y|ȳ, i)), 1x0 is thex0th unit vector of lengthd , that is, ad × 1
vector in which all elements are zero except for elementx0 which is unity, and1 is
ad ×1 vector of all ones. It is clear that (2) is essentially a product of matrices and
is hence easily evaluated. It can be maximized overθ using standard numerical
optimization procedures or using the EM algorithm [see, e.g., Hamilton (1990)].
However, one should be aware that the log likelihood is typically multi-modal
and either approach may converge to a local maximum. When{Xk} is continuous,
evaluation of the log likelihood (1) requires an integration over ann-dimensional
space. This task is insurmountable for typical values ofn, and approximation meth-
ods are required. Two classes of such methods, particle filters and Monte Carlo EM
algorithms, as well as a numerical example using the latter, are briefly discussed
in Section 8.

An obvious variant to our approach is to replace the condition of a fixedx0
by assuming a fixed distribution forx0. Such an assumption does not change
any of our results and no more than notational changes are needed in the proofs.
A further natural variant is to maximize (1) w.r.t.θ and the unknownx0. We have
not included this approach in the present paper, primarily because score function
analysis would require assumptions on how the maximizingx0 varies with θ ,
assumptions that would be difficult to verify in practice. We do remark, however,
that in a particular but important case, assuming a fixedx0 is no less general than
is maximization overx0. Suppose that the regime{Xk} is finite-valued and that all
elementsqij of the transition probability matrixQ may be chosen independently.
The parameter vectorθ may then be writtenθ = ((qij ),ψ). We also assume that
ψ can be further decomposed asψ = (α, (βi)), and that the functionsg are
such thatgθ (yk|ȳk−1, xk) = h(yk|ȳk−1;α,βxk

) for some family of densitiesh.
In other words, allg’s belong to a single parametric class of densities,α is a
parameter common to all regimes and theβi ’s are the regime specific parameters.
For example, in the linear regression caseβi may be the regime specific regression
coefficients whileα may be a common innovation variance,α = Ee2

n. With this
general structure it is clear that ifx0 is a fixed initial state, for any model with
a different initial state we can find an equivalent model with initial statex0 by
simply renumbering the states and then reordering theqij ’s andβi ’s accordingly.
Therefore, wheneverθ is structured as above, assuming a fixedx0 is no less general
than is maximization overx0.

As mentioned above, from a practical point of view the novelty of the present
paper is that we extend the analysis of MLE asymptotics to wider class of models
using a unified approach. From a theoretical point of view the novelty is, foremost,
the geometrically decaying bound on the mixing rate of the conditional chain,X|Y ,
given in Corollary 1 and (20). This bound parallels results of BRR (page 1622) and
JP (page 521), but in contrast to those results our bound does not depend on theY ’s
being conditioned upon; it is deterministic. Assumption (A1)(a) below, implying
that the hidden chain is uniformly geometrically ergodic, and more specifically
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that the whole state space is 1-small [see the comment after (A1)(a)], is crucial to
this property; if{Xk} is m-small with m > 1 one can prove an analogous mixing
rate bound using similar ideas, but the bound will then depend on theY ’s. The
deterministic nature of the bound is vital to our proofs that the conditional score
given the “infinite past” [�k,∞(θ∗) in Section 6.1] and the conditional Hessian
given the “infinite past” (cf. Propositions 4 and 5) have finite second and first
moments, respectively. The reason is that when the model contains autoregression,
the conditional distribution of{Yk} given{Xk} is governed by an inhomogeneous
autoregression rather than by independence; hence, in the proof of Lemma 10,
for example, we cannot condition on the regime{Xk} and exploit conditional
independence in order to turn a random mixing bound into a deterministic one
as was done in BRR (e.g., page 1625) and JP (e.g., page 525). We plan to look
into this more general case, but it lies outside the scope of the present paper.
Another feature of the present paper is that by refining the arguments of BRR
and JP we obtain almost sure convergence rather than convergence is probability
in Theorem 3.

The paper is organized as follows. Main assumptions are given and commented
in Section 2, together with common notation. Then in Section 3 we show that
the regime{Xk}, given the observations, is a nonhomogeneous Markov chain
whose transition kernels may be minorized using a fixed and common minorizing
constant. This leads to a deterministic bound for its mixing rate. In Section 4,
consistency of the MLE is considered under the additional assumption that{Yk} is
strict sense stationary; extensions to nonstationary processes through coupling are
carried out in Section 7. Conditions upon which the parameters are identifiable are
given in Section 5. Asymptotic normality of the estimator is studied in Section 6.
The proof is based on a central limit theorem and a locally uniform law of large
numbers for the conditional expectation of appropriately defined statistics. More
specifically, these statistics are additive and quadratic functionals of the complete
data. Section 8 contains a discussion of numerical methods for state space models
and a numerical example. Finally, the Appendix contains proofs not given in the
main text.

2. Notation and assumptions. We assume that the Markov chain{Xk}∞k=0
is homogeneous and lies in a separable and compact setX, equipped with a
metrizable topology and the associated Borelσ -field B(X). We let Qθ(x,A),
x ∈ X, A ∈ B(X), be the transition kernel of the chain; the parameterθ which
indexes the family of transition kernels as well as the regression functions for
the Y ’s, see below, is the parameter that we want to estimate. Next we assume
that each measureQθ(x, ·) has a densityqθ(x, ·) with respect to a commonfinite
dominating measureµ on X. That is, for allθ and x ∈ X, Qθ(x, ·) � µ. For
the sake of simplicity, it is assumed thatµ(X) = 1; this assumption hints at
applications whereX is a totally bounded space.
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We also assume that the observable sequence{Yk}∞k=−s+1 takes values in a set
Y that is separable and metrizable by a complete metric. Furthermore, for each
n ≥ 1 and given{Yk}n−1

k=n−s andXn, Yn is conditionally independent of{Yk}n−s−1
k=−s+1

and{Xk}n−1
k=0. We also assume that for eachXn, �Yn−1 andθ , this conditional law

has a densitygθ (y|�Yn−1,Xn) with respect to some fixedσ -finite measureν on the
Borelσ -field B(Y).

The parameterθ belongs to�, a compact subset ofRp. The true parameter
value will be denoted byθ∗, and when proving asymptotic normality of the MLE
we assume thatθ∗ lies in the interior of�. Given the observationsY−s+1, . . . , Yn

of the process{Yk}, we wish to estimateθ∗ by the maximum likelihood method.
The sequence{Zk}∞k=0 � {(Xk,�Yk)}∞k=0 is a Markov chain onZ � X×Ys with

transition kernel	θ given by, for any bounded measurable functionf onZ,

	θf (x, ys, ys−1, . . . , y1)

=
∫
X×Y

f (x′, y′, ys, . . . , y2)qθ (x, x′)gθ (y
′|ys, . . . , y1, x

′)µ(dx′)ν(dy′).

We use in the sequel the canonical version of this Markov chain and putν̄ � ν⊗s .
For a probability measureζ on Z we letPθ,ζ be the law of{Zn} when the initial
distribution isζ ; that is,Z0 ∼ ζ . Furthermore,Eθ,ζ is the associated expectation.
Many conditional probabilities and expectations in this paper do not depend on
the initial distribution, and we stress this by then dropping the initial probability
measure from the notation, so thatPθ,ζ is replaced byPθ , and so on.

Throughout this paper we will assume that the transition kernel	θ has a unique
invariant distributionπθ ; this assumption is further commented on below. For a
stationary process we write�Pθ and�Eθ for Pθ,πθ

andEθ,πθ
, respectively. We can

and will extend such a stationary process{Zk}∞k=0 to a stationary Markov chain
{Zk}∞k=−∞ with doubly infinite time and the same transition kernel.

For i ≤ j , put Yj
i � (Yi, Yi+1, . . . , Yj ) and�Yj

i � (�Yi ,�Yi+1, . . . ,�Yj ), respec-
tively. Similar notation will be used for other quantities. For any measurable func-
tion f on (X,B(X),µ), ess supf � inf{M ≥ 0 :µ({M ≤ |f |}) = 0} and, if f is
nonnegative, ess inff � sup{M ≥ 0 :µ({M ≥ f }) = 0} (with obvious conventions
if those sets are empty). For the sake of simplicity, instead of writing ess supf

or ess inff , we use the notation supf or inff . For any two probability measures
µ1 andµ2 we define the total variation distance‖µ1 − µ2‖TV = supA |µ1(A) −
µ2(A)| and we also recall the identities sup|f |≤1 |µ1(f )−µ2(f )| = 2‖µ1−µ2‖TV
and sup0≤f ≤1 |µ1(f ) − µ2(f )| = ‖µ1 − µ2‖TV. For any matrix or vectorA,
‖A‖ = ∑ |Aij |. Finally, we will use the letterp to denote densities w.r.t. the prob-
ability measure onB(X × Y)⊗Z whose finite-dimensional distributions are given
by (µ ⊗ ν)⊗r for all r ≥ 1.

We now list our basic assumptions.

(A1) (a) 0< σ− � infθ∈� infx,x′∈X qθ(x, x′) andσ+ � supθ∈� supx,x′∈X qθ(x,

x′) < ∞.
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(b) For all y′ ∈ Y and ȳ ∈ Ys , 0 < infθ∈�

∫
X gθ (y

′|ȳ, x)µ(dx) and
supθ∈�

∫
X gθ (y

′|ȳ, x)µ(dx) < ∞.

Assumption (A1)(a) implies that for allx ∈ X, Q(x,A) ≥ σ−µ(A) whereµ is a
probability measure, that is, the state spaceX of the Markov chain{Xn} is 1-small
[Meyn and Tweedie (1993), page 106, withm = 1]. Thus, for allθ ∈ �, this chain
has a unique invariant measureπX

θ and is uniformly ergodic [Meyn and Tweedie
(1993), Theorem 16.0.2(v)]. When the state space is finite, (A1)(a) is equivalent to
saying that for allx, x′ ∈ X, infθ∈� qθ(x, x′) > 0.

(A2) For all θ ∈ �, the transition kernel	θ is positive Harris recurrent and
aperiodic with invariant distributionπθ .

That the chain is positive means, essentially, that it is irreducible and has an
invariant distribution [Meyn and Tweedie (1993), page 230] and Harris recurrence
means that any nonnull set will be infinitely visited by the chain irrespective
of where it starts within the set [Meyn and Tweedie (1993), page 200]. This
assumption is rather weak; results on ergodicity for autoregressive processes
with Markov regime can be found in, for example, Francq and Zakoian (2001),
Holst, Lindgren, Holst and Thuvesholmen [(1994), page 495] and Yao and Attali
(2000). It implies that for any initial measureλ [see Meyn and Tweedie (1993),
Theorem 13.3.3],

lim
n→∞‖λ	n

θ − πθ‖TV = 0,(3)

so that the tailσ -field of {Zk} is trivial [Lindvall (1992), Theorem III.21.12]. Its
invariantσ -field, which is no larger, is thus also trivial and hence{Zk} is ergodic
in the measure-theoretic sense of the word.

For the developments that follow, an additional assumption is needed.

(A3) b+ � supθ sup̄y0,y1,x
gθ (y1|ȳ0, x) < ∞ and �Eθ∗(| logb−(�Y0, Y1)|) < ∞,

whereb−(ȳ0, y1) � infθ
∫
X gθ (y1|ȳ0, x)µ(dx).

REMARK 1. In the sequel we consider conditional expectations of random
variables w.r.t. theσ -algebra generated by(Xn

m,Yn
m) for somem ≤ n. Such

expectations are defined up to aPθ,ζ -null set. For the derivations that follow, we
need to specify a version of these conditional expectations. SincePθ,ζ is defined
by the initial distributionζ and the transition kernel	θ , it is always possible to
express these conditional expectations in terms of these quantities and we always
implicitly choose this version of the conditional expectations.

3. Uniform forgetting of the conditional hidden Markov chain. By the
conditional hidden Markov chain we mean the process{Xk} given a sequence
of Y ’s. It will turn out that this process is a Markov chain, although nonhomo-
geneous, but still having a favorable mixing rate. Bounds on this mixing rate will
be instrumental in the forthcoming development.
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LEMMA 1. Assume(A1). Let m,n ∈ Z with m ≤ n and θ ∈ �. Under�Pθ ,
conditionally on�Yn

m, {Xk}k≥m is an inhomogeneous Markov chain, and for all
k > m there exists a functionµk(yn

k−s,A) such that:
(i) for anyA ∈ B(X), yn

k−s → µk(yn
k−s ,A) is a Borel function;

(ii) for any yn
k−s , µk(yn

k−s, ·) is a probability measure onB(X). In addition,
for all yn

k−s it holds thatµk(yn
k−s, ·) � µ and for all�Yn

m,

inf
x∈X

�Pθ (Xk ∈ A|Xk−1 = x,�Yn
m) ≥ σ−

σ+
µk(Yn

k−s ,A).

REMARK 2. Contrary to JP, this minorization condition involves a con-
stantσ−/σ+ which does not depend on the values of{Yk}. On the other hand,
the minorizing measureµk(yn

k−s, ·) does depend onyn
k−s whereas the minoriz-

ing measure is fixed in JP. Hence no assumption on the conditional density
of Yk given past observations and hidden state variables is needed, whereas
JP assumed a moment condition, in the special case of HMMs, for the ra-
tio supθ supx,x′ gθ (y|x)/gθ (y|x′). An explicit expression forµk(yn

k−s, ·) is not
needed.

PROOF OF LEMMA 1. The proof is adapted from Del Moral and Guionnet
(2001) [see also Del Moral and Miclo (2000)]. The Markov property implies that,
for m < k ≤ n,

�Pθ (Xk ∈ A|Xk−1
m ,�Yn

m) =�Pθ (Xk ∈ A|Xk−1,�Yn
k−1).

For k > n we have�Pθ (Xk ∈ A|Xk−1
m ,�Yn

m) = Qθ(Xk−1,A). This shows that
{Xk}k≥m conditional on�Yn

m is an inhomogeneous Markov chain. Fork ≤ n it holds
that

�Pθ (Xk ∈ A|Xk−1,�Yn
k−1)

=
∫
A

qθ(Xk−1, x)p̄θ (Yn
k |Xk = x,�Yk−1)µ(dx)

×
(∫

X
qθ(Xk−1, x)p̄θ (Yn

k |Xk = x,�Yk−1)µ(dx)

)−1

,

where

p̄θ (Yn
k |Xk = xk,�Yk−1)

(4)

=
∫ n∏

i=k+1

qθ (xi−1, xi)

n∏
i=k

gθ (Yi |�Yi−1, xi)µ
⊗(n−k)(dxn

k+1).

Sinceσ− ≤ qθ(x, x′) ≤ σ+ it readily follows that

�Pθ (Xk ∈ A|Xk−1,�Yn
k−1) ≥ σ−

σ+
µk(Yn

k−s ,A)
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with

µk(Yn
k ,A) �

∫
A

p̄θ (Yn
k |Xk = x,�Yk−1)µ(dx)

/∫
X

p̄θ (Yn
k |Xk = x,�Yk−1)µ(dx).

Note that∫
X

p̄θ (Yn
k |Xk = xk,�Yk−1)µ(dxk)

=
∫ n∏

i=k+1

qθ(xi−1, xi)

n∏
i=k

gθ (Yi|�Yi−1, xi)µ
⊗(n−k+1)(dxn

k)

≥ σn−k−
n∏

i=k

∫
gθ (Yi |�Yi−1, x)µ(dx)

is positive under (A1)(b). Fork > n we simply setµk(Yn
k−s ,A) = µ(A). �

The a posteriori chain thus also admitsX as a 1-small set. It is worthwhile to
note that, despite the chain being nonhomogeneous, the same minorizing constant
can be used for all kernels, irrespective of theY ’s the chain is conditioned upon and
of the parameter value. Using standard results for uniformly minorized Markov
chains [see, e.g., Lindvall (1992), Sections III.9–11], we thus have the following
result, which plays a key role in the sequel.

COROLLARY 1. Assume(A1). Let m,n ∈ Z with m ≤ n andθ ∈ �. Then for
all k ≥ m, all probability measuresµ1 andµ2 onB(X) and all�Yn

m,∥∥∥∥
∫
X

�Pθ (Xk ∈ ·|Xm = x,�Yn
m)µ1(dx) −

∫
X

�Pθ (Xk ∈ ·|Xm = x,�Yn
m)µ2(dx)

∥∥∥∥
TV

≤ ρk−m,

whereρ � 1− σ−/σ+.

Note that whenm is positive,�Pθ (Xk ∈ ·|Xm = x,�Yn
m) = Pθ (Xk ∈ ·|Xm =

x,�Yn
m) does not depend upon the initial distribution.

4. Uniform convergence of the likelihood contrast function. Givenx0 ∈ X,
notice that

pθ(Yn
1|�Y0,X0 = x0) =

∫ n∏
k=1

qθ(xk−1, xk)gθ (Yk|�Yk−1, xk)µ
⊗n(dxn

1)(5)

and define theconditionallog likelihood function

ln(θ, x0) � logpθ(Yn
1|�Y0,X0 = x0) =

n∑
k=1

logpθ(Yk|�Yk−1
0 ,X0 = x0),(6)
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where pθ(Yk|�Yk−1
0 ,X0 = x0) = pθ(Yk

1|�Y0,X0 = x0)/pθ (Y
k−1
1 |�Y0,X0 = x0).

With the notation introduced above, fork ≥ 1,

pθ(Yk|�Yk−1
0 ,X0 = x0)

=
∫ ∫

gθ (Yk|�Yk−1, xk)qθ (xk−1, xk)(7)

× Pθ (Xk−1 ∈ dxk−1|�Yk−1
0 ,X0 = x0)µ(dxk);

herePθ (Xk−1 ∈ ·|�Yk−1
0 ,X0 = x0) is the filtering distribution of the unknown state

Xk−1 given�Yk−1
0 andX0 = x0. Note that this distribution may be expressed as

Pθ (Xk−1 ∈ ·|�Yk−1
0 ,X0 = x) =

∫
Pθ (Xk−1 ∈ ·|�Yk−1

0 ,X0 = x0)δx(dx0).(8)

The discussion in the previous section hints that the influence of the initial point
X0 vanishes ask → ∞.

The definition of the conditional log likelihood employed here differs from the
one usually adopted for HMMs. Extending to AR models with Markov regime the
definitions of BRR and JP for example, the log likelihood would be

ln(θ) �
n∑

k=1

logp̄θ (Yk|�Yk−1
0 ),(9)

where

p̄θ (Yk|�Yk−1
0 ) =

∫ ∫
gθ (Yk|�Yk−1, xk)qθ (xk−1, xk)

(10)
×�Pθ (Xk−1 ∈ dxk−1|�Yk−1

0 )µ(dxk).

Here�Pθ (Xk−1 ∈ ·|�Yk−1
0 ) is the filtering distribution of the unknown stateXk−1

given�Yk−1
0 under the stationary probability�Pθ . This filtering distribution may be

expressed as

�Pθ (Xk−1 ∈ ·|�Yk−1
0 ) =

∫
Pθ (Xk−1 ∈ ·|�Yk−1

0 ,X0 = x0)�Pθ (X0 ∈ dx0|�Yk−1
0 )(11)

and Corollary 1 shows that that the total variation distance between the filtering
probabilities�Pθ (Xk−1 ∈ ·|�Yk−1

0 ) andPθ (Xk−1 ∈ ·|�Yk−1
0 ,X0 = x0) tends to zero

exponentially fast ask → ∞ uniformly w.r.t.x0.
The definition of the log likelihoodin (9) is useful for HMMs but less

so for models with autoregression. Indeed, for many modelsp̄θ (Yk|Yk−1
0 )

cannot be expressed in closed form, basically because the smoothing probability
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�Pθ (X0 ∈ ·|�Yk−1
0 ) depends upon the stationary distributionπθ of the complete

chain,

�Pθ (X0 ∈ A|�Yk−1
0 )

=
∫
A πθ(dx0|�Y0)

∫ ∏k−1
i=1 qθ (xi−1, xi)gθ (Yi |�Yi−1, xi)µ

⊗(k−1)(dxk−1
1 )∫

X πθ(dx0|�Y0)
∫ ∏k−1

i=1 qθ (xi−1, xi)gθ (Yi |�Yi−1, xi)µ⊗(k−1)(dxk−1
1 )

.

In many models for which the stationary density is not available in closed form, the
log likelihood (9) does not lead to a practical algorithm. This is our motivation for
considering the conditional form (6) of the log likelihood function. Nevertheless,
as we will see below, for any initial pointx0, n−1(ln(θ, x0) − ln(θ)) converges
to zero uniformly w.r.t. toθ ∈ � as a consequence of the uniform forgetting of
the conditional Markov chain. Thus, by the continuity of the arg max functional,
θ̂n,x0, the maximum ofln(θ, x0), andθ̂n, the maximum ofln(θ), are asymptotically
equivalent.

REMARK 3. Forξ an arbitrary probability measure onB(X) it is possible to
consider

pθ,ξ (Yn
1|�Y0) =

∫
pθ(Yn

1|�Y0,X0 = x0)ξ(dx0).

That is, instead of choosing an initial pointX0 = x0 we set instead an arbitrary
initial distribution. There is in general little rationale for doing that, but the results
obtained below for a fixed initial conditionX0 = x0 immediately carry over to this
more general context. Typically such aξ has a density w.r.t.µ so that there are a
densitypθ,ξ (Yn

1|�Y0,X0 = x0) and an associated MLE.

The consistency proof for the MLE follows the classical scheme of Wald (1949),
which amounts to proving that there exists a deterministic asymptotic criterion
function l(θ) such thatn−1ln(θ, x0) → l(θ) �Pθ∗-a.s. uniformly w.r.t.θ ∈ � and
thatθ∗ is a well-separated point of maximum ofl(θ). It should be stressed that the
asymptotic criterionl(θ) should of course not depend on the initial pointX0 = x0.

The first step of the proof thus consists in showing that the normalized log
likelihood functionn−1ln(θ, x0) converges tol(θ) uniformly w.r.t.θ . This requires
a uniform (w.r.t.θ ∈ � and x0 ∈ X) law of large numbers. We first show that
the difference between the conditional log likelihood functionsln(θ, x0) andln(θ)

stays within some deterministic bound, and hencen−1(ln(θ, x0) − ln(θ)) tends to
zero�Pθ∗-a.s. and inL1(�Pθ∗) [see Del Moral and Miclo (2001) for similar results].

LEMMA 2. Assume(A1) and (A2). Then, for all x0 ∈ X,

sup
θ∈�

|ln(θ, x0) − ln(θ)| ≤ 1/(1− ρ)2, �Pθ∗-a.s.
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PROOF. Note that by Corollary 1, (8) and (11),

‖Pθ (Xk−1 ∈ ·|�Yk−1
0 ,X0 = x0) −�Pθ (Xk−1 ∈ ·|�Yk−1

0 )‖TV ≤ ρk−1.

This implies that, fork ≥ 1,∣∣pθ(Yk|�Yk−1
0 ,X0 = x0) − p̄θ (Yk|�Yk−1

0 )
∣∣

=
∣∣∣∣
∫ ∫

gθ (Yk|�Yk−1, xk)qθ (xk−1, xk)µ(dxk)

× (
Pθ (dxk−1|�Yk−1

0 ,X0 = x0) −�Pθ (dxk−1|�Yk−1
0 )

)∣∣∣∣
≤ ρk−1 sup

xk−1

∫
gθ (Yk|�Yk−1, xk)qθ (xk−1, xk)µ(dxk)

≤ ρk−1σ+
∫

gθ (Yk|�Yk−1, x)µ(dx).

In addition, by (7),

pθ(Yk|�Yk−1
0 ,X0 = x0) ≥ σ−

∫
gθ (Yk|�Yk−1, x)µ(dx),

and the same inequality holds forp̄θ (Yk|�Yk−1
0 ). The inequality| logx − logy| ≤

|x − y|/(x ∧ y) now shows that

∣∣ logpθ(Yk|�Yk−1
0 ,X0 = x0) − logp̄θ (Yk|�Yk−1

0 )
∣∣ ≤ ρk−1

1− ρ
.

A summation concludes the proof.�

The next step consists in showing thatn−1ln(θ) can be approximated by
the sample mean of a�Pθ∗-stationary ergodic sequence of random variables
in L1(Pθ∗). It is natural to approximaten−1ln(θ) = n−1 ∑n

k=1 logp̄θ (Yk|�Yk−1
0 )

by n−1 ∑n
k=1 logp̄θ (Yk|�Yk−1−∞), provided we can give meaning to the latter

conditional densities. This is the main purpose of the construction below. Let,
for x ∈ X,

�k,m,x(θ) � logp̄θ (Yk|�Yk−1−m ,X−m = x),

�k,m(θ) � logp̄θ (Yk|�Yk−1−m ) = log
∫

p̄θ (Yk|�Yk−1−m ,X−m = x−m)�Pθ (dx−m|�Yk−1−m ).

It follows from the definitions thatln(θ) = ∑n
k=1�k,0(θ). In order to show that for

any k ≥ 0 the sequences{�k,m(θ)}m≥0 and{�k,m,x(θ)}m≥0 converge uniformly
w.r.t. θ ∈ �, �Pθ∗-a.s., we prove that they are uniform Cauchy sequences. This
property is implied by the following lemma.
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LEMMA 3. Assume(A1)–(A3). Then for allk ≥ 1 andm,m′ ≥ 0,�Pθ∗-a.s.,

sup
θ∈�

sup
x,x′∈X

|�k,m,x(θ) − �k,m′,x′(θ)| ≤ ρk+(m∧m′)−1/(1− ρ),(12)

sup
θ∈�

sup
x∈X

|�k,m,x(θ) − �k,m(θ)| ≤ ρk+m−1/(1− ρ),(13)

sup
θ∈�

sup
m≥0

sup
x∈X

|�k,m,x(θ)| ≤ max
(| logb+|, ∣∣ log

(
σ−b−(�Yk−1, Yk)

)∣∣).(14)

The proof is similar to the proof of Lemma 2 (making use of the uniform ergodicity
of the conditional chain) and is given in the Appendix. By (12),{�k,m,x(θ)}m≥0
is a uniform Cauchy sequence w.r.t.θ ∈ � �Pθ∗-a.s. and thus�k,m,x(θ) converges
uniformly �Pθ∗-a.s. Equation (12) also implies that limm→∞ �k,m,x(θ) does not
depend onx. Denote by�k,∞(θ) this limit. Intuitively, we may think of�k,∞(θ)

as logp̄θ (Yk|Yk−1−∞). Equation (14) shows that{�k,m,x(θ)}m≥0 is uniformly

bounded inL1(�Pθ∗), and thus the limit�k,∞(θ) is also inL1(�Pθ∗). Note that
{�k,∞(θ)} is a�Pθ∗-stationary ergodic process.

Settingm = 0 in (12) and lettingm′ → ∞ shows that,�Pθ∗-a.s.,

sup
θ∈�

|�k,0,x(θ) − �k,∞(θ)| ≤ ρk−1/(1− ρ),

and (13) shows that supθ∈� |�k,0,x(θ) − �k,0(θ)| ≤ ρk−1/(1 − ρ). These two
relations readily imply the following result.

COROLLARY 2. Assume(A1) and (A2). Then
n∑

k=1

sup
θ∈�

|�k,0(θ) − �k,∞(θ)| ≤ 2/(1− ρ)2, �Pθ∗-a.s.

Corollary 2 shows thatn−1ln(θ) can be approximated by the sample mean of a
stationary ergodic sequence, uniformly w.r.t.θ ∈ �. Since�0,∞(θ) ∈ L1(�Pθ∗),
the ergodic theorem implies thatn−1ln(θ) → l(θ) � �Eθ∗[�0,∞(θ)] �Pθ∗-a.s. and
in L1(�Pθ∗). Combining this result with Lemma 2 yields the following.

PROPOSITION1. Assume(A1)–(A3). Then for allx0 ∈ X andθ ∈ �,

lim
n→∞n−1ln(θ, x0) = l(θ), �Pθ∗-a.s. and inL1(�Pθ∗).

REMARK 4. The pointwise convergence ofn−1ln(θ, x0) has been established
for HMMs by Leroux (1992) and Le Gland and Mevel (2000) for a finite state
space and later for a compact state space by Douc and Matias (2001). In the papers
of Le Gland and Mevel (2000) and Douc and Matias (2001), the authors used
the geometric ergodicity of an extended Markov chain consisting of the hidden



MLE FOR SWITCHING AUTOREGRESSION 2267

variable, the observed variable and the prediction filter density function. However,
this approach requires conditions stronger than the weak ergodicity condition (A2)
and the moment condition (A3).

The next step of the proof consists in showing thatl(θ) is continuous w.r.t.θ . To
that purpose, first observe that, by (14) and the dominated convergence theorem,
for anyx ∈ X andθ ∈ �,

l(θ) = �Eθ∗
[

lim
m→∞�0,m,x(θ)

]
= lim

m→∞
�Eθ∗[�0,m,x(θ)].

Since{�0,m,x(θ)}m≥0 is a uniform Cauchy sequence�Pθ∗-a.s. which is uniformly
bounded inL1(�Pθ∗) (�Eθ∗[supm≥0 supθ∈�[�0,m,x(θ)]] < ∞), it suffices to show
that �0,m,x(θ) is continuous w.r.t.θ . In fact, this is the whole point of using
�0,m,x(θ) instead of�0,m(θ). We will need the following additional assumption:

(A4) For allx, x′ ∈ X and all(ȳ, y′) ∈ Ys ×Y, θ → qθ (x, x′) andθ → gθ (y
′|ȳ, x)

are continuous.

LEMMA 4. Assume(A1)–(A4). Then for allθ ∈ �,

lim
δ→0

�Eθ∗
[

sup
|θ ′−θ |≤δ

|�0,∞(θ ′) − �0,∞(θ)|
]

= 0.

The proof is given in the Appendix. We may now state the central result of this
section, the uniform convergence of the normalized log likelihoodn−1ln(θ, x0)

to l(θ), which follows almost immediately from Corollary 2 and the ergodic
theorem.

PROPOSITION2. Assume(A1)–(A4). Then

lim
n→∞ sup

θ∈�

sup
x0∈X

|n−1ln(θ, x0) − l(θ)| = 0, �Pθ∗-a.s.

Again, the proof is in the Appendix.

5. Consistency of the maximum likelihood estimator. We will now prove
that under suitable assumptions the unique maximizer ofθ → l(θ) is θ∗, the true
value of the parameter. Let�PY

θ be the trace of�Pθ on {YN,B(Y)⊗N}, that is, the
distribution of{Yk}. Consider the following assumption:

(A5) θ = θ∗ if and only if

�PY
θ =�PY

θ∗ .(15)
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In other words, under this assumption the stationary laws of the observed process
associated with two different values of the parameter do not coincide unless the
parameters do. This is obviously the minimal assumption that we can impose.
When it comes to applying the results, it is sometimes more convenient to consider
the following alternative identifiability condition, which in certain circumstances
proves easier to verify.

(A5′) θ = θ∗ if and only if

�Eθ∗
[

log
p̄θ∗(Yp

1 |�Y0)

p̄θ (Y
p
1 |�Y0)

]
= 0 for all p ≥ 1.(16)

In fact we will see below that under (A1)–(A3), these two conditions are
equivalent. Of course neither of the identifiability assumptions stated above is
entirely satisfactory, because both conditions implicitly make use of the stationary
distribution of the complete chain, which typically is infeasible to compute.
Nevertheless, it does not seem sensible to expect much simpler identifiability
conditions based, say, ongθ and qθ alone. The usefulness of (A5′) is revealed
when conditioning on�Y0, yieldingθ = θ∗ if and only if

�Eθ∗
[
�Eθ∗

(
log

p̄θ∗(Yp
1 |�Y0)

p̄θ (Y
p
1 |�Y0)

∣∣∣�Y0

)]
= 0 for all p ≥ 1.(17)

In this expression the inner expectation is a conditional Kullback–Leibler measure,
and hence nonnegative. If equality holds in (17), the inner conditional expectation

vanishes�P�Y0
θ∗ -a.s. This observation may in turn often be used to prove thatθ = θ∗,

using, for example, identifiability of mixtures of the family to which the densities
gθ (·|ȳ, x) belong. A particular example involving linear regressions with normal
disturbances and finite-valued regime is discussed in Krishnamurthy and Rydén
[(1998), page 302]. Slightly different identifiability conditions are employed in
Francq and Roussignol (1998).

Before proceeding to the equivalence of (A5) and (A5′), some preparatory
lemmas are needed. We will first show that the conditional density function
p̄θ (Y�

k|�Yj
i ) (i ≤ j < k ≤ �) converges to the unconditional density function

p̄θ (Y�
k) when the gapk − j tends to infinity. This can be viewed as a kind of

φ-mixing condition expressed directly on the conditional and the unconditional
density functions, which is inherited from the ergodicity of the complete chain.

LEMMA 5. Assume(A1)–(A3) and fixk ≤ �. Then

lim
j→−∞ sup

i≤j

∣∣p̄θ (Y�
k|�Yj

i ) − p̄θ (Y�
k)

∣∣ = 0 in �Pθ∗-probability.

The proof is given in the Appendix.
The following lemma shows that (15) and (16) are equivalent.
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LEMMA 6. Assume(A1)–(A3). Then(15)holds if and only if(16)holds.

PROOF. It obviously suffices to show the “if” part, so suppose (16) holds. The
basic idea consists in inserting a gap in the range of variables. Forp ≥ 1 andm ≥ 0,
write

0 = �Eθ∗
[

log
p̄θ∗(Yp+m

1 |�Y0)

p̄θ (Y
p+m
1 |�Y0)

]

= �Eθ∗
[

log
p̄θ∗(Ym

1 |Yp+m
m+1 ,�Y0)

p̄θ (Ym
1 |Yp+m

m+1 ,�Y0)

]
+�Eθ∗

[
log

p̄θ∗(Yp+m
m+1 |�Y0)

p̄θ (Y
p+m
m+1 |�Y0)

]
.

The two terms on the right-hand side are expectations of Kullback–Leibler
divergence functions and thus nonnegative, which shows that

0 ≥ �Eθ∗
[

log
p̄θ∗(Yp+m

m+1 |�Y0)

p̄θ (Y
p+m
m+1 |�Y0)

]
= �Eθ∗

[
log

p̄θ∗(Yp
1 |�Y−m)

p̄θ (Y
p
1 |�Y−m)

]

= �Eθ∗
[∫

log
p̄θ∗(Yp

1 = yp
1 |�Y−m)

p̄θ (Y
p
1 = yp

1 |�Y−m)
p̄θ∗(Yp

1 = yp
1 |�Y−m)ν⊗p(dyp

1)

]
.

Thus, for allm ≥ 0,

p̄θ∗(Yp
1 |�Y−m) = p̄θ (Y

p
1 |�Y−m), �Pθ∗-a.s.

By Lemma 5,

|p̄θ∗(Yp
1 ) − p̄θ (Y

p
1 )|

= lim
m→∞

∣∣p̄θ∗(Yp
1 |�Y−m) − p̄θ (Y

p
1 |�Y−m)

∣∣ = 0 in�Pθ∗-probability,

whencep̄θ∗(Yp
1 ) = p̄θ (Y

p
1 ) �Pθ∗-a.s. The proof is complete.�

PROPOSITION3. Under(A1)–(A5), l(θ) ≤ l(θ∗) andl(θ) = l(θ∗) if and only
if θ = θ∗.

PROOF. By the dominated convergence theorem,

l(θ) = �Eθ∗
[

lim
m→∞ logp̄θ (Y1|�Y0−m)

]

= lim
m→∞

�Eθ∗[logp̄θ (Y1|�Y0−m)](18)

= lim
m→∞

�Eθ∗
[�Eθ∗[logp̄θ (Y1|�Y0−m)|�Y0−m]].

Hence l(θ∗) − l(θ) is nonnegative as the limit of expectations of conditional
Kullback–Leibler divergence functions andθ∗ is a maximizer of the function
θ → l(θ).
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Now assumel(θ) = l(θ∗). By Lemma 6 it suffices to prove that (16) holds. Note
that for anyk ≥ 1 andm ≥ 0,

�Eθ∗[logp̄θ (Yk
1|�Y0−m)] =

k∑
i=1

�Eθ∗[logp̄θ (Y1|�Y0−m−i+1)].

Hence, by (18),

lim
m→∞

�Eθ∗[logp̄θ (Yk
1|�Y0−m)] = kl(θ),

and forp + s < k + 1,

0 = k
(
l(θ∗) − l(θ)

) = lim
m→∞

�Eθ∗
[

log
p̄θ∗(Yk

1|�Y0−m)

p̄θ (Yk
1|�Y0−m)

]

≥ lim sup
m→∞

�Eθ∗
[

log
p̄θ∗(Yk

k−p+1|�Yk−p,�Y0−m)

p̄θ (Yk
k−p+1|�Yk−p,�Y0−m)

]

= lim sup
m→∞

�Eθ∗
[

log
p̄θ∗(Yp

1 |�Y0,�Yp−k
p−k−m)

p̄θ (Y
p
1 |�Y0,�Yp−k

p−k−m)

]
.

The proof is concluded by lettingk → ∞ and using Lemma 7.�

LEMMA 7. Assume(A1)–(A3). Then for allp ≥ 1 and all θ ∈ �,

lim
k→∞ sup

m≥k

∣∣∣∣�Eθ∗
[

log
p̄θ∗(Yp

1 |�Y0,�Y−k−m)

p̄θ (Y
p
1 |�Y0,�Y−k−m)

]
−�Eθ∗

[
log

p̄θ∗(Yp
1 |�Y0)

p̄θ (Y
p
1 |�Y0)

]∣∣∣∣ = 0.

The proof of this lemma is based on the mixing properties of the complete chain
(see Lemma 5) and is postponed to the Appendix.

We may now summarize our findings in the following theorem, which states the
strong consistency of the conditional MLE.

THEOREM 1. Assume(A1)–(A5). Then, for anyx0 ∈ X, limn→∞ θ̂n,x0 = θ∗,
�Pθ∗-a.s.

6. Asymptotic normality of the maximum likelihood estimator. Lemma 1
and Corollary 1 are the basic tools for generalizing the results of BRR and JP. The
pattern of the proof of asymptotic normality of the MLE is similar to that presented
in these contributions, with two major differences. First, the geometric upper
bounds are deterministic, which is a consequence of Lemma 1 and Corollary 1.
Second, in this paper, the MLE is the maximizer of the conditional log likelihood
ln(θ, x0), wherex0 is some fixed arbitrary point inX, whereas in BRR and JP it is
the maximizer of the unconditional log likelihoodln(θ).
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Not surprisingly, the proof of asymptotic normality requires some additional
regularity assumptions. Let∇θ and∇2

θ be the gradient and the Hessian operator
with respect to the parameterθ , respectively. We will assume that there exists a
positive realδ such that onG � {θ ∈ � : |θ − θ∗| < δ} the following conditions
hold:

(A6) For all x, x′ ∈ X and (ȳ, y′) ∈ Ys × Y, the functionsθ → qθ (x, x′) and
θ → gθ (y

′|ȳ, x′) are twice continuously differentiable onG.

(A7) (a) supθ∈G supx,x′ ‖∇θ logqθ(x, x′)‖ < ∞ and supθ∈G supx,x′ ‖∇2
θ ×

logqθ(x, x′)‖ < ∞.
(b) �Eθ∗[supθ∈G supx‖∇θ loggθ (Y1|�Y0, x)‖2] < ∞ and �Eθ∗[supθ∈G

supx‖∇2
θ loggθ (Y1|�Y0, x)‖] < ∞.

(A8) (a) Forν̄⊗ν-almost all(ȳ, y′) in Ys ×Y there exists a functionfȳ,y′ :X →
R

+ in L1(µ) such that supθ∈G gθ (y
′|ȳ, x) ≤ fȳ,y′(x).

(b) Forµ ⊗ ν̄-almost all(x, ȳ) ∈ X × Ys , there exist functionsf 1
x,ȳ :Y →

R
+ andf 2

x,ȳ :Y → R
+ in L1(ν) such that‖∇θgθ (y

′|ȳ, x)‖ ≤ f 1
x,ȳ(y

′)
and‖∇2

θ gθ (y
′|ȳ, x)‖ ≤ f 2

x,ȳ(y
′) for all θ ∈ G.

REMARK 5. The regularity requirements (existence of first and second
derivatives at all points, existence of integrable upper bounds) are reminiscent of
Cramér’s classical proof of asymptotic normality of the MLE. It is obvious that
these conditions could have been weakened using more sophisticated techniques.
We will nevertheless stick to the conventional proof.

REMARK 6. The conditions are weaker and more easily checked than those
used by JP, who assumed that the stationary density of the complete Markov chain
is twice differentiable w.r.t. toθ , a condition which is difficult to check except
for very simple models. However, as seen below, by using proper conditioning
techniques it is possible to avoid such assumptions.

Asymptotic normality of the MLE is implied by:

(i) a central limit theorem (CLT) for the Fisher score functionn−1/2∇θ ln(θ
∗,

x0), and
(ii) a locally uniform law of large numbers for the observed Fisher information

−n−1∇2
θ ln(θ, x0) for θ in a neighborhood ofθ∗.

Along the lines of the proofs by BRR and JP, the key to the proof consists in
finding proper expressions for these two quantities. Exploiting the hierarchical
structure of the model, it turns out that it is practical to express the score function
and the observed Fisher information as functions of conditional expectations of the
complete score function and the complete Fisher information.
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6.1. A central limit theorem for the score function.The Fisher identity [Louis
(1982)] generally states that for a model with missing data, the score function
equals the conditional expectation of the complete score given the observed data;
the complete score is the gradient of the complete log likelihood, that is, the
likelihood that includes the missing data in addition to the observed data. The
rationale for using this identity is that the log likelihood and score functions
themselves are typically rather involved [cf. (1)] while the complete log likelihood
and score are simpler. This is true in our case, in which the Markov chain{Xk}nk=1
constitutes the missing data. The Fisher identity requires exchanging the gradient
operator with certain integrals, and is valid under (A7) and (A8). Hence, for any
x0 ∈ X,

n−1/2∇θ ln(θ
∗, x0) = n−1/2

n∑
k=1

∇θ logpθ∗(Yk|�Yk−1
0 ,X0 = x0)

= n−1/2
n∑

k=1

�k,0,x0(θ
∗),

where for anyx ∈ X andθ ∈ �,

�k,0,x(θ) � Eθ

[
k∑

i=1

φ(θ,�Zi
i−1)

∣∣∣�Yk
0,X0 = x

]

− Eθ

[
k−1∑
i=1

φ(θ,�Zi
i−1)

∣∣∣�Yk−1
0 ,X0 = x

]
,

with the convention
∑b

i=a ci = 0 if b < a and

φ(θ,�Zi
i−1) = φ(θ,�Zi−1,�Zi ) = φ

(
θ, (Xi−1

i−s ,
�Yi−1), (Xi

i−s+1,Yi
i−s+1)

)
= φ

(
θ, (Xi−1,�Yi−1), (Xi, Yi)

)
� ∇θ log

(
qθ(Xi−1,Xi)gθ (Yi |�Yi−1,Xi)

)
is the conditional score of(Xi, Yi) given(Xi−1,�Yi−1).

We also let, form ≥ 0,

�k,m(θ) � �Eθ

[
k∑

i=−m+1

φ(θ,�Zi
i−1)

∣∣∣�Yk−m

]
−�Eθ

[
k−1∑

i=−m+1

φ(θ,�Zi
i−1)

∣∣∣�Yk−1−m

]
.

Similar to what is done in BRR and JP we show that�k,0,x(θ
∗) can be

approximated inL2(�Pθ∗) by a�Pθ∗-stationary martingale increment sequence and
apply a CLT for sums of stationary martingale increments.

The first step in the proof consists of showing that the initial pointx does not
show up in the limit.
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LEMMA 8. Assume(A1), (A2) and (A6)–(A7). Then, for all x ∈ X,

lim
n→∞

�Eθ∗

∥∥∥∥∥n−1/2
n∑

k=1

(
�k,0,x(θ

∗) − �k,0(θ
∗)

)∥∥∥∥∥
2

= 0.

PROOF. Write

n∑
k=1

(
�k,0,x(θ

∗) − �k,0(θ
∗)

)

=
n∑

k=1

(
Eθ∗[φ(θ∗,�Zk

k−1)|�Yn
0,X0 = x] −�Eθ∗[φ(θ∗,�Zk

k−1)|�Yn
0]

)
.

Under the stated assumptions�Eθ∗(supx,x′∈X ‖φ(θ∗, (x,�Y0), (x
′, Y1))‖2) < ∞.

The proof now follows from Corollary 1, which implies that

‖Eθ∗[φ(θ∗,�Zk
k−1)|�Yn

0,X0 = x] −�Eθ∗[φ(θ∗,�Zk
k−1)|�Yn

0]‖
≤ 2 sup

x,x′∈X

∥∥φ(
θ∗, (x,�Yk−1), (x

′, Yk)
)∥∥ρk−1. �

We will now show that for anyk, {�k,m(θ∗)}m≥0 is a Cauchy sequence
in L2(�Pθ∗). Since

�k,m(θ∗) = �Eθ∗[φ(θ∗,�Zk
k−1)|�Yk−m]

+
k−1∑

i=−m+1

(�Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−m] −�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−1−m ]),
the difference�k,m(θ)−�k,m′(θ) (assumingm′ > m > 0) involves for each−m <

i ≤ k terms of the form either�Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−m] −�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk
−m′ ]

or �Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−m] −�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−1−m ]. By Corollary 1 and an argu-
ment used to prove Lemma 3 we obtain for−m′ < −m < i ≤ k that,�Pθ∗-a.s.,

‖�Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−m] −�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk
−m′ ]‖

(19)
≤ 2 sup

x,x′∈X

∥∥φ(
θ∗, (x,�Yi−1), (x

′, Yi)
)∥∥ρi+m−1.

Note that this term is small wheni is far from −m, say, i ≥ (k − m)/2.
Another kind of inequality is required to bound‖�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−m] −
�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−1−m ]‖. This type of bound will follow from forgetting properties
of the reverse conditional hidden chain. Similar to Lemma 1, we have the following
result.
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LEMMA 9. Assume(A1) and (A2). Let m,n ∈ Z with m,n ≥ 0 and θ ∈ �.
Under�Pθ , conditionally on�Yn−m, the time-reversed process{Xn−k}0≤k≤n+m is an
inhomogeneous Markov chain, and for all 0 < k ≤ n + m there exists a function
µ̃k(y

n−k
−m−s+1,A) such that:

(i) for anyA ∈ B(X), yn−k
−m−s+1 → µ̃k(y

n−k
−m−s+1,A) is a Borel function;

(ii) for any yn−k
−m−s+1, µ̃k(y

n−k
−m−s+1, ·) is a probability measure onB(X). In

addition, for all yn−k
−m−s+1, µ̃k(y

n−k
−m−s+1, ·) � µ and for all�Yn−m,

�Pθ (Xn−k ∈ A|Xn−k+1,�Yn−m) =�Pθ (Xn−k ∈ A|Xn−k+1,�Yn−k−m )

≥ σ−
σ+

µ̃k(Y
n−k
−m−s+1,A).

The proof is along the same lines as Lemma 1 and is omitted for brevity.
From this lemma, using an analogue of Corollary 1, it follows that for−m <

i < k,

‖�Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−m] −�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−1−m ]‖
(20)

≤ 2 sup
x,x′∈X

∥∥φ(
θ∗, (x,�Yi−1), (x

′, Yi)
)∥∥ρk−i−1.

By a standard martingale theory result [see, e.g., Shiryaev (1996), page 510], un-
der assumption (A7)�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−m] → �Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−∞], �Pθ∗-a.s.

asm → ∞. Hence inequalities (19) and (20) hold true,�Pθ∗-a.s., when eitherm
or m′ is replaced by∞. Using (20) withm = ∞ shows that

k−1∑
i=−∞

‖�Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−∞] −�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−1−∞]‖

≤
k−1∑

i=−∞
2 sup

x,x′∈X

∥∥φ(
θ∗, (x,�Yi−1), (x

′, Yi)
)∥∥ρk−i−1.

Under (A7) the right-hand side is inL2(�Pθ∗), and we may thus define

�k,∞(θ∗) � �Eθ∗[φ(θ∗,�Zk
k−1)|�Yk−∞]

+
k−1∑

i=−∞

(�Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−∞] −�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−1−∞]).
In addition we have the followingL2-bound, showing that�k,m(θ∗) converges

to �k,∞(θ∗) in L2(�Pθ∗) asm → ∞.
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LEMMA 10. Assume(A1), (A2) and (A6)–(A7). Then, for all k ≥ 1 and
m ≥ 0, (�Eθ∗‖�k,m(θ∗) − �k,∞(θ∗)‖2)1/2

≤ 12
(
�Eθ∗

[
sup

x,x′∈X

∥∥φ(
θ∗, (x,�Y0), (x

′, Y1)
)∥∥2

])1/2ρ(k+m)/2−1

1− ρ
.

PROOF. Using (19) and (20) and the Minkowski inequality, we find that apart
from the factor(�Eθ∗[supx,x′∈X ‖φ(θ∗, (x,�Y0), (x

′, Y1))‖2])1/2, (�Eθ∗‖�k,m(θ∗) −
�k,∞(θ∗)‖2)1/2 is bounded by

2ρk+m−1 + 4
k−1∑

i=−m+1

(ρk−i−1 ∧ ρi+m−1) + 2
−m∑

i=−∞
ρk−i−1

≤ 2ρk+m−1 + 4
∑

−∞<i≤(k−m)/2

ρk−i−1 + 4
∑

(k−m)/2≤i<∞
ρi+m−1 + 2

ρk+m−1

1− ρ

≤ 12
ρ(k+m)/2−1

1− ρ
. �

Now define the filtrationF by Fk = σ(�Yi;−∞ < i ≤ k) for k ∈ Z. By the
conditional dominated convergence theorem,

�Eθ∗

[
k−1∑

i=−∞

(�Eθ∗[φ(θ∗,�Zi
i−1)|�Yk−∞] −�Eθ∗[φ(θ∗,�Zi

i−1)|�Yk−1−∞])∣∣∣�Yk−1−∞

]
= 0,

�Eθ∗[φ(θ∗,�Zk
k−1)|�Yk−1−∞] = �Eθ∗

[�Eθ∗[φ(θ∗,�Zk
k−1)|�Yk−1−∞,Xk−1]|�Yk−1−∞

] = 0,

so that{�k,∞(θ∗)}∞k=−∞ is an (F ,�Pθ∗)-adapted stationary, ergodic and square
integrable martingale increment sequence. The CLT for sums of such sequences
[see, e.g., Durrett (1996), page 418] shows that

n−1/2
n∑

k=1

�k,∞(θ∗) → N
(
0, I (θ∗)

)
, �Pθ∗-weakly,

whereI (θ∗) � �Eθ∗[�0,∞(θ∗)�0,∞(θ∗)T ] is the asymptotic Fisher information
matrix, defined as the covariance matrix of the asymptotic score function.
Lemma 10 implies that

lim
n→∞

�Eθ∗

∥∥∥∥∥n−1/2
n∑

k=1

(
�k,0(θ

∗) − �k,∞(θ∗)
)∥∥∥∥∥

2

= 0,(21)

and hencen−1/2∑n
k=1 �k,0(θ

∗), and by Lemma 8 alson−1/2 ∑n
k=1�k,0,x(θ

∗),
have the same limiting distribution under�Pθ∗ . We summarize our findings in the
following result.
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THEOREM 2. Assume(A1), (A2) and(A6)–(A8). Then for anyx0 ∈ X,

n−1/2∇θ ln(θ
∗, x0) → N

(
0, I (θ∗)

)
, �Pθ∗-weakly.

6.2. Law of large numbers for the observed Fisher information.The second
part of the proof consists of showing a locally uniform law of large numbers
for the observed Fisher information; for all possibly random sequences{θ∗

n }
such thatθ∗

n → θ∗, Pθ∗-a.s.,−n−1∇2
θ ln(θ

∗
n , x0) converges,Pθ∗-a.s., to the Fisher

information matrix atθ∗. Similar to what was done in the previous section
and following the ideas developed in BRR, the proof amounts to showing that
−n−1∇2

θ ln(θ
∗
n , x0) may be approximated by the sample mean of an ergodic

stationary process. To do that it is convenient, just as for the score function, to
express the observed Fisher information in terms of the Hessian of the complete
log likelihood. This can be done by using the so-called Louis missing information
principle [Louis (1982)], valid under (A7) and (A8), which shows that

∇2
θ logpθ(Yn

1|�Y0,X0 = x0)

= Eθ

[
n∑

i=1

ϕ(θ,�Zi
i−1)

∣∣∣�Yn
0,X0 = x0

]
(22)

+ varθ

[
n∑

i=1

φ(θ,�Zi
i−1)

∣∣∣�Yn
0,X0 = x0

]
,

where

ϕ(θ,�Zi
i−1) = ϕ(θ,�Zi−1,�Zi) = ϕ

(
θ, (Xi−1

i−s ,
�Yi−1), (Xi

i−s+1,Yi
i−s+1)

)
= ϕ

(
θ, (Xi−1,�Yi−1), (Xi, Yi)

)
� ∇2

θ log
(
qθ(Xi−1,Xi)gθ (Yi |�Yi−1,Xi)

)
.

As above we may write these quantities as telescoping sums:

Eθ

[
n∑

i=1

ϕ(θ,�Zi
i−1)

∣∣∣�Yn
0,X0 = x0

]

=
n∑

k=1

(
Eθ

[
k∑

i=1

ϕ(θ,�Zi
i−1)

∣∣∣�Yk
0,X0 = x0

]

− Eθ

[
k−1∑
i=1

ϕ(θ,�Zi
i−1)

∣∣∣�Yk−1
0 ,X0 = x0

])
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and

varθ

[
n∑

i=1

φ(θ,�Zi
i−1)

∣∣∣�Yn
0,X0 = x0

]

=
n∑

k=1

(
varθ

[
k∑

i=1

φ(θ,�Zi
i−1)

∣∣∣�Yk
0,X0 = x0

]

− varθ

[
k−1∑
i=1

φ(θ,�Zi
i−1)

∣∣∣�Yk−1
0 ,X0 = x0

])
.

It turns out (see Lemma 13) that ask → ∞ the initial condition onX0 becomes
irrelevant. Therefore it is sensible to define, fork ≥ 1 andm ≥ 0,

�k,m(θ) = �Eθ

[
k∑

i=−m+1

ϕ(θ,�Zi
i−1)

∣∣∣�Yk−m

]

(23)

−�Eθ

[
k−1∑

i=−m+1

ϕ(θ,�Zi
i−1)

∣∣∣�Yk−1−m

]
,

�k,m(θ) = varθ

[
k∑

i=−m+1

φ(θ,�Zi
i−1)

∣∣∣�Yk−m

]

(24)

− varθ

[
k−1∑

i=−m+1

φ(θ,�Zi
i−1)

∣∣∣�Yk−1−m

]
.

Propositions 4 and 5 show that�k,m(θ) and �k,m(θ) both have limits as
m → ∞, �Pθ∗-a.s., and inL1(�Pθ∗). Let �k,∞(θ) and �k,∞(θ) denote these
limits. It follows from the definitions above that{�k,∞}∞k=1 and {�k,∞}∞k=1 are
�Pθ∗-stationary and ergodic, and the limit of the observed Fisher information will
be−�Eθ∗[�0,∞(θ∗) + �0,∞(θ∗)].

PROPOSITION 4. Assume(A1)–(A3). Let G be a compact subset of�, let
q > 0 and letϕ :� × Xq × Yq → R be a Borel function such that for allxq

1 ∈ Xq

andyq
1 ∈ Yq , ϕ(θ,xq

1,yq
1) is continuous w.r.t. θ onG and

�Eθ∗
[

sup
θ∈G

sup
xq

1∈Xq

|ϕ(θ,xq
1,Yq

1)|
]

< ∞.

Then for eachθ ∈ G, �k,m(θ), as defined in(23), converges�Pθ∗-a.s. and in
L1(�Pθ∗) to �k,∞(θ) as m → ∞. In addition, the functionθ → �Eθ∗[�0,∞(θ)] is
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continuous onG and for allx0 ∈ X andθ ∈ G,

lim
δ→0

lim
n→∞ sup

|θ ′−θ |≤δ

∣∣∣∣∣n−1
Eθ ′

[
n∑

i=1

ϕ(θ ′,Zi
i−q+1)

∣∣∣�Yn
0,X0 = x0

]

−�Eθ∗[�0,∞(θ)]
∣∣∣∣∣ = 0, �Pθ∗-a.s.

PROPOSITION 5. Assume(A1)–(A3). Let G be a compact subset of�, let
q > 0 and letφ :� × Xq × Yq → R be a Borel function such that for allxq

1 ∈ Xq

andyq
1 ∈ Yq , φ(θ,xq

1,yq
1) is continuous w.r.t. θ onG and

�Eθ∗
[

sup
θ∈G

sup
xq

1∈Xq

|φ(θ,xq
1,Yq

1)|2
]

< ∞.

Then for eachθ ∈ G, �k,m(θ), as defined in(24), converges�Pθ∗-a.s. and in
L1(�Pθ∗) to �k,∞(θ) as m → ∞. In addition, the functionθ → �Eθ∗[�0,∞(θ)] is
continuous onG and, for all x0 ∈ X andθ ∈ G,

lim
δ→0

lim
n→∞ sup

|θ ′−θ |≤δ

∣∣∣∣∣n−1 varθ ′

[
n∑

i=1

φ(θ ′,Zi
i−q+1)

∣∣∣�Yn
0,X0 = x0

]

−�Eθ∗[�0,∞(θ)]
∣∣∣∣∣ = 0, �Pθ∗-a.s.

Note that in Propositions 4 and 5 the functionsϕ and φ take values inR.
Adaptations to vector- and matrix-valued functions are straightforward.

For all x0 ∈ X the Fisher information identity implies, under the stated
assumptions, that

n−1
Eθ [∇θ ln(θ, x0)∇θ ln(θ, x0)

T |�Y0,X0 = x0]
= −n−1

Eθ [∇2
θ ln(θ, x0)|�Y0,X0 = x0],

and Propositions 4 and 5 together with the Louis missing information principle
show that the limits inn of these two quantities both coincide with the Fisher
information atθ∗. We conclude the discussion in this section by stating the main
result.

THEOREM 3. Assume(A1)–(A3) and(A6)–(A8) and let{θ∗
n } be any, possibly

stochastic, sequence in� such thatθ∗
n → θ∗ �Pθ∗-a.s. Then for all x0 ∈ X

−n−1∇2
θ ln(θ

∗
n , x0) → I (θ∗), �Pθ∗-a.s.

The following theorem is a standard consequence of Theorems 2 and 3 (see,
e.g., BRR).
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THEOREM 4. Assume(A1)–(A8) and thatI (θ∗) is positive definite. Then for
all x0 ∈ X

n1/2(θ̂n,x0 − θ∗) → N
(
0, I (θ∗)−1), �Pθ∗-weakly.

7. Extensions to nonstationary AR models with Markov regime. In
Sections 4 and 6 the assumption of stationarity of{Yk} plays a crucial role. In this
section we shall extend the consistency and asymptotic normality of the MLE to
the case where this process is not stationary. Hence we assume that the process
we observe, denoted by{�Y′

k}∞k=0, and the associated hidden chain, denoted by
{X′

k}∞k=0, are governed by the transition kernel	θ∗ and with (X′
0,

�Y′
0) having

distributionζ . This initial distribution is unknown to us and in generalζ �= πθ∗ .
As before we let{(Xk,�Yk)}∞k=0 denote a corresponding stationary process.

We observe that since these processes are positive Harris recurrent and aperiodic
[this is (A2)] we can construct them on a common probability space in a way that
there exists an a.s. finite random timeT , the coupling time, such that�Zn = �Z′

n

for n ≥ T [Thorisson (2000), page369]. The associated probability measure is
denoted byPπθ∗⊗ζ . Hence, to be precise,Pπθ∗⊗ζ (T < ∞) = 1.

Definel′n(θ, x0) � logpθ([Y′]n1|�Y′
0,X

′
0 = x0) and letθ̂ ′

n,x0
be the maximizer of

this function w.r.t.θ . Put

Dn(θ, x0) � l′n(θ, x0) − ln(θ, x0)

=
n∑

k=1

(
logpθ(Y

′
k|[�Y′]k−1

0 ,X′
0 = x0) − logpθ(Yk|�Yk−1

0 ,X0 = x0)
)
.

The following lemma ensures thatDn(θ, x0) is bounded,Pπθ∗⊗ζ -a.s., which
implies that the difference betweenθ̂ ′

n,x0
andθ̂n,x0 converges to zero,Pπθ∗⊗ζ -a.s.

(see Theorem 5).

LEMMA 11. Assume(A1) and (A2). Then for all ζ and all x0 ∈ X,
supn≥0 supθ∈� |Dn(θ, x0)| < ∞, Pπθ∗⊗ζ -a.s.

PROOF. Write

sup
θ∈�

|Dn(θ, x0)|

≤
∞∑

k=1

sup
θ∈�

∣∣ logpθ(Y
′
k|[�Y′]k−1

0 ,X′
0 = x0) − logpθ(Yk|�Yk−1

0 ,X0 = x0)
∣∣

≤
T∑

k=1

(
sup
θ∈�

∣∣ logpθ(Y
′
k|[�Y′]k−1

0 ,X′
0 = x0)

∣∣

+ sup
θ∈�

∣∣ logpθ(Yk|�Yk−1
0 ,X0 = x0)

∣∣)(25)
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+
∞∑

k=T +1

sup
θ∈�

∣∣ logpθ(Y
′
k|[�Y′]k−1

0 ,X′
0 = x0)

− logpθ(Yk|�Yk−1
0 ,X0 = x0)

∣∣.
Since

σ−
∫

gθ (Yk|�Yk−1, x)µ(dx) ≤ pθ(Yk|�Yk−1
0 ,X0 = x0)

≤ σ+
∫

gθ (Yk|�Yk−1, x)µ(dx)

(see the proof of Lemma 2), the first sum on the right-hand side is finitePπθ∗⊗ζ -a.s.
by (A1).

For the second sum, note that for alli < k,

pθ(Yk|�Yk−1
0 ,X0 = x0)

=
∫ ∫ ∫

gθ (Yk|�Yk−1, xk)qθ (xk−1, xk)µ(dxk)Pθ (dxk−1|xi,�Yk−1
i )

× Pθ (dxi|�Yk−1
0 ,X0 = x0),

and similarly forpθ(Y
′
k|[�Y′]k−1

0 ,X′
0 = x0). Using the fact that forn ≥ T , �Zn = �Z′

n

and thus�Yn = �Y′
n and Corollary 1, we have for allk > T ,

∣∣pθ(Yk|[�Y′]k−1
0 ,X′

0 = x0) − pθ(Yk|�Yk−1
0 ,X0 = x0)

∣∣
≤ ρk−T −1σ+

∫
gθ (Yk|�Yk−1, x)µ(dx),

and hence ∣∣ logpθ(Y
′
k|[�Y′]k−1

0 ,X′
0 = x0) − logpθ(Yk|�Yk−1

0 ,X0 = x0)
∣∣

(26)
≤ ρk−T −1/(1− ρ);

compare the proof of Lemma 2. Thus the second sum on the right-hand side of (25)
is also finitePπθ∗⊗ζ -a.s. �

We now can prove the consistency of the MLE for a nonstationary process.

THEOREM 5. Assume (A1)–(A5). Then for all ζ and any x0 ∈ X,
limn→∞ θ̂ ′

n,x0
= θ∗, Pπθ∗⊗ζ -a.s.
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PROOF. Sinceθ̂ ′
n,x0

is the maximizer ofθ → n−1l′n(θ, x0),

l
(
θ̂ ′
n,x0

) ≥ l(θ∗) − l(θ∗) + n−1ln(θ
∗, x0)

− n−1ln(θ
∗, x0) + n−1l′n(θ∗, x0) − n−1l′n

(
θ̂ ′
n,x0

, x0
)

+ n−1ln
(
θ̂ ′
n,x0

, x0
) − n−1ln

(
θ̂ ′
n,x0

, x0
) + l

(
θ̂ ′
n,x0

)
≥ l(θ∗) − 2 sup

θ∈�

|n−1ln(θ, x0) − l(θ)| − 2 sup
θ∈�

|n−1Dn(θ, x0)|.

The right-hand side of this inequality tends tol(θ∗), Pπθ∗⊗ζ -a.s., by Proposition 2
and Lemma 11. The proof now follows from Proposition 3, continuity ofl(θ)

(Lemma 4) and compactness of�. �

To show thatn1/2(θ̂ ′
n,x0

− θ̂n,x0) → 0, Pπθ∗⊗ζ -a.s. and thus that̂θ ′
n,x0

andθ̂n,x0

are asymptotically normal with the same covariance matrix, we need to show some
kind of continuity of the functionθ → Dn(θ, x0).

LEMMA 12. Assume(A1)–(A5). Then

lim
n→∞

∣∣Dn

(
θ̂ ′
n,x0

, x0
) − Dn

(
θ̂n,x0, x0

)∣∣ = 0, Pπθ∗⊗ζ -a.s.

PROOF. Let ε > 0. By (26) there exists a random integerN which is finite
Pπθ∗⊗ζ -a.s. and satisfies

∞∑
k=N+1

sup
θ∈�

∣∣ logpθ(Y
′
k|[�Y′]k−1

0 ) − logpθ(Yk|�Yk−1
0 )

∣∣ ≤ ε, Pπθ∗⊗ζ -a.s.

Thus,Pπθ∗⊗ζ -a.s. for alln ≥ N ,∣∣Dn

(
θ̂ ′
n,x0

, x0
) − Dn

(
θ̂n,x0, x0

)∣∣
≤ 2ε + ∣∣l′N (

θ̂ ′
n,x0

, x0
) − l′N

(
θ̂n,x0, x0

)∣∣ + ∣∣lN (
θ̂ ′
n,x0

, x0
) − lN

(
θ̂n,x0, x0

)∣∣.
Under the given assumptionsθ → l′N(θ, x0) and θ → lN (θ, x0) are Pπθ∗⊗ζ -a.s.
continuous (see the proof of Lemma 4) and the proof is complete upon observing
that θ̂n,x0 andθ̂n,x0 both converge toθ∗, Pπθ∗⊗ζ -a.s., and thatε was arbitrary. �

THEOREM 6. Assume(A1)–(A8) and thatI (θ∗) is positive definite. Then, for
all ζ and anyx0 ∈ X,

n1/2(θ̂ ′
n,x0

− θ∗) → N
(
0, I (θ∗)−1), Pπθ∗⊗ζ -weakly.

PROOF. It is sufficient to prove thatεn � √
n(θ̂n,x0 − θ̂ ′

n,x0
) → 0, Pπθ∗⊗ζ -a.s.

Sinceθ̂ ′
n,x0

is the maximizer ofθ → l′n(θ, x0), l′n(θ̂ ′
n,x0

, x0) ≥ l′n(θ̂n,x0, x0), which
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implies that

Dn

(
θ̂ ′
n,x0

, x0
) − Dn

(
θ̂n,x0, x0

) ≥ ln
(
θ̂n,x0, x0

) − ln
(
θ̂ ′
n,x0

, x0
)

= −1
2n−1εT

n ∇2
θ ln

(
tnθ̂

′
n,x0

+ (1− tn)θ̂n,x0

)
εn

for some 0≤ tn ≤ 1. By a straightforward adaptation of Theorem 3 to the present
case with two processes,

−n−1∇2
θ ln

(
tnθ̂

′
n,x0

+ (1− tn)θ̂n,x0

) → I (θ∗), Pπθ∗⊗ζ -a.s.

Since I (θ∗) is positive definite there existsM > 0 such that on a set with
Pπθ∗⊗ζ -probability one and forn sufficiently large,

Dn

(
θ̂ ′
n,x0

, x0
) − Dn

(
θ̂n,x0, x0

) ≥ M|εn|2.
The proof is complete by applying Lemma 12.�

8. Numerical approximations.

8.1. Two Monte Carlo numerical methods.As mentioned in the Introduction,
when the state space of{Xk} is continuous the log likelihood needs to be
approximated by some numerical method. Here we list two classes of methods that
have been proposed and successfully used in many practical problems, but point
out that there are other ones as well, for example, importance sampling [Geyer and
Thompson (1992) and Geyer (1994)].

Particle filters. These methods depart from the representation

ln(θ, x0) =
n∑

k=1

log
∫

gθ (Yk|�Yk−1, xk)Pθ (Xk ∈ dxk|�Yk−1
0 ,X0 = x0)

and replace the predictive distributionPθ (Xk ∈ dxk|�Yk−1
0 ,X0 = x0) by a particle

approximation. More precisely, the approximating distribution is the empirical
distribution of the locations ofN particles at timek. There are many variants
to how the locations of the particles are updated, and under general assumptions
the particle approximation converges to the true predictive distribution at rate
N−1/2 whenN grows. The approximate log likelihood may be maximized using
any standard numerical optimization algorithm. Further reading is found in the
collection Doucet, de Freitas and Gordon (2001); see in particular the survey
paper Hürzeler and Künsch (2001). Other references are Künsch (2001) and Pitt
(2002). Particle filter methods have been proved to perform well in a wide range
of problems, as illustrated in the above references.
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Monte Carlo EM algorithms. The EM algorithm is an iterative algorithm
for computing the MLE (or at least a local maximum of the log likelihood)
in problems with missing data. Its key components are the computation of the
function Q(θ, θ ′) = Eθ [logpθ ′(Xn

1,Yn
1|�Yn

0,X0 = x0)|�Yn
0,X0 = x0] (the E-step)

and the maximization of this function w.r.t.θ ′ (the M-step). These two steps
constitute the update from a current estimateθ to a new one. Obviously the EM
user is required to compute conditional expectations of functions ofXn

1 given�Yn
0

andX0 = x0. If the state space is continuous this task is typically infeasible, but
the conditional expectations can be replaced by sample averages overm simulated
realizations ofXn

1 under the same conditions. These methods are called Monte
Carlo EM (MCEM) algorithms, or stochastic EM (SEM) algorithms. A recent
survey is found in Booth, Hobert and Jank (2001), and general versions of the
algorithm are described in Tanner (1996) and Nielsen (2000). If the numberm of
simulated replications is allowed to increase with each iteration, the algorithm can
be made to converge [Fort and Moulines (2003)]. MCEM methods are successfully
used in many areas; see the above-mentioned survey paper.

Having said that, we stress that the distinction between particle filter and
MCEM methods is not sharp. In fact, the functionQ(θ, θ ′) of the EM algorithm
can, in principle, be computed recursively inn, which opens up for particle
approximations of this functional [Cappé (2001)]. Hence, the approximation and
maximization of the log likelihood rather splits into two other subproblems to
be considered. First, the optimization scheme: (i) EM type, which is particularly
appropriate if the complete data is from an exponential or curved exponential
family of distributions, or (ii) a standard numerical optimization algorithm such
as a quasi-Newton or conjugate gradient method. Second, the approach to
approximate conditional expectations: (i) forward in time using particle filters
or (ii) conditional on the whole set of data using more traditional MCMC
simulation.

8.2. Asymptotics of approximate estimators.Theorems 1 and 4 give the
asymptotic properties of the MLE, but, as noted above, neither the (conditional)
likelihood nor the MLE is computable unless the state space is finite. An important
question is thus if an approximate computation of the MLE or likelihood is
sufficient to retain the asymptotics. Of course, ifθ̃n,x0 is an estimator such
that θ̃n,x0 − θ̂n,x0 = oP (n−1/2) (with P = �Pθ∗), then θ̃n,x0 is consistent and
n1/2(θ̃n,x0 − θ∗) has the same distributional limit asn1/2(θ̂n,x0 − θ∗). This simple
observation applies to methods that directly approximate the MLE, for example,
MCEM. The following theorem gives a corresponding result when the likelihood
is approximated.

THEOREM 7. Assume thatθ̃n,x0 is an estimator satisfyingln(θ̃n,x0, x0) ≥
supθ∈� ln(θ, x0) − Rn and that the assumptions of Theorem4 hold. Then the
following are true:
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(i) If Rn = oP (n) (with P =�Pθ∗), thenθ̃n,x0 is consistent.
(ii) If Rn = OP (1), thenn1/2(θ̃n,x0 −θ∗) = OP (1), that is, the sequence{θ̃n,x0}

is n1/2-consistent under�Pθ∗ .
(iii) If Rn = oP (1), then n1/2(θ̃n,x0 − θ∗) → N (0, I (θ∗)−1), �Pθ∗-weakly as

n → ∞.

REMARK 7. The remainder term does not depend onθ , that is, it is uniform
in θ ∈ �. If n−1Rn → 0,�Pθ∗-a.s. in (i), we obtain strong consistency.

PROOF OFTHEOREM 7. We start with (i). Sinceln(θ̃n,x0, x0) ≥ supθ∈� ln(θ,

x0) − Rn ≥ ln(θ
∗, x0) − Rn, we have

l(θ∗) ≥ l
(
θ̃n,x0

)
≥ l(θ∗) − l(θ∗) + n−1ln(θ

∗, x0) − n−1ln
(
θ̃n,x0, x0

) + l
(
θ̃n,x0

) − n−1Rn

≥ l(θ∗) − 2 sup
θ∈�

|n−1ln(θ, x0) − l(θ)| − n−1Rn.

If Rn = oP (n), using Proposition 2,l(θ̃n,x0) − l(θ∗) = oP (1). Standard compact-
ness arguments going back to Wald (1949) and Proposition 3 complete the proof
of (i).

We now turn to (ii) and (iii). Recall that̂θn,x0 maximizesln(θ, x0). By a Taylor
expansion ofln(θ, x0) aroundθ̂n,x0, there exists a point̄θn on the line segment
betweenθ̂n,x0 andθ̃n,x0 such that

Rn ≥ ln
(
θ̂n,x0, x0

) − ln
(
θ̃n,x0, x0

) = εT
n

(−n−1∇2
θ ln(θ̄n, x0)

)
εn,

where εn = n1/2(θ̃n,x0 − θ̂n,x0). Since θ̃n,x0 converges toθ∗ in probability, so
does θ̄n. Hence there is a positive sequence{δn} tending to zero such that
�Pθ∗(|θ̄n − θ∗| > δn) → 0. Thus, for anyc > 0,

�Pθ∗
(‖−n−1∇2

θ ln(θ̄n, x0) − I (θ∗)‖ > c
)

≤�Pθ∗(|θ̄n − θ∗| > δn) +�Pθ∗
(

sup
|θ−θ∗|≤δn

‖−n−1∇2
θ ln(θ, x0) − I (θ∗)‖ > c

)
.

The first term on the right-hand side tends to zero asn → ∞, and so does the
second one by Theorem 3. SinceI (θ∗) is assumed positive definite, there exists an
M > 0 such that

Rn ≥ (
M + oP (1)

)|εn|2.
Thus, ifRn = OP (1), thenεn = OP (1), and ifRn = oP (1), thenεn = oP (1). The
proofs of (ii) and (iii) are now complete usingn1/2(θ̃n,x0 − θ∗) = εn +n1/2(θ̂n,x0 −
θ∗) and the result of Theorem 4.�
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Obviously, if l̃n is an approximation of the true log likelihoodln (both
conditional onx0) such that|l̃n(θ, x0) − ln(θ, x0)| ≤ (1/2)Rn for all θ ∈ �,
and θ̃n,x0 is the corresponding maximizer, thenln(θ̃n,x0, x0) ≥ l̃n(θ̃n,x0, x0) −
(1/2)Rn ≥ l̃n(θ̂n,x0, x0) − (1/2)Rn ≥ ln(θ̂n,x0, x0) − Rn, that is, the principal
condition of the theorem is fulfilled. We thus see that what is required is to
approximate the true log likelihood uniformly, and that with increased accuracy of
the approximation follows improved properties of the resulting approximate MLE.
Uniform convergence on compacts holds in our case, becauseln(θ, x0) is
continuous inθ , implied by the combination of so-called epiconvergence and
hypoconvergence of an approximationl̃n(θ, x0) [see Geyer (1994), page 273].
Moreover, Geyer also proved that both of these modes of convergence can
be obtained by an importance sampling approach, in which the unobserved
states are simulated using MCMC under a fixed reference parameter [Geyer
(1994), Theorem 2]. Of course, to obtain the required rate of convergence of the
approximation, with increasingn an increasing number of importance samples
must be taken.

Approximation of the log likelihood using particle filters is described, for
instance, in the above-mentioned paper by Pitt (2002), who also devised a method
to smooth the approximation to a continuous function; this method works for
univariate state variables only, however. At present we know of no formal proofs
that particle filters approximate the true log likelihood uniformly, but strongly
conjecture that they do under general assumptions.

8.3. A numerical example.We now turn to a specific numerical example, in
which we shall employ an MCEM algorithm. Localization and tracking of narrow
band moving sources by a passive array is one of the fundamental problems in
radar, communication and sonar [see Ng, Larocque and Reilly (2001), Orton and
Fitzgerald (2002) and references therein]. This problem can be stated as follows.
Consider a uniform linear array ofd sensors receiving a narrowband signal from
a far-field source with unknown time-varying direction of arrival (DOA). Under
the classical narrowband array processing model the received signal at timek, the
d × 1 array observation vectorYk, can be expressed as

Wk = Wk−1 + ηk,(27)

Yk = Ska(Wk) + εk,(28)

wherea(w) = [1eiw · · · ei(d−1)w]T is thed × 1 steering vector, Sk is the source
waveform,ηk is the state noise andεk is the measurement noise. It is assumed that
(i) {ηk} are i.i.d. zero mean Gaussian with varianceσ 2

η , (ii) {Sk} are i.i.d. zero mean
one-dimensional complex circular Gaussian, that is,ESk = 0 andE|Sk|2 = σ 2

s and
(iii) {εk} are i.i.d. zero meand-dimensional complex circular Gaussian, that is,
Eεk = 0 andEεkε

H
k = σ 2

ε Id , wherexH is the conjugate transpose (or Hermite
transpose) ofx andId is thed ×d identity matrix. This is a hidden Markov model,
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or state space model, as there is no autoregression in theY ’s. We wish to estimate
the parameterθ � (σ 2

η , σ 2
s , σ 2

ε ) from the observed dataY1, . . . , Yn.
Conditionally on the hidden variableWk , Yk is a Gaussian complex vector with

densitygθ (yk|Wk), where

gθ (y|w) = 1

πd det�(w)
exp{−yH�−1(w)y}

with

�(w) = E[YkY
H
k |Wk = w] = σ 2

s a(w)a(w)H + σ 2
ε Id .

It is easily checked that

�−1(w) = − σ 2
s

σ 2
ε (dσ 2

s + σ 2
ε )

a(w)a(w)H + 1

σ 2
ε

Id

and

loggθ (y|w) = −d logπ − log
(
σ 2(d−1)

ε (dσ 2
s + σ 2

ε )
)

− 1

σ 2
ε

yHy + σ 2
s

σ 2
ε (dσ 2

s + σ 2
ε )

|a(w)Hy|2.
Furthermore, withrθ denoting the transition density of{Wk},

logrθ (w,w′) = logrσ2
η
(w,w′) = −1

2
log(2πσ 2

η ) − 1

2σ 2
η

(w′ − w)2.

The above model is equivalent to an HMM on a compact state space. Indeed,
identify the interval[0,2π) with the unit circle, which is a compact set, and put
Xk = Wk mod2π . It is then clear that{Xk} is a Markov chain on[0,2π), with
transition densityqσ2

η
(x, x′) = ∑∞

�=−∞ rσ2
η
(x, x′ + 2π�). The output density stays

the same, that is, the conditional density ofYk givenXk = x is gθ (y|x). It is easily
verified that the HMM{(Xk,Yk)} satisfies the regularity conditions in the previous
sections.

Let θ andθ ′ denote two (potentially) different parameter values. The EM algo-
rithm involves iterative maximization of the functionQ(θ, θ ′) = Eθ [logpθ ′(Xn

1,

Yn
1|X0 = x0)|Yn

1,X0 = x0]. Specifically, ifθp is the result of thepth iteration, then
θp+1 is the maximizer (inθ ′) of Q(θp, θ ′), that is,θp+1 = arg maxθ ′ Q(θp, θ ′).
For the present model, putβ(θ) = ∑n

k=1 Eθ [|a(Xk)
HYk|2|Yn

1,X0 = x0]. It is then
straightforward to verify that the maximizer of the M-step of the EM algorithm is
the triple(σ̂ 2

η , σ̂ 2
s , σ̂ 2

ε ) given by

σ̂ 2
η = arg maxv Eθp

[
n∑

k=1

logqv(Xk−1,Xk)
∣∣∣Yn

1,X0 = x0

]
,(29)

σ̂ 2
s = β(θp) − ∑n

k=1 |Yk|2
nd(d − 1)

,(30)
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σ̂ 2
ε =

∑n
k=1 |Yk|2 − β(θp)/d

n(d − 1)
.(31)

The conditional expectationβ(θ) cannot be explicitly computed, let alone the
expectation required to computêσ 2

η . We note that we could also employ the
representation with{Wk} to simplify the implementation of this part of the M-step
and the MCMC algorithm below, as there is then a sufficient statistic for the
re-estimation ofσ 2

η as well, but this approach gives us less satisfying numerical
results. We also note that althoughqθ(x, x′) is not available in closed form, it is
straightforward to approximate it by a truncated sum asrσ2

η
(x, x′ + 2π�) decays

rapidly as|�| → ∞.
In the MCEM approach, the conditional expectations above are replaced by

sample means over a number of realizations ofXn
1, conditional onYn

1 andX0 = x0,
obtained by Monte Carlo simulation. At each iterationp we draw a sample of
size mp of an R

n-valued Markov chain{X̂(�)}�≥0 with stationary distribution
Pθp(Xn

1 ∈ ·|Yn
1,X0 = x0). Many different solutions are available at this stage; in

the simulations below, we use a random scan Metropolis–Hasting algorithm with
transition kernel fromX̂(�−1) = x̂ to X̂(�) = x̂′ defined in the following way:

1. Choose a time indexi uniformly on{1, . . . , n}.
2. Simulatex̂′′

i ∼ qθp(x̂i−1, ·).
3. Setx̂′ = x̂ (these areRn-valued) and update theith component of̂x′, that is,x̂′

i ,
to x̂′′

i with probability

1∧ qθp(x̂i−1, x̂
′′
i )qθp(x̂′′

i , x̂i+1)gθp(Yi |x̂′′
i )

qθp(x̂i−1, x̂i)qθp(x̂i , x̂i+1)gθp(Yi|x̂i )
× qθp(x̂i−1, x̂i)

qθp(x̂i−1, x̂
′′
i )

= 1∧ qθp(x̂′′
i , x̂i+1)gθp(Yi |x̂′′

i )

qθp(x̂i , x̂i+1)gθp(Yi |x̂i )
.

If i = n, this acceptance probability is modified to

1∧ qθp(x̂i−1, x̂
′′
i )gθp (Yi |x̂′′

i )

qθp(x̂i−1, x̂i)gθp (Yi |x̂i)
× qθp(x̂i−1, x̂i)

qθp(x̂i−1, x̂
′′
i )

= 1∧ gθp(Yi|x̂′′
i )

gθp(Yi |x̂i )
.

To guarantee convergence of the algorithm, the number of samples,mp, should
either be increased at each iteration or be selected in a data-driven manner at each
iteration [see Booth and Hobert (1999) or Booth, Hobert and Jank (2001)]. For
simplicity we did not implement such mechanisms but rather used a fixed large
number of iterations at each step of the algorithm.

We simulated a single sample of sizen = 200 from the model (27)–(28)
with d = 4 and with the true value of the parameterθ = (σ 2

η , σ 2
s , σ 2

ε ) being
θ∗ = (0.25,0.64,0.36). At each step of the MCEM procedure we generated a
sample of size 40,000 by the random scan Metropolis–Hasting algorithm, after a
burn-in of 20,000 iterations. The acceptance rate of the algorithm was about 40%.
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The re-estimation ofσ 2
η as in (29) was carried out by numerical optimization, and,

in order to save computation time, of the total of 40,000 replications only every
400th was used for the corresponding sample average (i.e., 1,000 replications).
The stationary distribution of{Xk} is the uniform distribution on[0,2π), whence
we fixed the initial statex0 to its meanπ . We remark that in this particular case the
stationary distribution does not depend onθ , whence it could have been employed
in the algorithm. We started the MCEM algorithm from the true parameters as
well as from four randomly choseninitial points for which eachσ 2-parameter was
drawn independently from a uniform distribution on(0,1). For each of the five
initial points we ran the algorithm for 50 iterations. Figure 1 shows the trajectories
for each initial point and parameter. Obviously, irrespective of the initial point
the algorithm quickly finds the same approximation to the MLE, although the
trajectories do not converge as the sample sizemp in the algorithm stays bounded.
The trajectories forσ 2

η fluctuate a little more since, as described above, only 1,000
replications were used for its re-estimation.

FIG. 1. Convergence of the MCEM algorithm. Trajectories of the three parametersσ2
η , σ2

s andσ2
ε

for five runs of the MCEM algorithm, starting from five different initial points.
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Next we estimated the observed information, that is, the negative Hessian of the
log likelihood. We departed from the missing information principle (22) and again
replaced the expectations involved by sample means over simulated replications
of Xn

1 givenYn
1 andX0 = x0 obtained in the same way as above. Our approxima-

tion to the MLE,θ̃ say, used for these computations was taken as the sample mean
of the last 25 values of the trajectory obtained for the second randomly chosen
starting point mentioned above; it wasθ̃ = (0.2793,0.5756,0.3466). After run-
ning the Metropolis–Hasting algorithm for a burn-in of 100,000 iterations we used
another 200,000 iterations for the sample means. The resulting approximation of
the observed information and its inverse were

Ĩ =



203.2 −3.908 56.10

−3.908 449.1 177.7

56.10 177.7 4169


 ,

Ĩ−1 = 10−3




4.941 0.070 −0.070

0.070 2.266 −0.098

−0.070 −0.098 0.245


 .

The corresponding approximate 95% confidence intervals are(0.1416,0.4171),
(0.4823,0.6689) and (0.3159,0.3773) for σ 2

η , σ 2
s andσ 2

ε , respectively, and we
see that they all cover the respective true values. We see that the variations in
the MCEM estimates in Figure 1 are considerably smaller than the widths of the
confidence intervals, which indicates that the MLE is well approximated and hence
that the inverse observed information matrix is a good estimate of the covariance
matrix of the approximate MLE as well. Obviously the widest interval is that
for σ 2

η , which is not surprising, as this parameter is associated with the hidden
state alone and hence, loosely speaking, “less observable” than the other ones.
A simultaneous test forH0 : θ = θ∗ can be carried out by computing the test
statisticχ2 = (θ̃ − θ∗)T Ĩ (θ̃ − θ∗), which approximately has aχ2 distribution with
3 degrees of freedom under the null hypothesis. We foundχ2 = 3.065 and the
correspondingp-value is 0.38. The null hypothesis could thus not be rejected.

APPENDIX

A.1. Proofs of technical lemmas.

PROOF OFLEMMA 3. Assumem′ ≥ m. Note that

p̄θ (Yk|�Yk−1−m ,X−m = x) − p̄θ (Yk|�Yk−1
−m′,X−m′ = x′)

=
∫ ∫ ∫

gθ (Yk|�Yk−1, xk)qθ (xk−1, xk)µ(dxk)

×�Pθ (dxk−1|X−m = x−m,�Yk−1−m )δx(dx−m)
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−
∫ ∫ ∫

gθ (Yk|�Yk−1, xk)qθ (xk−1, xk)µ(dxk)

×�Pθ (dxk−1|X−m = x−m,�Yk−1−m )�Pθ (dx−m|�Yk−1
−m′,X−m′ = x′).

Hence, by Corollary 1,∣∣p̄θ (Yk|�Yk−1−m ,X−m = x) − p̄θ (Yk|�Yk−1
−m′ ,X−m′ = x′)

∣∣
(32)

≤ ρk+m−1σ+
∫

gθ (Yk|�Yk−1, x)µ(dx).

Similarly we have

p̄(Yk|�Yk−1−m ,X−m = x)

=
∫ ∫

gθ (Yk|�Yk−1, xk)qθ (xk−1, xk)µ(dxk)�Pθ (dxk−1|�Yk−1−m ,X−m = x)(33)

≥ σ−
∫

gθ (Yk|�Yk−1, x)µ(dx).

The proof of (12) is concluded as in Lemma 2, and (13) follows by settingm′ = m

and integrating w.r.t.�Pθ (dx−m|�Yk−1−m ) in (32) and (33). To prove (14), notice that,
by (33),

σ−b−(Yk,�Yk−1) ≤ p̄θ (Yk|�Yk−1−m ,X−m = x) ≤ b+. �

PROOF OFLEMMA 4. We will first prove that for any fixedx ∈ X and anym,
�0,m,x(θ) is continuous w.r.t.θ . We have

p̄θ (Y0|�Y−1−m,X−m = x) = p̄θ (Y0−m+1|�Y−m,X−m = x)

p̄θ (Y
−1
−m+1|�Y−m,X−m = x)

where, forj ∈ {−1,0},
p̄θ (Y

j
−m+1|�Y−m,X−m = x)

=
∫

qθ(x, x−m+1)

j∏
i=−m+2

qθ(xi−1, xi)(34)

×
j∏

i=−m+1

gθ (Yi |�Yi−1, xi)µ
⊗(m+j)(dxj

−m+1).

Thus p̄θ (Y
j
−m+1|�Y−m,X−m = x) is continuous w.r.t.θ by continuity of qθ

and gθ and the bounded convergence theorem; the integrand is bounded by
(σ+b+)m+j . Since {�0,m,x(θ)} converges uniformly w.r.t.θ ∈ �, �Pθ∗-a.s.,
�0,∞(θ) is continuous w.r.t.θ ∈ �,�Pθ∗-a.s., and the proof follows using Lemma 3
and the dominated convergence theorem.�
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PROOF OFPROPOSITION2. By Lemma 2 it is sufficient to prove that

lim sup
n→∞

sup
θ∈�

|n−1ln(θ) − l(θ)| = 0, �Pθ∗-a.s.

Furthermore, since� is compact, we only need to prove that for allθ ∈ �,

lim sup
δ→0

lim sup
n→∞

sup
|θ ′−θ |≤δ

|n−1ln(θ
′) − l(θ)| = 0, �Pθ∗-a.s.

Decompose the difference as

lim sup
δ→0

lim sup
n→∞

sup
|θ ′−θ |≤δ

|n−1ln(θ
′) − l(θ)|

= lim sup
δ→0

lim sup
n→∞

sup
|θ ′−θ |≤δ

|n−1ln(θ
′) − n−1ln(θ)|

≤ A + B + C,

where

A = lim sup
δ→0

lim sup
n→∞

sup
|θ ′−θ |≤δ

n−1
n∑

k=1

|�k,0(θ
′) − �k,∞(θ ′)|,

B = lim sup
δ→0

lim sup
n→∞

sup
|θ ′−θ |≤δ

n−1
n∑

k=1

|�k,∞(θ ′) − �k,∞(θ)|,

C = lim sup
n→∞

n−1
n∑

k=1

|�k,∞(θ) − �k,0(θ)|.

The termsA and C are zero by Corollary 2, and by the ergodic theorem and
Lemma 4,

B ≤ lim sup
δ→0

lim sup
n→∞

n−1
n∑

k=1

sup
|θ ′−θ |≤δ

|�k,∞(θ ′) − �k,∞(θ)|

= lim sup
δ→0

�Eθ∗
[

sup
|θ ′−θ |≤δ

|�0,∞(θ ′) − �0,∞(θ)|
]

= 0, �Pθ∗-a.s. �

PROOF OFLEMMA 5. We will show that for all� > 0,

sup
i≤0

∣∣p̄θ (Y
k+�
k |�Y0−i ) − p̄θ (Y

k+�
k )

∣∣ → 0, �Pθ∗-a.s. ask → ∞.(35)

By stationarity, this implies the statement of the lemma.
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First recall thatzs = (xs, ys, . . . , y1) and note that

p̄θ (zs |ȳ0−i ) =
∫ ∫ s∏

j=1

qθ(xj−1, xj )gθ (yj |xj , ȳj−1)�Pθ (dx0|ȳ0−i )µ
⊗(s−1)(dxs−1

1 )

≤ σ+
∫ ∫ s∏

j=2

qθ(xj−1, xj )

s∏
j=1

gθ (yj |xj , ȳj−1)

×�Pθ (dx0|ȳ0−i)µ
⊗(s−1)(dxs−1

1 )

= σ+hθ (zs),

say, wherehθ (zs) implicitly depends on̄y0, but not oni, and integrates to unity (it
is a density w.r.t.µ ⊗ ν̄). Furthermore,

|p̄θ (Y
k+�
k |�Y0−i ) − p̄θ (Y

k+�
k )|

≤
∫ ∫

p̄θ (Y
k+�
k |zk−1)|	k−s−1(zs, dzk−1) − πθ(dzk−1)|

× p̄θ (zs |�Y0−i )(µ ⊗ ν̄)(dzs)

≤ b�+σ+
∫

‖	k−s−1(zs, ·) − πθ‖TVhθ(zs)(µ ⊗ ν̄)(dzs);

the bound onp̄θ (Y
k+�
k |zk−1) follows as in (34). Now (35) is a result of the above,

(3) and dominated convergence.�

Let, for 0≤ k ≤ m,

Uk,m(θ) � logp̄θ (Y
p
1 |�Y0,�Y−k−m), U(θ) � logp̄θ (Y

p
1 |�Y0).

PROOF OFLEMMA 7. It is enough to show that, for allθ ∈ �,

lim
k→∞

�Eθ∗
[

sup
m≥k

|Uk,m(θ) − U(θ)|
]

= 0.(36)

Put

Ak,m = p̄θ (Y
p
−s+1|�Y−k−m), A = p̄θ (Y

p
−s+1),

Bk,m = p̄θ (�Y0|�Y−k−m), B = p̄θ (�Y0).

Then ∣∣p̄θ (Y
p
1 |�Y0,�Y−k−m) − p̄θ (Y

p
1 |�Y0)

∣∣ =
∣∣∣∣Ak,m

Bk,m

− A

B

∣∣∣∣
(37)

≤ B|Ak,m − A| + A|Bk,m − B|
BBk,m

.
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By conditioning on(X−s ,�Y−s) [cf. (34)] and utilizing (A1)(b), it follows that

B ≥ σ s−
∫ 0∏

i=−s+1

∫
gθ (Yi|Yi−1, . . . , Y−s+1, y−s, . . . , yi−s, x)

(38)

× µ(dx)�Pθ (�Y−s ∈ d ȳ−s) > 0, �Pθ∗-a.s.

Hence, by Lemma 5, with�Pθ∗-probability arbitrarily close to 1,Bk,m(ω) is
uniformly bounded away from zero form ≥ k and k sufficiently large, and
Lemma 5 and (37) show that

lim
k→∞ sup

m≥k

∣∣p̄θ (Y
p
1 |�Y0,�Y−k−m) − p̄θ (Y

p
1 |�Y0)

∣∣ = 0 in �Pθ∗-probability.

Using the inequality| logx − logy| ≤ |x −y|/(x ∧y) and (38) once again, we find
that

lim
k→∞ sup

m≥k

|Uk,m(θ) − U(θ)| = 0 in�Pθ∗-probability,

and (36) follows using dominated convergence provided

�Eθ∗
[
sup
k

sup
m≥k

|Uk,m(θ)|
]

< ∞.

This expectation is indeed finite sincep̄θ (Y
p
1 |�Y0,�Y−k−m) is bounded from below by

σ
p
−

∏p
1 b−(�Yi−1, Yi) and from above by(σ+b+)p [cf. (34)], and the logarithms of

these bounds are inL1(�Pθ∗). �

A.2. Proof of Proposition 4. We preface the proof with several lemmas. For
convenience, Proposition 4 will be proved forq = 1. Adaptations to generalq are
obvious.

Define fork ≥ 1, m ≥ 0 andx ∈ X,

�k,m,x(θ) � �Eθ

[
k∑

i=−m+1

ϕ(θ,Zi)
∣∣∣�Yk−m,X−m = x

]

−�Eθ

[
k−1∑

i=−m+1

ϕ(θ,Zi)
∣∣∣�Yk−1−m ,X−m = x

]
.

Along the same lines as in Lemma 9, form,n ≥ 0 and 0< k ≤ n + m − 1,

�Pθ (Xn−k ∈ A|Xn
n−k+1,

�Yn−m,X−m = x)

=�Pθ (Xn−k ∈ A|Xn−k+1,�Yn−k−m ,X−m = x) ≥ σ−
σ+

µ̆k(�Yn−k−m ,X−m = x,A),
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where µ̆k(�Yn−k−m ,X−m = x, ·) is a probability measure. The result above in
particular implies that

‖�Pθ (Xi ∈ ·|�Yn−m,X−m = x) −�Pθ (Xi ∈ ·|�Yn−1−m ,X−m = x)‖TV ≤ ρn−i−1.(39)

LEMMA 13. Under the assumptions of Proposition4 there exists a random
variableK ∈ L1(�Pθ∗) such that, for all k ≥ 1 and0 ≤ m ≤ m′,

sup
x∈X

sup
θ∈G

|�k,m,x(θ) − �k,m(θ)| ≤ K(k ∨ m)2ρ(k+m)/2, �Pθ∗-a.s.,(40)

sup
x∈X

sup
θ∈G

|�k,m,x(θ) − �k,m′,x(θ)| ≤ K(k ∨ m)2ρ(k+m)/2, �Pθ∗-a.s.(41)

PROOF. The proof is along the same lines as the proof of Lemma 10, using
(39). Put‖ϕi‖∞ = supx∈X supθ∈G |ϕ(θ, x,Yi)|. Combining the relations∣∣�Eθ [ϕ(θ,Zi)|�Yk−m,X−m = x] −�Eθ [ϕ(θ,Zi)|�Yk−m]∣∣ ≤ 2‖ϕi‖∞ρi+m,∣∣�Eθ [ϕ(θ,Zi)|�Yk−m,X−m = x] −�Eθ [ϕ(θ,Zi)|�Yk−1−m ,X−m = x]∣∣

≤ 2‖ϕi‖∞ρk−i−1,∣∣�Eθ [ϕ(θ,Zi)|�Yk−m] −�Eθ [ϕ(θ,Zi)|�Yk−1−m ]∣∣ ≤ 2‖ϕi‖∞ρk−i−1,

we obtain

|�k,m,x(θ) − �k,m(θ)|

≤ 4
k∑

i=−m+1

‖ϕi‖∞(ρi+m ∧ ρk−1−i )

≤ 4 max−m≤i≤k
‖ϕi‖∞

k∑
i=−m+1

(ρi+m ∧ ρk−1−i )

≤ 4
k∑

i=−m

(|i| ∨ 1)2 1

(|i| ∨ 1)2
‖ϕi‖∞

( ∑
i≤(k−m−1)/2

ρk−1−i + ∑
i≥(k−m−1)/2

ρi+m

)

≤ 8(k ∨ m)2
∞∑

i=−∞

1

(|i| ∨ 1)2
‖ϕi‖∞

ρ(k+m−1)/2

1− ρ
,

which proves the first part of the lemma.
For the second part we also use the bound∣∣�Eθ [ϕ(θ,Zi)|�Yk−m,X−m = x] −�Eθ [ϕ(θ,Zi)|�Yk

−m′ ,X−m′ = x]∣∣
≤ 2‖ϕi‖∞ρi+m∧m′
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to obtain

|�k,m,x(θ) − �k,m′,x(θ)|

≤ 4
k∑

i=−m+1

‖ϕi‖∞(ρi+m ∧ ρk−1−i ) + 2
−m∑

i=−m′+1

‖ϕi‖∞ρk−1−i .

Here the first term on the right-hand side is bounded as above. Since−i/2 ≤
(k − m)/2− i for i ≤ −m, the second term can be bounded as

2
−m∑

i=−m′+1

‖ϕi‖∞ρk−1−i ≤ 2ρ(k+m)/2
−m∑

i=−m′+1

‖ϕi‖∞ρ(k−m)/2−1−i

≤ 2ρ(k+m)/2
−m∑

i=−m′+1

‖ϕi‖∞ρ−i/2−1

≤ 2ρ(k+m)/2
∞∑

i=−∞
‖ϕi‖∞ρ|i|/2−1

and the proof is complete.�

By Lemma 13, for allx ∈ X andk ≥ 1, {�k,m,x(θ)}m≥0 converges uniformly
w.r.t. θ ∈ G �Pθ∗-a.s. and inL1(�Pθ∗) to a random variable that we denote by
�k,∞(θ); by (40) this limit does not depend onx. Lemma 13 also immediately
implies that

n−1
n∑

k=1

sup
θ∈G

|�k,0(θ) − �k,∞(θ)| → 0, �Pθ∗-a.s. and inL1(�Pθ∗).

LEMMA 14. Under the assumptions of Proposition4, for all x ∈ X andm ≥ 0
the functionθ → �0,m,x(θ) is�Pθ∗-a.s. continuous onG. In addition, for all θ ∈ G

and allx ∈ X,

lim
δ→0

�Eθ∗
[

sup
|θ ′−θ |≤δ

|�0,m,x(θ ′) − �0,m,x(θ)|
]

= 0.

PROOF. Note that|�0,m,x(θ)| ≤ 2
∑0

i=−m+1 ‖ϕi‖∞. Thus, under the assump-
tions of Proposition 4,�0,m,x(θ) is uniformly bounded w.r.t.θ by a random vari-
able inL1(�Pθ∗). It hence suffices to show that for−m < i ≤ 0,

lim
δ→0

sup
|θ ′−θ |≤δ

∣∣�Eθ ′ [ϕ(θ ′,Zi)|�Y0−m,X−m = x]

−�Eθ [ϕ(θ,Zi)|�Y0−m,X−m = x]∣∣ = 0, �Pθ∗-a.s.
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Write

�Eθ [ϕ(θ,Zi)|�Y0−m,X−m = x]
(42)

=
∫

ϕ(θ, xi, Yi)p̄θ (Xi = xi|�Y0−m,X−m = x)µ(dxi)

and note that for allxi , ϕ(θ, xi, Yi) is continuous w.r.t.θ and that this factor is
bounded by‖ϕi‖∞ < ∞. Moreover,

p̄θ (Xi = xi |�Y0−m,X−m = x) = p̄θ (Xi = xi,Y0−m+1|�Y−m,X−m = x)

p̄θ (Y0−m+1|�Y−m,X−m = x)
.

Herep̄θ (Y0−m+1|�Y−m,X−m = x) is continuous w.r.t.θ (see the proof of Lemma 4),
and using (34) we find that this density is bounded from below by

σm−
0∏

i=−m+1

∫
gθ (Yi|�Yi−1, xi)µ(dxi) > 0

uniformly w.r.t. θ . In a similar fashionp̄θ (Xi = xi,Y0−m+1|�Y−m,X−m = x) is
continuous inθ and bounded from above by(σ+b+)m. We conclude that̄pθ(Xi =
xi |�Y−m,X−m = x) is continuous inθ and bounded from above uniformly w.r.t.θ .
Hence the integrand in (42) is continuous inθ and bounded from above uniformly
w.r.t. θ . Dominated convergence shows that the left-hand side of (42) is continuous
in θ and the proof is complete.�

By Lemma 13�0,m,x(θ) is a uniform Cauchy sequence w.r.t.θ �Pθ∗-a.s. and in
L1(�Pθ∗), and by Lemma 14�0,m,x(θ) is continuous w.r.t.θ on G �Pθ∗-a.s. and in
L1(�Pθ∗) for eachm. Hence it follows that�0,∞(θ) is continuous w.r.t.θ on G
�Pθ∗-a.s. and inL1(�Pθ∗), that is, for eachθ ∈ G,

lim
δ→0

sup
|θ ′−θ |≤δ

|�0,∞(θ ′) − �0,∞(θ)| = 0, �Pθ∗-a.s. and inL1(�Pθ∗).(43)

REMARK 8. It is important to stress at this point that the result abovedoes not
imply that�0,m(θ) is continuous w.r.t.θ because, contrary to JP, we do not assume
any kind of regularity condition for the stationary distribution as a function ofθ .
Nevertheless, we have proved above that�0,∞(θ) is continuous.

We may now prove a locally uniform law of large numbers.

LEMMA 15. Under the assumptions of Proposition4, for all θ ∈ G,

lim
δ→0

lim
n→∞ sup

|θ ′−θ |≤δ

∣∣∣∣∣n−1
n∑

k=1

�k,∞(θ ′) −�Eθ∗[�0,∞(θ)]
∣∣∣∣∣ = 0, �Pθ∗-a.s.
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PROOF. Write

sup
|θ ′−θ |≤δ

∣∣∣∣∣n−1
n∑

k=1

�k,∞(θ ′) −�Eθ∗[�0,∞(θ)]
∣∣∣∣∣

≤ sup
|θ ′−θ |≤δ

∣∣∣∣∣n−1
n∑

k=1

(
�k,∞(θ ′) − �k,∞(θ)

)∣∣∣∣∣
+

∣∣∣∣∣n−1
n∑

k=1

�k,∞(θ) −�Eθ∗[�0,∞(θ)]
∣∣∣∣∣

≤ n−1
n∑

k=1

sup
|θ ′−θ |≤δ

|�k,∞(θ ′) − �k,∞(θ)|

+
∣∣∣∣∣n−1

n∑
k=1

�k,∞(θ) −�Eθ∗[�0,∞(θ)]
∣∣∣∣∣.

As n → ∞, the first term on the right-hand side tends to

�Eθ∗
[

sup
|θ ′−θ |≤δ

|�0,∞(θ ′) − �0,∞(θ)|
]
, �Pθ∗-a.s.,

an expression which, by (43), vanishes whenδ → 0. The second term vanishes
�Pθ∗-a.s. asn → ∞ by the ergodic theorem. This completes the proof.�

We have now at hand all the necessary elements to prove Proposition 4.

PROOF OF PROPOSITION 4. Convergence of�k,m(θ) and continuity of
�Eθ∗[�0,∞(θ)] have been proved above, so it remains to show the last part of the
proposition.

Note that

Eθ

[
n∑

i=1

ϕ(θ,Zi
i−q+1)

∣∣∣�Yn
0,X0 = x0

]
=

n∑
k=1

�k,0,x0(θ).

Letting m′ → ∞ in Lemma 13 we find that|�k,0,x0(θ) − �k,∞(θ)| ≤ Kk2ρk/2

�Pθ∗-a.s. and hence it is sufficient to prove that

lim
δ→0

lim
n→∞ sup

|θ ′−θ |≤δ

∣∣∣∣∣n−1
n∑

k=1

�k,∞(θ ′) −�Eθ∗[�0,∞(θ)]
∣∣∣∣∣ = 0, �Pθ∗-a.s.

This, however, is Lemma 15.�
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A.3. Proof of Proposition 5. The proof of Proposition 5 closely follows the
proof of Proposition 4. Only the main adaptations from the proof are presented.
We gather in the following lemma some of the required bounds for the conditional
covariance. In the proof of Proposition 5 we will consider for convenienceq = 1,
and we letφθ,i � φ(θ,Zi) and‖φi‖∞ � supθ∈G supx∈X |φ(θ, x,Yi)|.

LEMMA 16. Under the assumptions of Proposition5, for all m′ ≥ m ≥ 0, all
−m < i, j ≤ n, all θ ∈ G and allx ∈ X,∣∣covθ [φθ,i , φθ,j |�Yn−m]∣∣ ≤ 2ρ|i−j |‖φi‖∞‖φj‖∞,∣∣covθ [φθ,i , φθ,j |�Yn−m,X−m = x]∣∣ ≤ 2ρ|i−j |‖φi‖∞‖φj‖∞,∣∣covθ [φθ,i , φθ,j |�Yn−m,X−m = x] − covθ [φθ,i, φθ,j |�Yn−m]∣∣

≤ 6‖φi‖∞‖φj‖∞ρm+i∧j ,∣∣covθ [φθ,i , φθ,j |�Yn−m] − covθ [φθ,i , φθ,j |�Yn+1−m ]∣∣ ≤ 6‖φi‖∞‖φj‖∞ρn−i∨j ,∣∣covθ [φθ,i , φθ,j |�Yn−m,X−m = x] − covθ [φθ,i, φθ,j |�Yn+1−m ,X−m = x]∣∣
≤ 6‖φi‖∞‖φj‖∞ρn−i∨j .

All these relations stem from Corollary 1, Lemma 9, (39) and observations such
as, fori < j ,∣∣�Pθ (Xi ∈ A,Xj ∈ B|�Yn−m,X−m = x)

−�Pθ (Xi ∈ A|�Yn−m,X−m = x)�Pθ (Xj ∈ B|�Yn−m,X−m = x)
∣∣

=�Pθ (Xi ∈ A|�Yn−m,X−m = x)

× ∣∣�Pθ (Xj ∈ B|�Yn−m,Xi ∈ A,X−m = x) −�Pθ (Xj ∈ B|�Yn−m,X−m = x)
∣∣

≤ ρj−i .

Details of the proof are omitted for brevity.
Forx ∈ X define

�k,m,x(θ) � varθ

[
k∑

i=−m+1

φθ,i

∣∣∣�Yk−m,X−m = x

]

− varθ

[
k−1∑

i=−m+1

φθ,i

∣∣∣�Yk−1−m ,X−m = x

]
.

We again follow the pattern of proof consisting of showing that for eachk and
x ∈ X, the sequence{�k,m,x(θ)}m≥0 is a uniform (w.r.t.θ ∈ G) Cauchy sequence
that converges to a limit which does not depend onx.
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LEMMA 17. Under the assumptions of Proposition5 there exists a random
variableK ∈ L1(�Pθ∗) such that, for all k ≥ 1 and0 ≤ m ≤ m′,

sup
x∈X

sup
θ∈G

|�k,m,x(θ) − �k,m(θ)| ≤ K(m + k)3ρ(k+m)/4, �Pθ∗-a.s.,(44)

sup
x∈X

sup
θ∈G

|�k,m,x(θ) − �k,m′,x(θ)| ≤ K(m + k)3ρ(k+m)/8, �Pθ∗-a.s.(45)

PROOF. Let, fora ≤ b, Sb
a � ∑b

i=a φθ,i (the dependence onθ is implicit). The
difference�k,m,x(θ) − �k,m(θ) may be decomposed asA + 2B + C, where

A = varθ [Sk−1
−m+1|�Yk−m,X−m = x] − varθ [Sk−1

−m+1|�Yk−1−m ,X−m = x]
− varθ [Sk−1

−m+1|�Yk−m] + varθ [Sk−1
−m+1|�Yk−1−m ],

B = covθ [Sk−1
−m+1, φθ,k|�Yk−m,X−m = x] − covθ [Sk−1

−m+1, φθ,k|�Yk−m],
C = varθ [φθ,k|�Yk−m,X−m = x] − varθ [φθ,k|�Yk−m].

By applying Lemma 16, it follows that
|A| ≤ 2

∑
−m+1≤i≤j≤k−1

(2× 6ρm+i ∧ 4× 2ρj−i ∧ 2× 6ρk−j−1)

× max−m+1≤i≤j≤k−1
‖φi‖∞‖φj‖∞.

The Cauchy–Schwarz inequality yields

max−m+1≤i≤j≤k
‖φi‖∞‖φj‖∞ ≤

(
k∑

i=−m

‖φi‖∞
)2

≤
k∑

i=−m

(|i| ∨ 1)2
k∑

i=−m

1

(|i| ∨ 1)2‖φi‖2∞(46)

≤ (m3 + k3)

∞∑
i=−∞

1

(|i| ∨ 1)2
‖φi‖2∞,

where the last sum is inL1(�Pθ∗). Furthermore, forn ≥ 0,∑
0≤i≤j≤n

(ρi ∧ ρj−i ∧ ρn−j ) ≤ 2
∑

0≤i≤n/2

∑
i≤j≤n−i

(ρn−j ∧ ρj−i )

≤ 2
∑

0≤i≤n/2

( ∑
i≤j≤(n+i)/2

ρn−j + ∑
(n+i)/2≤j≤n−i

ρj−i

)

≤ 4

1− ρ

∑
0≤i≤n/2

ρ(n−i)/2

≤ 4ρn/4

(1− ρ)(1− ρ1/2)
.
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This shows that|A| is bounded by an expression as in the first part of the lemma.
Similarly we have

|B| ≤ 6
k−1∑

i=−m+1

(ρm+i ∧ ρk−i ) max−m+1≤i≤k−1
‖φi‖∞‖φk‖∞.

For the maximum we can use the bound (46), and for the sum we note that, for
n ≥ 0,

n∑
i=0

(ρi ∧ ρn−i ) = ∑
0≤i≤n/2

ρn−i + ∑
n/2≤i≤n

ρi ≤ 2ρn/2

1− ρ
.

Thus|B| is bounded by an expression as in the first part of the lemma.
ForC we have|C| ≤ 6ρk+m‖φk‖2∞, and the proof of the first part of the lemma

is complete.
The difference�k,m,x(θ) − �k,m′,x(θ) may be decomposed asA + 2B + C +

D + 2E + 2F , where

A = varθ [Sk−1
−m+1|�Yk−m,X−m = x] − varθ [Sk−1

−m+1|�Yk−1−m ,X−m = x]
− varθ [Sk−1

−m+1|�Yk
−m′,X−m′ = x] + varθ [Sk−1

−m+1|�Yk−1
−m′ ,X−m′ = x],

B = covθ [Sk−1
−m+1, φθ,k|�Yk−m,X−m = x] − covθ [Sk−1

−m+1, φθ,k|�Yk
−m′,X−m′ = x],

C = varθ [φθ,k|�Yk−m,X−m = x] − varθ [φθ,k|�Yk
−m′,X−m′ = x],

D = varθ [S−m
−m′+1|�Yk

−m′ ,X−m′ = x] − varθ [S−m
−m′+1|�Yk−1

−m′ ,X−m′ = x],
E = covθ [Sk−1

−m+1, S
−m
−m′+1|�Yk

−m′ ,X−m′ = x]
− covθ [Sk−1

−m+1, S
−m
−m′+1|�Yk−1

−m′ ,X−m′ = x],
F = covθ [S−m

−m′+1, φθ,k|�Yk
−m′ ,X−m′ = x].

Here |A|, |B| and |C| can be bounded as above, using variants of the bounds in
Lemma 16.

Before proceeding, we note that fork ≥ 1, m ≥ 0 and i ≤ 0, the following
implications hold:

if j ≤ (k + i − 1)/2, then(|j | − 1)/2≤ (3k + i − 3)/4− j,

if (k + i − 1)/2 ≤ j ≤ k − 1, then(|j | − 1)/4≤ j + (−k − 3i + 1)/4,

if i ≤ −m, then|i|/8 ≤ (k − 2i − m)/8,

if i ≤ −m, then 3|i|/4 ≤ (k − m)/4− i.
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Using these inequalities, we can bound|D| as

|D| ≤ 2
∑

−m′+1≤i≤j≤−m

(6ρk−1−j ∧ 2× 2ρj−i)‖φi‖∞‖φj‖∞

≤ 12ρ(k+m−2)/8
−m∑

i=−m′+1

ρ(k−2i−m)/8‖φi‖∞

×
( ∑

i≤j≤(k+i−1)/2

ρ(3k+i−3)/4−j‖φj‖∞

+ ∑
(k+i−1)/2<j≤−m

ρj+(−k−3i+1)/4‖φj‖∞
)

≤ 12ρ(k+m−2)/8
∞∑

i=−∞
ρ|i|/8‖φi‖∞

∞∑
j=−∞

ρ(|j |−1)/4‖φj‖∞.

By the assumptions, the right-hand side has the required form.
Similarly,

|E| ≤
−m∑

i=−m′+1

k−1∑
j=−m+1

(6ρk−1−j ∧ 2× 2ρj−i )‖φi‖∞‖φj‖∞

≤ 6ρ(k+m−2)/8
−m∑

i=−m′+1

ρ(k−2i−m)/8‖φi‖∞

×
( ∑

−m+1≤j≤(k+i−1)/2

ρ(3k+i−3)/4−j‖φj‖∞

+ ∑
(k+i−1)/2<j≤k−1

ρj+(−k−3i+1)/4‖φj‖∞
)

≤ 6ρ(k+m−2)/8
∞∑

i=−∞
ρ|i|/8‖φi‖∞

∞∑
j=−∞

ρ(|j |−1)/4‖φj‖∞

and

|F | ≤
−m∑

i=−m′+1

2ρk−i‖φi‖∞‖φk‖∞

= 2ρ(k+m)/4
−m∑

i=−m′+1

ρ(k−m)/4−i‖φi‖∞ρk/2‖φk‖∞
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≤ 2ρ(k+m)/4
−∞∑

i=−∞
ρ3|i|/4‖φi‖∞

−∞∑
j=−∞

ρ|j |/2‖φj‖∞.

The proof is complete. �

Thus{�k,m,x(θ)}m≥0 is a uniform (w.r.t.θ ∈ G) Cauchy sequence�Pθ∗-a.s. and
in L1(�Pθ∗), and{�k,m,x(θ)}m≥0 converges asm → ∞ uniformly w.r.t. θ �Pθ∗-a.s.
and inL1(�Pθ∗) to a random variable�k,∞(θ) ∈ L1(�Pθ∗) which does not depend
onx thanks to (44). By construction,

varθ

[
n∑

k=1

φ(θ,Zl
k−q+1)

∣∣∣�Yn
0,X0 = x0

]
=

n∑
k=1

�k,0,x0(θ),

and the proof of Proposition 5 follows along the same lines as that of Proposition 4.
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