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Abstract: The problem of scale in shape from texture
is addressed. The need for (at least) two scale parame-
ters is emphasized; a local scale describing the amount of
smoothing used for suppressing noise and irrelevant de-
tails when computing primitive texture descriptors from
image data, and an integration scale describing the size
of the region in space over which the statistics of the
local descriptors is accumulated.

A novel mechanism for automatic scale selection is
proposed, based on normalized derivatives. It is used
for adaptive determination of the two scale parameters
in a multi-scale texture descriptor, the windowed second
moment matrix, which is de�ned in terms of Gaussian
smoothing, �rst order derivatives, and non-linear point-
wise combinations of these. The same scale-selection
method can be used for multi-scale blob detection with-
out any tuning parameters or thresholding.

The resulting texture description can be combined
with various assumptions about surface texture in or-
der to estimate local surface orientation. Two speci�c
assumptions, \weak isotropy" and \constant area", are
explored in more detail. Experiments on real and syn-
thetic reference data with known geometry demonstrate
the viability of the approach.

1 Introduction

This paper addresses the problem of scale in shape-
from-texture. Any shape-from-texture method, e.g. [14,
35, 29, 1, 7, 15, 8, 5, 13], must begin by extracting some
description of the image texture. In real-life situations
it is hardly ever possible to know in advance at what
scales to compute these. Size variations of image struc-
tures can occur because a surface texture contains struc-
tures of di�erent physical size, because of artifacts in the
image formation process, and also because of the very
perspective e�ects one is trying to analyze.
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Although (traditional) scale-space theory [36, 17, 2,
37, 20, 18, 10, 23] provides a methodology for handling
such size or scale variations in image data, it does not
address the problem how to select appropriate scales
and structures for further analysis. As a new tool for
approaching this problem, we propose a heuristic prin-
ciple that local extrema over scale of di�erent (possibly
non-linear) combinations of normalized scale-invariant
derivatives are likely to correspond to interesting struc-
tures. We also emphasize the need for and make explicit
use of two di�erent scale parameters in the shape from
texture problem; a local scale describing the amount
of smoothing used for suppressing irrelevant �ne scale
structures when computing non-linear descriptors from
grey-level data, and an integration scale describing the
size of the region in space used for accumulating the
statistics of such local descriptors into entities that can
be used as cues to the structure of the 3D world.

The proposed computational model is expressed com-
pletely in terms of di�erential invariants de�ned from
Gaussian derivatives at multiple scales in scale-space.
This makes it attractive for theoretical analysis and
immediate implementation in a visual front end. In
fact, shape cues can be directly computed from im-
age data using only the following types of retinotopic
operations; (large support) di�usion smoothing, (small
support) derivative computations, and (pointwise) non-
linear combinations of these.

Due to lack of space the presentation is heavily con-
densed; see [25] for an extensive description.

2 Background: Shape from texture

This section reviews the shape-from-texture problem,
and de�nes the multi-scale image descriptor we propose.

2.1 Review of imaging geometry

Following [12], consider the perspective mapping of a
smooth surface S onto a unit viewsphere �. At any point
p on � let (�p; �t;�b) be a local orthonormal coordinate
system with �p as view direction. The tilt direction �t is
parallel to the direction of the gradient of the distance
from the focal point, and �b = �p��t. Denote by F : �! S
the perspective backprojection, and by F�p : Tp(�) !

1



TF (p)(S) the derivative (linear approximation) of F at
any point p on �, where Tp(�) is the tangent plane of
� at p, and TF (p)(S) is the tangent plane of S at F (p).
In TF (p)(S), let �T and �B be the normalized images of
�t and �b respectively. In the bases (�t;�b) and ( �T ; �B) the
expression for F�p is

F�p =

�
r= cos� 0

0 r

�
=

�
1=m 0
0 1=M

�
; (1)

where r = jjF (p)jj is the distance along the visual ray
from the center of projection to the surface (measured in
units of the focal length) and � is the slant of the surface.
The inverse eigenvalues of F�p, m < M , describe how a
unit circle in TF (p)(S) is transformed when mapped to
Tp(�) by F�1

�p ; it becomes an ellipse with m as minor

axis (parallel to �t) and M as major axis (parallel to �b).
If the local linearized transformation F�p can be es-

timated (up to certain scale factors) from the local im-
age structure, it can then be directly interpreted in
terms of surface properties. For example, foreshorten-
ing m=M = cos � provides direct information about
surface orientation, and the normalized area gradient
r(mM )=(mM ) can be shown to encode both surface
orientation and curvature.

When image data are given in a planar image �
rather than on the viewsphere �, F�p can nevertheless
be computed from the derivative A�q = F�pG�q of the
composed mapping A = F � G, since the derivative of
G : �; q! �; p is known if the camera geometry is.

2.2 De�nition of image texture descriptor

Let L(x; y) be the image brightness, and let rL =
(Lx; Ly)T be its gradient. Given a symmetric and nor-
malized window function w, a useful image texture de-
scriptor is the windowed second moment matrix [25],

�L(q) =

Z
x2R2

(rL(x))(rL(x))T w(q � x) dx; (2)

where q 2 � denotes the image point where it is com-
puted (compare with [11, 8, 5, 4, 31, 33, 12, 13]). From
its components, �ij = Eq(LxiLxj ) (where Eq represents
the operator corresponding to (2)), introduce

P = Eq(L
2
x + L2

y); C = Eq(L
2
x � L2

y); S = 2Eq(LxLy);

as well as the two derived (anisotropy) measures

Q =
p
C2 + S2; ~Q = Q=P: (3)

It can be shown [25] that �L(q) is a well-de�ned (coor-
dinate independent) di�erential geometric entity in the
image domain. It is invariant to translations, and has a
nice behaviour with respect to uniform rescalings in the

spatial domain and a�ne brightness transformations.
Although the matrix itself is not invariant to rotations,
its eigenvectors, (�e1; �e2), and eigenvalues, �1 � �2, are.

�1;2 = P � Q = P (1 � ~Q): (4)

The vector (C; S)T is the average of all gradient vec-
tors mapped to the double angle [27, 16] and weighted
by the gradient magnitude squared multiplied by the
window function. The direction of arg(C; S)T=2 is par-
allel to �e1 and represents the unsigned average direc-
tion of the weighted gradient distribution. The nor-
malized anisotropy ~Q 2 [0; 1]; it holds that ~Q = 0 i�
Eq(L

2
x) = Eq(L

2
y) and Eq(LxLy) = 0, while ~Q = 1 i�

(Eq(LxLy))
2 = Eq(L

2
x)Eq(L

2
y). For example, a rotation-

ally symmetric pattern has ~Q = 0, while ~Q = 1 for a
translationally symmetric distribution. Rotational sym-
metry is, however, not necessary in order to give ~Q = 0;
e.g., any pattern with N � 2 uniformly distributed (un-
signed) directions satis�es ~Q = 0.

2.3 Linear transformation property

Under an invertible linear transformation of the image
domain � = B�, where B : R2 ! R

2 and �; � 2 R
2, it

can be shown that if a transformed intensity pattern R
is de�ned by L(�) = R(B�), then �L(q) transforms as

�L(q) = BT �R(p)B; (5)

where �R(p) is the second moment matrix of R at p =
Bq computed with respect to the \backprojected" nor-
malized window function w0(��p) = (detB)�1w(��q).

2.4 Deriving shape cues from image data

The importance of the second moment matrix with re-
spect to shape-from-texture analysis can be realized
from its transformation property under the linearized
perspective mapping F�p. With B = A�q (5) gives

�L(q) = GT
�q F

T
�p �S(F (G(q)))F�pG�q; (6)

where p = G(q) and �S(F (G(q))) denotes the second
moment matrix de�ned in the tangent plane to the
surface with respect to the window function w0(� �
F (G(q))) = (detA�q)�1w(��q). The general procedure,
then, for estimating shape from texture is to combine es-
timates of �L(q) with assumptions about the structure
of the surface brightness pattern �S(F (G(q))) in order
to infer the structure of A�q . This permits computation
of F�p after compensation with respect to G�q.

A simple but often fruitful assumption is that
�S(F (p)) is proportional to the unit matrix ( ~Q = 0).
Such a distribution is called weakly isotropic. Under this
condition and if F�p is non-degenerate, � in Tp(�) can
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be written ��(p) = c FT
�p F�p for some c > 0. Hence,

the eigenvectors of ��(p) and F�p are the same, and the
eigenvalues of F�p are proportional to the square roots
of the eigenvalues of ��(p). In particular, �t = ��e1 and

cos � =
m

M
=

r
�2
�1

=

s
1� ~Q

1 + ~Q
; (7)

which gives a direct estimate of local surface orientation
if the assumption of weak isotropy can be justi�ed.

A less restrictive assumption is constant area. If the
local \size" of the surface texture elements does not vary
systematically, then A = 1=

p
det � is an area measure

(since detF�1
�p = mM ). The normalized area gradient

de�ned from it relates to surface orientation by

rA�(p)

A�(p)
= � tan�

�
3 + r�t= cos�

r�

�
; (8)

where �t is the normal curvature of the surface in the
tilt direction, and � is the geodesic torsion in the same
direction. From this entity surface orientation can be
recovered if the curvature is known or (assumed to be)
small. There is no ambiguity in the sign of the tilt di-
rection, unlike the previous case of foreshortening.

3 Scale problems in texture analysis

Computation of the image second moment matrix,
or any other non-trivial texture descriptor, involves
the integration of the image directional statistics over
�nite-sized local image neighborhoods. This immedi-
ately leads to two fundamental scale problems.

First, the image statistics must be collected from a
region large enough to be representative of the texture.
Yet, the region must not be so large that the local lin-
ear approximation of the perspective mapping becomes
invalid. For example, for an ideal texture consisting of
isolated blobs, a lower limit for the extent of the integra-
tion region is determined by the size of the individual
blobs, while an upper limit may be given by the cur-
vature of the surface or interference with other nearby
surface patches. This scale controlling the window func-
tion is referred to as integration scale (denoted s).

Moreover, the image statistics must be based on de-
scriptors computed at proper scales, so that \irrele-
vant" image structures, e.g. due to noise, can be sup-
pressed. In the method above, which is based on �rst
order spatial derivatives of the image brightness, it is
obvious that useful results can hardly be expected if
the derivatives are computed directly from unsmoothed
noisy data. This scale determining the amount of initial
smoothing is referred to as local scale (denoted t).

3.1 Basic idea for scale selection

Given a 2D signal f , the scale-space representation L is
de�ned as the solution to the di�usion equation

@tL =
1

2
r2L =

1

2
(@xx + @yy)L (9)

with initial condition L(�; 0) = f(�), or equivalently, by
convolution with the Gaussian kernel L(�; t) = g(�; t) �
f(�), where g(x; y; t) = (2�t)�1 exp(�(x2+y2)=(2t)). A
well-known property of this representation is that the
amplitude of spatial derivatives

Lxiyj (�; t) = @xiyjL(�; t) = gxiyj (�; t) � f(�) (10)

in general decrease with scale. As an example of this
consider, say, a sinusoidal input signal of some given
frequency !0; for simplicity in one dimension, f(x) =
sin!0x, for which the solution to the (1D) di�usion
equation is L(x; t) = exp(�!2

0t=2) sin!0x. The am-
plitude Lxi;max of any ith order smoothed derivative
decreases exponentially with scale

Lxi;max(t) = !i0 e
�!2

0
t=2: (11)

An alternative formulation of the scale-space concept
is in terms of normalized (dimensionless) coordinates,
� = x=

p
t. One motivation for introducing such coordi-

nates is scale invariance [10]. In these coordinates the
normalized (dimensionless) derivative operator is

@� =
p
t @x: (12)

For the sinusoidal signal the amplitude of a normalized
derivative as function of scale is given by

L�i;max(t) = ti=2 !i0 e
�!2

0
t=2; (13)

i.e., it �rst increases and then decreases. It assumes a
unique maximum at tmax;L

�i
= i=!2

0. Introducing �0 =

2�=!0 shows that the scale value (measured in
p
t) for

which L�i;max(t) assumes its maximum is proportional
to the wavelength, �0, of the signal:

p
tmax;L

�i
=

p
i

2�
�0: (14)

Observe that the maximum value

L�i;max(tmax;L
�i
) = ii=2 e�i=2 (15)

is independent of the frequency of the signal (see Fig-
ure 1). In other words, for these normalized derivatives
it holds that sinusoidal signals are treated in a similar
(scale invariant) way independent of their frequency.

Note the fundamental di�erences compared to a local
Fourier transform; (i) the normalization factor, and (ii)
this method allows for local estimates of the frequency
content without any explicit setting of window size.
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Figure 1: The amplitude of �rst order normalized deriva-
tives as function of scale for sinusoidal input signals of dif-
ferent wavelengths (!1 = 0:5, !2 = 1:0 and !3 = 2:0).

3.2 Proposed method for scale selection

As shown above, the scale at which the normalized
derivative assumes its maximum in the case of a sinu-
soidal signal is proportional to the wavelength of the
signal. We now propose to generalize this observation
to more complex signals, leading to the following heuris-
tic principle: In the absence of other evidence, a scale
level at which some (possibly non-linear) combination of
normalized derivatives assumes a local maximum can be
treated as a characteristic dimension of a correspond-
ing structure contained in the data. This principle is
similar although not equivalent to the parameter varia-
tion method in [21, 22], where interesting scale levels are
determined from maxima over scales of a (normalized)
blob measure.
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2
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Figure 2: Scale-space signatures of the pointwise normal-
ized gradient magnitude and the determinant of the second
moment matrix for two details of a sunower image; (left)
grey-level image, (middle) signature of jjrnormLjj

2

2, (right)
signature of det �L. Observe that the maxima in the top row
are attained at �ner scales than in the bottom row.

Figure 2 illustrates the variation over scale of two sim-
ple measures formulated in terms of normalized spatial
derivatives and computed at two di�erent points; �rst,

the scale variation of the normalized square of the gra-
dient magnitude, jjrnormLjj22, and second, the determi-
nant of �L(q). These graphs are called the scale-space
signatures of the entities considered.

Clearly, the maxima over scales in the top row of
Figure 2 are obtained at �ner scales than in the bot-
tom row. An examination of the ratio between the scale
levels where the graphs attain their maxima shows that
this value is roughly equal to the ratio of the sizes of the
sunowers in the centers of the two images respectively,
as predicted by the heuristic principle.

It should be pointed out that this principle for scale
selection is not restricted to texture analysis; see [24]
for further applications to junction detection and edge
detection.

3.3 Properties of the selection method

We will now describe some properties of the scale selec-
tion heuristic for slightly more complex signals. A more
extensive treatment is given in [25].

Consider �rst a sum of two parallel (2D) sine waves.
fpar(x; y) = sin!1x+ sin!2x, where !1 � !2. It is easy

to show that for both jjrnormLjj22 and trace �L there is a
unique scale maximumwhen !2=!1 is close to one, while
there are two scale maxima for su�ciently large !2=!1
(!bifurc � 2:4). A similar result holds for two orthogonal
waves, forth(x; y) = sin!1x + sin!2y. If the latter sig-
nal is interpreted as the orthographic projection of an
isotropic pattern with foreshortening � = !1=!2, then
the interpretation is that the response changes from one
to two peaks at slant �bifurc = arccos(1=!bifurc) � 65�.

The determinant of the windowed second moment
matrix, det �L, behaves somewhat di�erently; it is iden-
tically zero for fpar , while there is always a unique peak
in forth.

More generally, for an isotropic pattern (with ~Q =
0, or equivalently, �1 = �2) the scale maxima of
trace �L and det�L coincide. This is easily proved from
trace �L = �1 + �2 = 2�1 and det�L = �1�2 = �21,
which gives @t det�L = 0, @t trace �L = 0.

For a unidirectional pattern (with ~Q = 1, or equiva-
lently, �2 = 0) det�L is identically zero, while trace �L
is non-zero. Hence, det�L only responds when there are
signi�cant variations along both the coordinate direc-
tions, typically for blob-like signals.

More importantly, the scale maxima of det�L are
invariant1 with respect to linear (and a�ne) transfor-
mations of the image coordinates. Given an invertible
linear transformation L(�) = R(B�) it follows from (5)

1Here, it is assumed that L represents an unsmoothed signal
and that the scale maximum occurs at zero scale. This restriction
is, however, not essential. In [25] it is shown how this result can
be extended to strictly positive scales in scale-space.
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that det �L = (detB)2 det�R, which gives @t det �L =
0, @t det�R = 0.

The behaviour of the normalized derivatives can
be understood also in the context of signals having a
dense Fourier spectrum. For a signal f with a (fractal)

power spectrum �f = f̂ f̂� = j!j�2� it follows from
Plancherel's relation that Pnorm(�; t) = t (E(L2

x(�; t))+
E(L2

y(�; t))) � t��1. This expression is independent of
scale if and only if � = 1. In other words, in the 2D case
the normalized derivative model is neutral with respect
to power spectra of the form j!j�2.

Further properties are analysed in [25]. It is shown
that when using a Gaussian window function with in-
tegration scale s proportional to the local scale t, i.e.,
s = 21 t, the sensitivity of the selected scale levels and
the average gradient magnitude at that scale is for a pe-
riodic sine wave signal proportional to exp(�221 ). The
sensitivity is higher for a (Gaussian) blob model.

3.4 Uniqueness of the window function

A natural window function to use in (2) is a Gaus-
sian function. It is rotationally symmetric and has a
nice scaling behaviour, which means that the invariance
properties in Sec. 2.2 are preserved. More importantly,
however, then and only then, the components of �L con-
stitute scale-space representations of the components of
(rL)(rL)T . This is a direct consequence of the unique-
ness of the Gaussian kernel for scale-space representa-
tion given natural front-end postulates (e.g., causality
[17], or scale invariance [10]). In the rotationally sym-
metric case, this de�nition is therefore unique:

�L(�; t; s) = g(�; s) � ((rL)(�; t) (rL)(�; t)T ): (16)

Of course, separate smoothing of the components of a
multi-dimensional entity is not guaranteed to give well-
de�ned (coordinate independent) results. In [25] it is,
however, proved that (16) is a meaningful operation.

4 Methodology for computing �L

Computation of the windowed second moment matrix
�L requires selection of both the local scale t and the
integration scale s. In its most general form, the adap-
tive scheme we propose for setting these scales can be
summarized as follows. Given any point in the image;

1. vary the two scale parameters, the local scale t and
the integration scale s, according to some scheme;

2. accumulate the scale-space signature for some (nor-
malized) di�erential entity;

3. detect some special property of the curve, e.g. the
global maximum, or all local extrema, etc;

4. set the integration scale(s) from the scale(s) where
the above property is assumed;

5. compute �L at this �xed integration scale while
varying the local scale between a minimum scale,
e.g. t = 0, and the integration scale, and then se-
lect the most appropriate local scale(s) according
to some criterion.

Our speci�c implementation of this general scheme is
described below.

Scale variation. A completely general implementa-
tion of Step 1 would involve a full two-parameter scale
variation. Here, a simpler but quite useful approach is
used; the integration scale is set to a constant times
the local scale, s = 21 t (typically 1 = 2). In light of
the scale selection heuristic, this scale invariant choice
means that the size of the integration region is propor-
tional to the characteristic length of the local smoothing
kernel. For example, in the case of periodic patterns, this
implies that the size of the integration region at each
local scale is proportional to the wavelength for which
the normalized �rst derivative at that scale would give
a maximum response.

Selecting integration scales. Concerning Steps 2{
3, we propose to set the integration scale(s) from the
scale(s), denoted sdet �L , where the normalized strength
of �L, represented by det �L, assumes a local or global
maximum. This choice is motivated by the observation
that for both simple periodic and blob-like patterns, the
signature of det�L has a single peak reecting the char-
acteristic size (area) of the two-dimensional pattern.

Once sdet�L has been determined, it is advantageous
to compute �L at a slightly larger integration scale
s = 22 sdet�L = 21

2
2 tdet�L (typically 2 = 2), in order

to obtain a more stable descriptor. More formally, this
can be motivated by the fact that the estimates of the
directional information in �L are more sensitive to small
window sizes than are the magnitude estimates [25].

Selecting local scales. The second stage selection of
local scale in Step 5 aims at reducing the shape dis-
tortions due to smoothing. We propose to set the lo-
cal scale(s) to the scale(s), denoted tQ, where the nor-

malized anisotropy, ~Q, assumes a local maximum. This
is motivated by the fact that in the absence of noise
and interfering �ner scale structures, the main e�ect
of the �rst stage scale-space smoothing is to decrease
the anisotropy, and it therefore leads to a systematic
underestimate of slant; e.g., for the orthographic pro-
jection f(x; y) = g(x; l21) g(y; l22) of a Gaussian blob
(l2 = l1 cos �), the slant estimate varies as �(t) =
arccos((l22+t)=(l21+t))1=2. On the other hand, suppress-
ing (uniformly distributed) noise and interfering �ner
scale structures increases the anisotropy. Selecting the
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Figure 3: Scale-space signatures of det�L and ~Q (accumu-
lated at the central point) for a synthetic texture with added
(white Gaussian) noise of standard deviation � = 1:0 (top
row), 10.0 (middle row), and 100.0 (bottom row). The range
of grey-levels is [0::255]. The columns show; (left) grey-level
image with noise, (middle) signature of det �L, and (right)
signature of ~Q.

noise 1.0 noise 10.0 noise 100.0

Figure 4: Ellipses representing �L computed at di�erent
spatial points using automatic scale selection of the local
scale and the integration scale | note the stability with
respect to variations of the noise level.

noise 10.0 non-adaptive smoothed image

Figure 5: Typical example of the result of using non-
adaptive selection of the (here constant) local and integra-
tion scales | geometrically useful shape descriptors are ob-
tained only in a small part of the image.

maximumpoint gives a natural trade-o�. Note that un-
der the assumption of weak isotropy a maximum in ~Q
is equivalent to a maximum in �.

Experiments. Fig. 3 illustrates these e�ects for a
synthetic image with di�erent amounts of noise. Note
that the scale-space signature of det �L has a unique
maximum when the noise level, �, is small, and two
maxima when � is increased. Table 1 gives numerical
values using the proposed method for scale selection.
Notice the stability of sdet�L with respect to noise. tQ
increases with �, while ~Q decreases at t = 0. The accu-
racy in the orientation estimate assuming weak isotropy
is presented by the 3D angle ��n between the estimated
and true surface normal. Fig. 4 illustrates these results
graphically, by ellipses representing the second moment
matrices, with the size rescaled to be proportional to
sdet�L . As a comparison Fig. 5 displays a typical result
of using non-adaptive (globally constant) scale selection.
Here, useful shape descriptors are only obtained in a
small part; the window size is too small in the lower part,
while the �rst stage smoothing leads to severe shape dis-
tortions in the upper part.

noise level sdet�L tQ ��n(tQ) ��n(t = 0)
1.0 34.9 0.0 0:2� (0:2�)
10.0 34.4 2.0 1:1� (15:3�)
31.6 34.1 4.2 4:7� (45:3�)
100.0 31.4 8.5 7:8� (53:7�)

Table 1: Numerical values of characteristic entities in the
experiments in (the center of) Fig. 3 using di�erent amounts
of additive Gaussian noise and automatic scale selection.

5 Spatial selection and blob detection

Although the above method for selecting appropriate
scales for smoothing and integration at a given point
has been demonstrated to give highly useful results on
di�erent types of real and synthetic images [25], it has
obvious limitations if applied (blindly) to regions con-
taining little or no image structure. Now, the comple-
mentary problem of selecting where to apply the multi-
scale analysis will be addressed.

The scale selection principle can be easily extended
to spatial selection by selecting points (x; y) and scales
t that are local maxima with respect to both scale and
spatial position. Such points are called normalized scale-
space extrema of the di�erential entity considered.

Even though det�L can be useful also for spatial se-
lection, it can be desirable to use an entity based on
second order derivatives (which typically gives rise to
spatial maxima at blob centers) in contrast to �rst or-
der derivatives (which are zero at extrema). We have
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considered the squared trace and the determinant of
the normalized Hessian matrix, HnormL. For a non-
uniform Gaussian blob g(x; l21) g(y; l

2
2), the scale max-

ima are assumed at tdet�L = l1l2=(1 + 221)
1=2 and

tdetHnormL = l1l2. (The expressions for the correspond-
ing trace-based entities are more complicated although
qualitatively similar when l21 � l22). Observe that tmax

gives a natural measure of the area of the blob. In prac-
tice, a second stage smoothing step with s = 21 t is
applied to traceHnormL and detHnormL before the ex-
trema detection (this is not an essential step, but only
a simple way to suppress less signi�cant maxima).

The second column in Fig. 6 shows results of applying
this method to real and synthetic images. Every scale-
space maximum is illustrated by an ellipse representing
�L computed with integration scale s = 21

2
2 tmax and

local scale determined from Step 5 in Sec. 4. Note the
ability of the method to zoom in to di�erent scales, and
how well the computed ellipses describe the blobs in the
image, considering how little information is used in the
processing. This multi-scale blob detector has obvious
limitations compared to other approaches [34, 7, 22],
since it only represents the shape of each blob by a
second moment matrix. However, we propose that it
is well suited as a pre-processing step for the shape-
from-texture estimation since it produces precisely the
information needed for estimating local linear distortion
and size changes.

6 Estimating surface orientation

The theory developed in the previous sections will now
be applied to the problem of estimating local surface
orientation in perspective images of textured surfaces.
The methodology can be summarized as follows:

Step 1. Compute local texture descriptors �L as de-
scribed in Sec. 4. This can either be done at selected spa-
tial positions corresponding to normalized scale-space
extrema as described in Sec. 5, or at a uniform grid of
points generated by some default principle.

Step 2. Determine points where surface orientation
estimates are to be computed. This set of points can
be the same as that used for computing the texture
descriptors, or it can be smaller, e.g. a uniform grid.
Associate with each point a (Gaussian) window that
speci�es the weighting of the texture descriptors in the
neighborhood of the point. The scale of this window
function will be referred to as the texel grouping scale2.

2From the semi-group property of Gaussian smoothing it fol-
lows that �L at a coarse scale can be computed from �L at any
�ner scale by �L(�; t; s2) = g(�; s2 � s1) � �L(�; t; s1).

Step 3. Estimate surface orientation. (a) Apply the
assumption of weak isotropy , which leads to a direct es-
timate of surface orientation up to the sign of tilt. (b)
Apply the assumption of constant area, which permits
a unique estimate of surface orientation if the curvature
can be neglected in (8). (In practice, the blob area is
measured from the scale at which the scale-space max-
imum is assumed; compare with the analytical results
in Sec. 5.) (c) Optionally, compute surface orientation
estimates from other texture gradients [12] as well.

Experiments. Fig. 6 shows results of applying this
composed method to images with known and unknown
camera geometry. For the synthetic planar sine wave
image (true orientation at center (�; �) = (60:0�; 90:0�),
noise 1:4%) the foreshortening and area gradient esti-
mates are very accurate, (60:7�; 90:1�) and (61:6�; 89:0�)

respectively. For the synthetic image of the curved cylin-
der (true orientation (55�; 90�), noise 25%) the esti-
mate from foreshortening gives (56:8�; 90:4�), while the
area gradient underestimates slant (36:2�; 86:1�), since
the curvature is non-zero (compare with (8)). For the
real (planar) wall-paper image, foreshortening gives
(47:9�; 84:6�) and the area gradient (51:4�; 76:6�) to be
compared to the reference value (50:8�; 85:3�) computed
by stereo correspondence.

Finally, for the sunower image [7] the camera geom-
etry is unknown, so the area gradient is represented by
a set of lines determining the horizon (which is indepen-
dent of the focal length). Note that for this image the
weak isotropy assumption gives the orientation of the
individual owers, while the constant area assumption
reects the orientation of the underlying surface.

7 Summary and discussion

This paper addresses the shape-from-texture problem
from a general standpoint. Results from previous and
new theories are combined and extended into a frame-
work that, in fact, models all the steps in the computa-
tion of local slant and tilt information from raw grey-
level data. The method is general in the sense that the
description stage is decoupled from any speci�c assump-
tions about the type of texture considered; in fact, all
such choices are postponed to the interpretation stage,
where di�erent assumptions can be selected depending
upon the type of situation.

Concerning limitations of the work, the genuine two-
parameter scale variation has so far not been imple-
mented in the selection of integration scale. The current
implementation gives best results when either the tex-
tures are approximately periodic, the relative integra-
tion scale is known (given by 1 and 2), or the image
contains relatively distinct blob-like structures.
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Multiple scale maxima and coherent surfaces.

In the experiments only the most dominant scale was
selected at each point, but it is clearly desirable to be
able to handle patterns containing structures at mul-
tiple scales. Moreover, the experiments primarily con-
cerned local (or regional) estimation of surface orien-
tation; some mechanism is needed for combining such
(agreeing and conicting) slant and tilt estimates com-
puted at di�erent points into hypotheses about coherent
surfaces.

Non-uniform smoothing. In the treatment above
uniform (rotationally symmetric) smoothing has been
used throughout. This is motivated by the principle that
in the absence of any a priori information, the vision sys-
tem should be as uncommitted as possible, and, for ex-
ample, have no preferred directions. It is clear, however,
that such uniform smoothing leads to shape distortions
(compare with Sec. 4; see also [32]).

Given initial slant and tilt estimates (�̂; �̂) computed
by uniform smoothing, a straightforward compensation
technique is to let the scale parameters in the (esti-
mated) tilt direction, tt̂ and st̂, and the perpendicular
direction, tb̂ and sb̂, be related by tt̂ = tb̂ cos

2 �̂ and
st̂ = sb̂ cos

2 �̂. If, say, under the assumption of weak
isotropy, this estimate is correct, then the slant estimate
will be una�ected by this non-uniform smoothing. Ap-
plying (one iteration) of this method to the experiment
in Table 1 gives that at noise levels 10:0, 31:6 and 100:0,
the slant estimates change from 58:9� to 59:9�, from
55:3� to 61:1�, and from 52:3� to 62:9� respectively (the
reference value is 60�). It is not argued that this method
describes any \optimal" way to reduce the shape dis-
tortions. The intention is rather to demonstrate that
shape adaption of the smoothing kernels can be per-
formed within this framework. A formal description in
[25] shows that the entire shape-from-texture method
becomes invariant with respect to the locally linearized
perspective mapping. Incidentally, this provides an alter-
native way to de�ne anisotropic di�usion [30].

Active vision. The e�ect of the smoothing operation
is closely related to the issue of view direction. Ideally,
in noise free and unsmoothed data it should be su�-
cient to compensate �L computed at a peripheral point
q using (6) and the (known) gaze transformation G�q.
However, the isotropic smoothing in the at image and
the use of non-in�nitesimal integration domains lead to
non-linear e�ects not covered by this. A natural solution
is to map the intensity to the viewsphere, and perform
the di�usion there in order to obtain invariance with
respect to view direction. In an active vision situation,
however, the situation can also be improved by redi-
recting the camera towards the point of interest, since
then the peripheral perspective e�ects are as smallest,

and symmetric around the point considered. Note that
under the weak isotropy assumption the slant and tilt
estimates at the central point are independent of the
focal length.
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