
Remark

This document contains chapter 8 from Lindeberg: Scale-Space Theory

in Computer Vision. This material constitutes a revised presentation of
\Scale-space behaviour of local extrema and blobs" �rst published in
Journal of Mathematical Imaging and Vision, vol. 1, pp. 65{99, 1992.
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Behaviour of image structures in

scale-space: Deep structure

The treatment so far has been mainly concerned with the formal de�nition
of the scale-space representation and the de�nition of image descriptors
at any single scale. A complementary problem concerns how to relate
structures at di�erent scales. This subject has been termed deep struc-
ture by Koenderink (1984). When a pattern is subjected to scale-space
smoothing, its shape changes and may be distorted. For example, features
like local extrema, edges, blobs, etc. can be expected to drift when the
underlying grey-level image is subject to blurring. More generally, transi-
tions between objects of qualitatively di�erent appearance may also take
place. This gives rise to the notion of dynamic shape, which as argued by
Koenderink and van Doorn (1986) is an essential component of any shape
description of natural objects.

Aspects of these phenomena have been studied by several authors
from di�erent viewpoints. Canny (1986) discussed the general trade-o�
problem between detection and localization occurring in edge detection.
Bergholm (1987) estimated the drift velocity of edges for a set of plausible
con�gurations with the aim of estimating a step size for scale changes in
the edge focusing algorithm. Berzins (1984) analyzed the localization error
for zero-crossings of the Laplacian of the Gaussian.

Other kinds of phenomena a�ecting the topology may also occur. As
developed by Koenderink and van Doorn (1986), blobs can disappear,
merge, and split. Similar transitions apply to edges, zero-crossings of the
Laplacian, corners, etc. Such events are usually called bifurcations.

In this chapter we shall study critical points, that is, local extrema and
saddle points, and investigate in detail what happens to those features
when an image undergoes scale-space smoothing. We shall

� develop how these feature points can be expected to behave when
the scale parameter in scale-space changes,

� derive an expression for their drift velocity,

� classify their behaviour at bifurcation situations into a discrete set
of generic situations, and
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� give a coarse estimate to the global problem of how the number of
local extrema in a signal can be expected to vary with scale.

The results that will be derived are not based on any speci�c models for
the intensity variations in the image but are generally valid under rather
weak a priori assumptions. Although the results will be expressed in a
general form, the primary intention with the study is to provide a further
theoretical basis of the scale-space primal sketch concept developed in
chapter 7. In this context, the results to be presented will �nd their main
application in

� the formal construction and de�nition of the primitives (scale-space
blobs) in the scale-space primal sketch. The scale-space blobs are
de�ned as families of grey-level blobs, which in turn are directly
determined by pairs of critical points. This treatment allows for
precise mathematical de�nitions of those concepts.

� providing a theoretical basis for the linking algorithm necessary
when computing the representation.

� giving further motivations for the normalization process with re-
spect to \expected scale-space behaviour," which is necessary when
de�ning the signi�cance measures of the scale-space blobs.

In other words, we shall try to explain what happens when scale changes
in scale-space, especially with application to the scale-space primal sketch.
Therefore, special attention will be given to the primitive objects of
that representation, i.e. the grey-level blobs and scale-space blobs. The
methodology of analysis is, however, general and can be applied to, for ex-
ample, any features that can be expressed as zero-crossings of di�erential
expressions (di�erential singularities).

Before starting, let us point out that some of the results to be pre-
sented are (at least partly) known or touched upon before, see e.g., Koen-
derink (1984, 1990), Koenderink and van Doorn (1986), and Clark (1988).
Bifurcations in scale-space have also been studied by Johansen et al.
(1986), who have shown that a band-limited one-dimensional signal up
to a multiplicative constant is determined by its \top points," that is the
points in scale-space where bifurcations take place. A work by Johansen
(1993) extends the analysis in an earlier version of this presentation (Lin-
deberg 1991, 1992) with a di�erential geometric study of trajectories of
critical points in scale-space.

The purpose of this treatment is to develop systematically and com-
prehensively what can be said about the behaviour in scale-space of crit-
ical points using elementary mathematical techniques and to convey an
intuitive feeling for the qualitative behaviour in the di�erent generic cases.
Detailed calculations will also be given showing the behaviour of blobs in
a set of \characteristic examples."
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8.1. Trajectories of critical points in scale-space

In many situations it is of interest to estimate the drift velocity of critical
points when the scale parameter varies. Such information is useful, for
instance, when estimating the localization error of feature points due to
scale-space smoothing, or when tracking local extrema or related entities
across scales. In non-degenerate situations, that is when the second di�er-
ential is a non-degenerate quadratic form, such an analysis can be based
on the implicit function theorem.

Definition 8.1. (Critical point) A point x0 2 RN is a critical point
of a mapping f : RN ! R if the gradient at this point

(rf)(x0) =

0
B@

@x1f
...

@xN f

1
CA
�������
x0

(8.1)

is zero. The critical point is said to be non-degenerate if the Hessian
matrix in this point

(Hf)(x0) =

0
B@

@x1x1f : : : @xNx1f
...

. . .
...

@x1xN f : : : @xNxN f

1
CA
�������
x0

(8.2)

is non-singular. Otherwise it is said to be degenerate.

Lemma 8.2. (Behaviour of critical points in scale-space)
Let L : RN�R+ ! R be the scale-space representation of an N -dimensional
continuous signal given by the di�usion equation (2.27), and assume that
at some scale level t0 > 0 a point x0 2 R is a non-degenerate critical point
for the mapping x 7! L(x; t0).

Then, there exist an open set S(x0; t0) � RN �R+ and an open inter-
val It0 � R+ with (x0; t0) 2 S(x0; t0) and t0 2 It0 having the following
property: To every t1 2 It0 there corresponds a unique x1 2 RN such
that (x1; t1) 2 S(x0; t0) and x1 is a non-degenerate critical point for the
mapping x 7! L(x; t1).

If this x1 is de�ned to be r(t1), then r is a continuously di�erentiable
mapping It0 ! RN such that

� r(t0) = x0,

� r(t1) is for every t1 2 It0 a non-degenerate critical point for the
mapping x 7! L(x; t1).

� the derivative of r with respect to t in the point x0 is given by

@tr(t0) = �1
2
(HL)(x0)�1

(r2(rL))(x0): (8.3)
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Proof. The result follows easily by applying the implicit function theorem
to the gradient function. The standard version of the implicit function
theorem (Rudin 1976) basically gives that there exists a path r : It0 ! RN

of critical points, and that the derivative of r is

@tr(t0) = �(HL)(x0)�1
(@t(rL))(x0): (8.4)

Then, the fact that L satis�es the di�usion equation can be used for
replacing derivatives of L with respect to t by derivatives of L with respect
to the spatial coordinates in order to arrive at (8.3). Since the Hessian
(HL)(r(t)) along this path is a continuous function of t, it follows that
r(t) will remain non-degenerate provided that the initial point x0 is non-
degenerate, and It0 is selected as a su�ciently short interval. �

8.1.1. Interpretation: Drift velocity estimates

This lemma expresses how critical points in general can be expected to
behave in scale-space. One of the most immediate interpretations is that
(8.3) gives a straightforward estimate of the drift velocity of critical points
under scale-space smoothing.

This estimate can also be extended to comprise edges. For simplicity,
assume that the edge under study is su�ciently long and su�ciently close
to a straight line such that a one-dimensional analysis is a valid approx-
imation. Further, without loss of generality, assume that the coordinate
system is oriented such that the edge is perpendicular to the x1-axis.
Then, use non-maximum suppression to de�ne the location of the edge
as those points where the gradient magnitude (here the x1-derivative)
assumes a maximum along the gradient direction (here the x1-direction).
In other words, edge points are de�ned as those points where the second
derivative along the gradient direction is zero. Now, since under these
conditions, critical points are given by zeros in the �rst derivative and
edge points by zeros in the second derivative, the one-dimensional ver-
sion of (8.3) can be applied just by replacing L by Lx1 . Hence, the drift
velocity in the direction perpendicular to a straight edge is

@tr(t0) = �1

2

Lx4
1
(x0; t0)

Lx3
1
(x0; t0)

: (8.5)

A similar idea, although based on an approximate derivation, has been
expressed by Zhuang and Huang (1986).

This analysis is applicable also to edges given by zero-crossings of the
Laplacian, provided that the second derivative along the edge direction
(here the x2-direction) is su�ciently small to be neglected. Trivially, an
identical result holds for edges of one-dimensional signals. Observe that
there are no speci�c assumptions about the shape of the intensity pro�le
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perpendicular to the edge. Hence, the result is valid for any con�guration
that can be described by a one-dimensional analysis.

In particular, it means that the drift velocity may tend to in�nity
when two adjacent parallel edges are just about to merge into one. This
result can, for example, be used for explaining an observation by Zhang
and Bergholm (1991), who noted that con�gurations consisting of two
adjacent edges (so-called \staircase edges"; see �gure 8.1) can lead to a
rapid edge drift when the scale parameter changes, which in turn violates
the assumptions behind the estimate of the scale step used in the edge
focusing algorithm (Bergholm 1987). In such situations the third deriva-
tive is in fact very close to zero. A more general analysis of curved edges
is given in section 8.6.

Figure 8.1. (a) A \staircase edge" can lead to a rapid edge drift. This be-
haviour can be explained by noting that (b) after su�cient amount of blurring
the con�guration will tend to a \di�use step edge" as well as by studying the
derivatives of (c) the original signal, and (d) the signal after strong smoothing.
(e) By considering the paths the zero-crossings of the Laplacian describe as scale
changes it is easy to realize that when the edge points tend to each other the drift
velocity will tend to in�nity. See also section 8.5 for a more detailed description
of the behaviour at bifurcation situations, in particular section 8.5.4 concerning
this con�guration.

Finally, regarding the drift velocity estimates for local extrema and edges,
it should be pointed out that although the drift velocity momentarily
may tend to in�nity, the total drift (integrated over some scale interval
of �nite length) will always be �nite. What the results mean, is that it
is not possible to derive any uniform upper bound for the drift velocity
of these features. Given any scale interval of length �t and any distance
j�xj it is always possible to �nd a signal such that the total drift of a
feature during the time �t exceeds j�xj. This property emphasizes the
need for algorithms based on adaptive sampling along the scale direction.
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8.1.2. Interpretation: Extremum paths

Another consequence of lemma 8.2 is that a non-degenerate critical point
existing at a certain level of scale can, in general, be traced to a similar
critical point both at a slightly coarser and a slightly �ner scale. By con-
tinuation, such local paths obtained from the implicit function theorem
can be extended to curves as long as the Hessian remains non-zero. It can
be easily shown that the type of critical point remains the same as long
the Hessian matrix is non-singular.

It is obvious that a local maximum (minimum) cannot be trans-
formed into a saddle point or vice versa. If the Hessian would change
sign, then it would �rst become zero (since it is a continuous func-
tion of the scale parameter). Then, however, the trajectory would by
de�nition be cut o� by a degenerate critical point into two separate
segments.

Moreover, a maximumpoint cannot be transformed into a minimum
point or opposite, since then (at least) the partial derivative Lx1x1
would need to change sign. Such a sign change implies that this
derivative would �rst become zero (because of continuity), which in
turn means that the quadratic form would become inde�nite, i.e.,
the point would get transformed into a saddle point. This transition
has to go through a degenerate critical point, which means that the
trajectory would be cut o� into at least two parts.

In other words, if (x0; t0) is a local maximum (minimum/saddle), then
there exists a curve through this point, such that every point on the
curve is a local maximum (minimum/saddle) at that scale. The curve is
delimited by two scale levels tmin and tmax, at which the Hessian matrix
degenerates (except for the boundary cases tmin = 0 or tmax = 1). At
all interior points the extremum point is non-degenerate. Such a curve
r0 : [tmin; tmax]! R2 is is called an extremum path (saddle path).

The situation in other dimensions is similar, although there are no
stable saddle points in the one-dimensional case.

8.2. Scale-space blobs

The notion of extremum path in previous section allows for a formal def-
inition of scale-space blob|the basic primitive in the scale-space primal
sketch. In chapter 7, a grey-level blob was de�ned as a local extremum
with extent and a scale-space blob in turn as a family of those. More pre-
cisely, a grey-level blob of a two-dimensional signal was given by a pair
consisting of a local extremum and a saddle point, and in one dimension by
a maximum and minimum point, implying a one-to-one correspondence
between local extrema and grey-level blobs. The previous de�nition of
scale-space blob was, however, intuitive: \similar blobs at adjacent levels
of scale were linked into scale-space blobs." The linking process proceeded
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until no such linking could be performed, i.e., until a bifurcation was en-
countered. The idea behind this construction was to identify and group
similar features at di�erent scales into higher order and uni�ed objects.

8.2.1. De�nition of scale-space blob

We can now express the linking criterion in a more formal way. Consider
the two-dimensional case, and study a local extremum x0 with associated
grey-level blob Gblob(x0) in a non-degenerate (Morse) signal at some scale
t0 in scale-space. Then, there is a unique extremum path r0 : [tmin; tmax]!
R

2 associated with the extremum x0 = r0(t0) of the grey-level blob, and
for each extremum r0(t) along this path there is a corresponding grey-level
blob Gblob(r0(t)).

For every scale level t 2 [tmin; tmax] where the scale-space repre-
sentation is non-degenerate, there is a unique delimiting saddle point1

Sdelimit(r(t)) associated with the local extremum r0(t). All such saddle
points associated with an extremum path need, however, not be on the
same saddle path. At certain scales transitions between di�erent saddle
paths can be expected to take place. Generically, this occurs at a discrete
set of scales, at which the local extremum point is non-degenerate, and
the extent of the grey-level blob is delimited by two non-degenerate saddle
points having the same grey-level. Such transitions will not be regarded
as a�ecting the scale-space blobs.

On the other hand, if the delimiting saddle (or the extremum) is in-
volved in a bifurcation, then the local topology will be changed|a blob
event has occurred. It is therefore natural to proceed with the linking as
long as the extrema and their delimiting saddle points are non-degenerate,
and to stop it when either of the critical points degenerates. Hence, con-
sider a (maximal) scale interval [t0min; t

0
max] � [tmin; tmax] such that

� for all interior scales, the (possible multiple) delimiting saddle points
Sdelimit(r0(t)) are non-degenerate, and

� at the end points either of r0(t0min) and Sdelimit(r0(t0min)) and also ei-
ther of r0(t

0
max) and Sdelimit(r0(t

0
max)) are degenerate critical points.

Then, the scale-space blob associated with the segment r00 : [t
0
min; t

0
max]!

R
2 of the extremum path is the (four-dimensional) set

Sblob(r
0
0) =f(x; z; t) 2 R2�R�R+ :

(t0min < t < t0max) ^ ((x; z) 2 Gblob(r00(t)))g; (8.6)

1If an extremum point E and a saddle point S together de�ne the extent of a
grey-level blob, then S is said to be the delimiting saddle point of E (section 7.1).
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and the support region of the scale-space blob is in turn the (three-
dimensional) region

Ssupport(r
0
0) = f(x; t) 2 R2�R+ : (x; z; t) 2 Sblob(r

0
0) for some zg:

In most �gures with scale-space blobs (e.g., in chapter 7) it is the latter
descriptor that has been illustrated.

8.2.2. De�nition of scale-space blob volume

Strictly, in this coordinate system the scale-space blob volume is

Svol(r
0
0) =

Z
(x; z; t)2Sblob(r00)

dx dz dt =

Z
t2[t0min;t0max]

Gvolume(r
0
0(t)) dt;

where Gvol(r
0
0(t)) is the grey-level blob volume of the grey-level blob as-

sociated with the extremum point r00(t). However, when the scale-space
blob volume is to be used as a signi�cance measure in the scale-space
primal sketch, it turns out that some transformations of the coordinate
axes must be performed (see section 7.7). One would like structures at
di�erent scales to be treated uniformly, such that the signi�cance measure
neither favours �ne scales to coarse scales nor the opposite. Therefore, the
normalized scale-space blob volume is de�ned by

Svol;norm(r
0
0) =

Z
t2[t0min;t0max ]

Vtrans(Gvol(r
0
0(t)); t) d�e�(t); (8.7)

where �e� : R+ ! R is a transformation function mapping the ordinary
scale parameter t to a transformed scale parameter � called e�ective scale
(see section 7.7.1), and Vtrans : R�R+ ! R is a corresponding transfor-
mation function normalizing the variation of the grey-level blob volumes
into a more uniform behaviour over scales (see section 7.7.2).

8.3. Bifurcation events for critical points: Classi�cation

The implicit function theorem used in previous sections guarantees that
linking of non-degenerate critical points is a well-de�ned operation. When
the Hessian matrix becomes singular, the implicit function theorem is no
longer applicable, and bifurcations may occur.

Useful tools for analysing the qualitative behaviour of functions around
bifurcation points can be obtained from a branch of mathematics known
as singularity theory ; see Poston and Stewart (1978) or Gibson (1979)
for application-oriented introductions, and Arnold (1981), Arnold et al.
(1985, 1988), Golubitsky and Schae�er (1985), or Lu (1976) for more
rigorous treatments of the subject.
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8.3.1. Thom's classi�cation theorem

One of the fundamental results in singularity theory is that the typical
qualitative behaviour of families given by a small number of parameters
can be expressed completely by the qualitative behaviour of a �nite set
of families. A famous theorem by Thom classi�es the generic behaviour
of families of functions with the number of parameters r � 4 into seven
elementary catastrophes. A summarizing result expressed by Poston and
Stewart (1978) states that:

Thom's classification theorem: Typically an r-parameter
family RN �Rr ! R of smooth functions RN �Rr ! R, for
any N and r � 4, is structurally stable and is in every point
(locally) equivalent to one of the following forms:

� non-critical: x1,

� non-degenerate critical, or Morse:
x21 + � � �+ x2i � x2i+1 � � � � � x2N (0 � i � N),

� degenerate critical, catastrophe;

{ fold:
x31 + u1x1 + (M),

{ cusp:
�(x41 + u2x

2
1 + u1x1) + (M),

{ swallowtail:
x51 + u3x

3
1 + u2x

2
1 + u1x1 + (M),

{ buttery:
�(x61 + u4x

4
1 + u3x

3
1 + u2x

2
1 + u1x1) + (M),

{ elliptic umbilic:
x21x2 � x32 + u3x

2
1 + u2x2 + u1x1 + (N),

{ hyperbolic umbilic:
x21x2 + x32 + u3x

2
1 + u2x2 + u1x1 + (N),

{ parabolic umbilic:
�(x21x2 + x42 + u4x

2
2 + u3x

2
1 + u2x2 + u1x2) + (N),

where (M) and (N) indicate Morse functions on the forms

(M) = x22 + � � �+ x2i � x2i+1 � � � � � x2N (2 � i � N);

(N) = x23 + � � �+ x2i � x2i+1 � � � � � x2N (2 < i � N);

which must be added on to the previously mentioned expres-
sions in order to match up the dimensions.

The intuitive explanation of \structurally stable" is that a su�ciently
small perturbation does not change the qualitative behaviour at the sin-
gularity. The term \locally equivalent" essentially means that the function
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can be (locally) transformed to the listed polynomial representative of the
singularity by a change of variables (a di�eomorphism). For precise de�-
nitions of these concepts, the reader is referred to the sources cited above.
A brief review can also be found in (Lindeberg 1992).

8.3.2. Generic singularities of one-parameter families

Applied to one-parameter families, like the scale-space representation of
a signal, this result means that the natural type of singularity to expect
is the fold singularity . It can be represented by the polynomial

GN(x; u) = x31 + 3x1u+
NX
i=2

�x2i ; (8.8)

where xi should be interpreted as o�set coordinates around the bifurca-
tion point, here translated to the origin, and u as the parameter. This
singularity means that at the bifurcation point the �rst and second order
directional derivatives are zero along a certain direction, while the third
derivative in that direction is non-zero.

Hence, if one is interested in the behaviour of the critical points of a
signal during the evolution of the di�usion equation, it should in principle
be su�cient to study this situation. For simplicity, consider from now on
the two-dimensional case, and replace the notation (x1; x2) for coordinates
by (x; y). Then, the singularity set is given by the solutions of

@xG2(x; y; u) = 3x2 + u = 0; (8.9)

@yG2(x; y; u) = �2y = 0; (8.10)

and the bifurcation set by the solution of

@xG2(x; y; u) = 3x2 + u = 0; (8.11)

@yG2(x; y; u) = �2y = 0; (8.12)

@xxG2(x; y; u) = 6x = 0: (8.13)

Thus, the singularity set is given by

�(x1(u); y1(u)) = (x2(u); y2(u)) = (
p
�u=3; 0) (u � 0); (8.14)

and the bifurcation occurs at an isolated point (x; y; u) = (0; 0; 0). From
the sign of the Hessian

det(HG2)(x; y; u) = �12x; (8.15)

it follows that (x1(u); y1(u)) are saddle/maximum points and (x2(u); y2(u))
are minimum/saddle points for every u < 0. At u = 0 the points merge
along a parabola and then disappear; see �gure 8.2(a).
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Similarly, for a one-dimensional signal the fold singularity is repre-
sented by the polynomial G1(x; u) = x3+xu, and corresponds to a max-
imum and a minimum point merging with increasing u; see �gure 8.2(b).

Figure 8.2. (a) The generic behaviour at a singularity of a one-parameter family
of two-dimensional functions is described by the unfolding G2(x; y; u) = x3 +
ux� y2. The singularity set of this family, that is the set of critical points of the
mapping x 7! G2(x; y; u), describes an extremum point and a saddle point that
merge along a parabola and then disappear. (b) For a one-parameter family of
one-dimensional functions the behaviour is instead given by G1(x; t) = x3+ux.
The singularity set in this case corresponds to a similar merge of a maximum
point and a minimum point. (The notation S/M+ means that the trajectory
corresponds to either a saddle point or a maximum point etc.)

To summarize, the typical behaviour to be expected at singularities in a
one-parameter family of continuous signals is:

� annihilations or creations of pairs of local extrema and saddle points
in the two-dimensional case, and

� annihilations or creations of pairs of local maxima and local minima
in the one-dimensional case.

8.3.3. Interpretations with respect to scale-space representation

By comparisons with earlier theoretical and experimental results we know
that this describes the qualitative behaviour of critical points in scale-
space. However, there is one apparent complication when to give a more
detailed interpretation. Thom's classi�cation theorem states that there
exists a di�eomorphism such that the singularity set of a solution to the
one-dimensional di�usion equation around a bifurcation point (x0; t0)
in scale-space can be transformed into the singularity set of G2 around
(0; 0). However, there is obviously some directional information lost in
the equivalence concept: In which direction should the u parameter be
interpreted as running? If u and t are treated as increasing simultaneously,
then the situation describes a minimum and a maximum merging with
increasing t. On the other hand, if u runs in the reverse direction, then
the interpretation would be that a pair with a minimum and a maximum
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would be created when t increases. The latter phenomenon is, however,
impossible, since the number of local extrema cannot increase under scale-
space smoothing in the one-dimensional case (see chapter 3).

The di�usion equation apparently introduces a directional preference
to its solutions (due to the causality requirements), which makes such
creations impossible. How should this information be incorporated into
the analysis of the singularities in scale-space?

One way of avoiding the previous blindness of the equivalence concept
to the structural property of the di�usion equation could be by trying to
develop results similar to Thom's classi�cation theorem, which instead
of being expressed in terms of the ordinary standard basis of polynomi-
als could be expressed in terms of polynomials satisfying the di�usion
equation. Natural modi�ed representatives of the fold singularities in the
one-dimensional and two-dimensional cases would then be

G1(x; t) = x3 + 3xt; (8.16)

G2(x; y; t) = x3 + 3xt� (y2 + t): (8.17)

Another approach is to use the previous classi�cation to state what con-
�gurations are possible in general one-parameter families of functions.
Then, the special structure of the di�usion equation can be taken into
account for judging which cases apply to the scale-space representation
when the directional constraint of the di�usion equation has been added.

Yet a third approach will be considered in the next section, where it
will be demonstrated that the results from the second approach agrees
with what can be obtained from a di�erential geometric analysis of the
paths that critical points form in scale-space.

8.3.4. Algebraic classi�cation of singularities

The bifurcation events between critical points in scale-space can also be
classi�ed by using elementary techniques. Following Johansen (1993), con-
sider critical paths de�ned by the solutions to�

Lx(x; y; t) = 0;
Ly(x; y; t) = 0:

(8.18)

Bifurcation points are points r0 = (x0; y0; t0)T where

det(HL)(r0) = Lxx(r0)Lyy(r0)� L2
xy(r0) = 0: (8.19)

Without loss of generality assume that the coordinate system is rotated
such that

Lxy(r0) = 0: (8.20)
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Then, either Lxx or Lyy must be zero at the bifurcation point. Without
loss of generality assume that

Lxx(r0) = 0; (8.21)

and let a critical path r through this point be parameterized by an arc
length parameter s such that r(s) = (x(s); y(s); t(s))T with r0 = r(s0)

jr0(s)j2 = x0(s)2 + y0(s)2 + t0(s)2 = 1: (8.22)

Implicit di�erentiation of Lx(x(s); y(s); t(s)) = 0 and Ly(x(s); y(s); t(s)) =
0 with respect to s then gives�

Lxx(r(s)) x
0(s) + Lxy(r(s)) y

0(s) + Lxt(r(s)) t
0(s) = 0;

Lxy(r(s)) x
0(s) + Lyy(r(s)) y

0(s) + Lyt(r(s)) t
0(s) = 0:

(8.23)

Using Lxx(r0) = 0 and Lxy(r0) = 0 these relations reduce to�
Lxt(r0) t0(s0) = 0;
Lyy(r0) y

0(s0) + Lyt(r0) t
0(s0) = 0:

(8.24)

In the generic case we can assume that Lxt(r0) 6= 0 and Lyy(r0) 6= 0.
Then, (8.24) gives y0(s0) = 0 and t0(s0) = 0. By selecting the positive
root from the normalization condition x0(s0)2 = 1 obtained from (8.22),
we get r0(s0) = (x0(s0); y0(s0); t0(s0))T = (1; 0; 0)T . This shows that the
curve intersects the bifurcation point with a horizontal tangent.

Concerning the second order structure at the bifurcation point, im-
plicit di�erentiation of (8.23) combined with the expression for r0(s0) and
the assumptions Lxx(r0) = 0 and Lxy(r0) = 0 gives�

Lxxx(r0) + Lxt(r0) t
00(s0) = 0;

Lxxy(r0) + Lyy(r0) y
00(s0) + Lyt(r0) t

00(s0) = 0;
(8.25)

from which explicit expressions can be obtained for the curvature com-
ponents of the critical path

x00(s0) = 0; (8.26)

y00(s0) =
Lxxx(r0)Lyt(r0)� Lxxy(r0)Lxt(r0)

Lyy(r0)Lxt(r0)

=
Lxxx(r0)Lyyy(r0)� Lxxy(r0)Lxyy(r0)

Lyy(r0) (Lxxx(r0) + Lxyy(r0))
;

(8.27)

t00(s0) =
Lxxx(r0)

Lxt(r0)
= � 2Lxxx(r0)

Lxxx(r0) + Lxyy(r0)
: (8.28)

The result x00(s0) = 0 is a direct consequence of the fact that the deriva-
tive of a constant length vector is perpendicular to the original vector.
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In the two other expressions alternative forms have also been given, in
which derivatives with respect to t have been replaced by derivatives with
respect to y and x using the fact that the Gaussian derivatives satisfy the
di�usion equation. One example is Lxt = @tLx =

1
2(@xx + @yy)Lx.

By studying the sign of t00(s0) it can be seen that a pair of critical
points is annihilated with increasing scale if

t00(s0) = � 2Lxxx(r0)

Lxxx(r0) + Lxyy(r0)
< 0; (8.29)

while a pair of critical points is created with increasing scale if

t00(s0) = � 2Lxxx(r0)

Lxxx(r0) + Lxyy(r0)
> 0: (8.30)

In order to analyse the types of critical points, consider a �rst order Taylor
expansion of the coordinate functions

r(s) = (x(s); y(s); t(s))T = (x0(s0) s+O(s2);O(s2); O(s2))T ;
and approximate the partial derivatives of L linearly

Lxx(r) = Lxx(r0) + (r(x; t)Lxx)(r0)
Tr+ O(r2); (8.31)

Lxy(r) = Lxy(r0) + (r(x; t)Lxy)(r0)
Tr +O(r2); (8.32)

Lyy(r) = Lyy(r0) + (r(x; t)Lyy)(r0)
Tr +O(r2); (8.33)

where the symbol r(x; t) = (@x; @y; @t)T means that di�erentiation should
be performed with respect to x, y, and t. Then, the �rst order Taylor
expansion of the Hessian can be written

det(HL)(r(s)) = Lxx(r(s))Lyy(r(s))� L2
xy(r(s))

= Lxxx(r0)Lyy(r0) s+ O(s2): (8.34)

Hence, provided that Lxxx(r0) 6= 0 and Lyy(r0) 6= 0, the critical points on
one side of the bifurcation point are local extrema, and the critical points
on the other side are saddle points.

To summarize, this analysis gives an alternative veri�cation that the
generic singularities for critical points are annihilations and creations of
saddle-extremum pairs. Moreover, it states an explicit condition for when
creations can occur. In a coordinate system selected such that Lpp(r0) =
Lpq(r0) = 0 at the bifurcation point r0, this condition can be expressed:

((Lppp(r0) > 0) ^ (Lpqq(r0) < �Lppp(r0))_
((Lppp(r0) < 0) ^ (Lpqq(r0) > �Lppp(r0)):

(8.35)

In one dimension, (8.28) reduces to t00 = �2 < 0, showing that critical
points are always annihilated and never created in this case.
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8.4. Bifurcation events for grey-level blobs and scale-space blobs

A natural question that arises in connection with the scale-space primal
sketch concerns what types of blob events are possible in bifurcation sit-
uations. Since scale-space blobs are de�ned in terms of paths of critical
points, the behaviour of a scale-space blob at a singularity is solely de-
termined by the behaviour of the extremum/saddle paths during a short
scale interval around the bifurcation moment.

Compared to the previous treatment, where critical points were anal-
ysed, there is one additional factor that must be taken into account when
dealing with scale-space blobs, namely the fact that a saddle point delim-
iting the extent of a grey-level blob involved a bifurcation can be asso-
ciated with other grey-level blobs as well. This leads to natural coupling
between scale-space blobs sharing the same saddle path (of delimiting
saddle points) in a neighbourhood of a bifurcation.

8.4.1. Shared and non-shared saddle path

In view of this observation let us de�ne the following: A saddle path
involved in a structurally stable bifurcation is said to be non-shared before
(after) the bifurcation if there exists some scale interval before (after) the
bifurcation during which every saddle point of the saddle path is not
contained in more than one grey-level blob. Otherwise, the saddle path is
said to be shared.

More precisely, a saddle path is said to be non-shared before (after) a
bifurcation at tbifurc if there exists some � > 0 such that for all scales in
the interval t 2]tbifurc � �; tbifurc [ (t 2]tbifurc; tbifurc + �[) the saddle point of
the saddle path at that scale does not belong to more than one grey-level
blob, see �gure 8.3. Another way to express this property is that a shared
saddle point is the delimiting saddle point of two (or more) grey-level

Figure 8.3. The de�nition of grey-level blob for a two-dimensional signal. Every
local extremum gives rise to a blob and the extent of the blob is given by a saddle
point. A saddle point is said to be shared if it is contained in more than one
grey-level blob, i.e., if it is a delimiting saddle point of two (or more) grey-level
blobs of the same polarity.
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blobs of the same polarity, while a non-shared saddle point either is the
delimiting saddle point of one or no grey-level blob.

8.4.2. Generic bifurcation events for scale-space blobs

Hence, depending on whether a extremum-saddle pair is annihilated or
created, and depending on whether the saddle path is shared or non-
shared, four generic cases can be distinguished:

� A non-shared saddle path participating in the annihilation of an
extremum-saddle pair with increasing scale describes an isolated
blob that disappears. Such a blob event can aptly be called a blob
annihilation.

� On the other hand, a shared saddle path involved in a similar an-
nihilation describes a blob disappearing under the inuence of a
neighbour blob|a blob merge.

� Similarly, a shared saddle point taking part in an extremum-saddle
pair that is created with increasing scale describes a blob split .

� Finally, a non-shared saddle path participating in an extremum-
saddle creation describes an isolated blob which appears| a blob
creation.

To summarize, (Below, the term annihilation (creation) of an extremum-
saddle pair means that a pair consisting of an extremum path and a saddle
path disappears (appears) when the scale parameter increases.)

Proposition 8.3. (Classification of blob events; 2D)
In the scale-space representation of two-dimensional continuous signal,
the following blob events are possible at a structurally stable bifurcation:

� blob annihilation|annihilation of an extremum-saddle pair, where
the saddle path is non-shared before the bifurcation,

� blob merge|annihilation of an extremum-saddle pair, where the
saddle path is shared before the bifurcation,

� blob split|creation of an extremum-saddle pair, where the saddle
path is shared with another scale-space blob after the bifurcation,

� blob creation|creation of an extremum-saddle pair, where the sad-
dle path is non-shared after the bifurcation.

These four cases constitute the de�nitions of the terms annihilation, merge,
split and creation with respect to grey-level blobs and scale-space blobs in
the two-dimensional case.
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Proof. From section 8.3 it follows that the typical behaviour at singular-
ities are pairwise annihilations and creations of extremum-saddle pairs.
Combined with the de�nition of shared saddle path this means that the
class of possible blob events is restricted to the given four types, provided
that only structurally stable bifurcations are considered.

Figure 8.4. (a) New local extrema can be created with increasing scale in the
scale-space representation of a two-dimensional signal. Interpreted in terms of
blobs the con�guration describes a blob split. (b) By modifying the example
slightly (by replacing the higher one of the two peaks with a double peak) one
realizes that blob creations can occur as well. The base levels of the di�erent
grey-level blobs have been indicated.

What remains to verify is that all these four types can be instantiated,
and that they are structurally stable. It is well-known that blob annihila-
tions and blob merges can take place in scale-space (see also section 8.4
for illustrative examples). The fact that splits can occur is known as well
(see the example given by Lifshitz and Pizer (1987) illustrated in �g-
ure 8.4(a)). The latter con�guration can be modi�ed to describe a blob
creation as well, if the higher of the two peaks is replaced by a double
peak (see �gure 8.4(b)). Then, the extent of the two smaller blobs at
the higher peak will be delimited by the grey-level in the valley between
them, which means that when the narrow ridge has eroded and given rise
to the creation of a saddle-extremum pair in which the saddle path is not
be shared by any other blob. �
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The assumption of structural stability is important in this context, since
otherwise, there is an in�nite variety of possible events. For instance, three
or more blobs could merge into one blob at the same moment. Such events
will however be unstable,2 since a small perturbation of the input signal
would perturb such a simultaneous merge of three blobs into a sequence
of two successive pairwise merges.

Algorithmically, this means that an encountered actual situation with,
say, three blobs at a �ne scale seeming to belong all to the same blob at
a coarser scale, can in general be decomposed into transitions of the four
primitive types. This principle forms the idea behind the automatic scale
re�nement algorithm described in chapter 9, which essentially re�nes the
scale sampling until all relations between scale-space blobs in scale-space
can be decomposed into events of the previously listed types.

For one-dimensional signals the possible events3 are blob annihilations
and blob merges. Splits and creations are impossible due to the earlier
mentioned property that new local extrema cannot be created in the one-
dimensional case.

8.5. Behaviour near singularities: Examples

In previous sections a general methodology has been described for ana-
lysing the evolution properties of critical points. Moreover, the qualitative
behaviour at bifurcation points has been classi�ed. Here, a number of ex-
amples will be given demonstrating how the blob descriptors vary with
scale in characteristic bifurcation situations.

8.5.1. Third order Taylor expansion in one dimension

A special property in one dimension is that it is possible to arrive at
the generic representative of the fold unfolding (8.16) by a simple quali-
tative study. Consider a third order Taylor expansion of the scale-space
embedding around a given point x0 at some scale t0

ft0(x) = � + �(x� x0) + (x� x0)
2 + �(x� x0)

3; (8.36)

where

� = L(x0; t0); � = Lx(x0; t0);  = 1
2Lxx(x0; t0); � = 1

6Lxxx(x0; t0):

2Note in this context that for Morse functions no pair of critical points will have
the same values. In other words, for generic functions all critical points will be distinct.
Although, by de�nition, the grey-level function will not be Morse at a bifurcation, we
can, in general, assume this latter property to hold at bifurcations. This means that
situations with three or more blobs simultaneously merging into one can be expected
not to occur.

3A formal statement of this result, including the relevant de�nitions, can be found
in (Lindeberg 1992).
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The scale-space representation of this signal (with L(x; t0) = ft0(x)) is

L(x; t) = � + �(x� x0) + (x� x0)
2 + �(x� x0)

3

+ �1(t� t0) + �2(x� x0)(t� t0);

where �1 =  and �2 = 3�. For simplicity, introduce new (o�set) variables
u = x� x0 and v = t� t0. Then,

~L(u; v) = L(u+ x0; v + t0) = �+ �u+ (u2+ v) + �(u3 + 3uv):

The critical points of the function u 7! ~L(u; t) are given by

@u ~L(u; v) = � + 2u+ 3�(u2 + v) = 0: (8.37)

If � = 0 there is one single root x = � b
2 , whose location is independent

of t. Obviously, this case is not interesting, since it implies a stationary
solution. Therefore, assume that � 6= 0. Then, there are two trajectories
of critical points

u1;2(v) = � 

3�
�
r

2

9�2
� (v +

�

3�
); (8.38)

which only exist when v � 2

9�2
� �

3�
. They meet at the bifurcation point

(ubifurc; vbifurc) =

�
� 

3�
;
2

9�2
� �

3�

�
: (8.39)

From the second derivative ~Luu(u1;2; v) = 2+6�u1;2 = �6�
q

2

9�2
� (v + �

3�
)

it can be seen that the second derivative has di�erent sign in the two crit-
ical points. Thus, the bifurcation consists of one maximum point and one
minimum point that meet and annihilate (see �gure 8.5).

Figure 8.5. Third order Taylor expansion of the scale-space embedding:
Schematic view over the loci of the critical points as scale changes. The bi-
furcation consists of a maximum point and a minimum point that meet and
annihilate.
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Drift velocity estimates. Assume for a moment that x = x0 is a critical
point for the mapping x 7! L(x; t0), i.e., that at u = 0 is a critical point
for the mapping u 7! ~L(u; 0). Then, � = 0 and (8.39) gives an estimate
of the time �tbifurc and the distance �xbifurc to the bifurcation

(�xbifurc; �tbifurc) = (


3�
; (



3�
)2) = (

Lxx

Lxxx

; (
Lxx

Lxxx

)2): (8.40)

So far, no numerical experiments have been made testing the feasibility of
using this estimate for scale step regulation in blob linking. Note, however,
that despite the pessimistic upper bounds on the drift velocities discussed
in section 8.1.1, the local extremum will hardly escape far outside the
support region of the grey-level blob. This property turns out to be very
useful in the blob linking algorithm to be described in section 9.2.

Observation 8.4. (Coarse bound on the drift of local extrema)
Although the drift velocity of a local extremum point may momentarily be
very large (tend to in�nity near a bifurcation), when scale changes, the
grey-level blob support region de�nes a natural spatial region to search for
blobs in at the next level of scale.

Reduction to the fold unfolding. To simplify further considerations, in-
troduce again new coordinates by

� = u+


3�
; � = v +

�

3
� 2

9�2
;

~~L(�; �) = ~L(� � 

3�
; � � �

3
� 2

9�2
):

Then, the expression for the scale-space representation reduces to poly-
nomial representative of the fold unfolding

�(�; �) = ~~L(�; �)� (�� �

3�
+

23

27�2
) = �(�3 + 3��): (8.41)

All these coordinate shifts only mean that the coordinate axes have been
translated such that the bifurcation occurs at (�; �) = (0; 0), and a
constant has been subtracted to achieve �(0; 0) = 0. Hence, � : R�R+ !
R still satis�es the di�usion equation.

8.5.2. The fold singularity in one dimension

Consider again the generic unfolding of the scale-space embedding in the
neighbourhood of a bifurcation

L(x; t) = x3 + 3xt; (8.42)

where x and t should be interpreted local coordinates in a coordinate
system centered at the bifurcation point. As mentioned above, the critical
points of this function are given by

@xL(x; t) = 3(x2 + t) = 0; (8.43)
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x x x

z z z

(a)   t < 0 (b)   t = 0 (c)  t > 0

Figure 8.6. Fold unfolding in the one-dimensional case: Schematic view of the
smoothed signal; (a) before the bifurcation, (b) at the bifurcation, and (c) after
the bifurcation.

that is by

�1(t) = �p�t; �2(t) = +
p�t: (8.44)

Moreover, the critical values are

�1(t) = ��2(t) = L(�1(t); t) = �L(�2(t); t) = +2(�t) 32 : (8.45)

In terms of grey-level blobs, this bifurcation describes the simultaneous
annihilation of a bright and a dark blob. Obviously, the contrasts of the
two one-dimensional blobs have equal magnitude

C1(t) = C2(t) =j �2(t)� �1(t) j= 4(�t) 32 ; (8.46)

and the boundaries �1 and �2 of the support regions are determined by
the equations �(�1; t) = �2(t) and �(�2; t) = �1(t), with solutions �1(t) =
+2
p�t and �2(t) = �2p�t. Hence, the variation of the area of the

support region follows

A1(t) = j�2(t)� �2(t)j = A2(t) = j�1(t)� �1(t)j = 3
p�t; (8.47)

Figure 8.7. The situation before the bifurcation occurs. Illustration of the def-
initions of �1, �2, �1, �2, �1 and �2.
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and the grey-level blob volume is

V1(t) = V2(t) =

Z �2(t)

x=�2(t)

j�(x; t)� �2(t)j dx = 27(�t)2
4

: (8.48)

Assuming that the scale-space blob is delimited by some minimum scale
tmin < 0, its scale-space blob volume can be computed by

S1 =

Z 0

tmin

V1(t) dt =
9(�tmin)

3

4
: (8.49)

z

t

x

Figure 8.8. The fold singularity in the one-dimensional case.

8.5.3. The fold singularity in two dimensions

In the two-dimensional case the generic fold unfolding is

x3 + ux� y2: (8.50)

By replacing each polynomial by a corresponding polynomial satisfying
the di�usion equation (i.e., x3 by x3 + 3xt, (x by x), and y2 by y2 + t),
we get

L(x; y; t) = x3 + (u+ 3t)x� (y2 + t): (8.51)

Obviously, u corresponds to an unessential translation of the scale para-
meter and can be omitted. Moreover, assume that the sign of the �(y2+t)
term is positive. Then, the scale-space family to be studied is

L(x; y; t) = x3 + 3xt+ y2 + t; (8.52)
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where x, y and t should again be interpreted as o�set coordinates. The
critical points of this mapping are given by�

@xL = 3(x2 + t) = 0;
@yL = 2y = 0;

(8.53)

and their type by the sign of

det(HL) = LxxLyy � L2
xy = 12x: (8.54)

If t < 0 there are two solutions:

r1(t) = (x1(t); y1(t)) = (�p�t; 0); r2(t) = (x2(t); y2(t)) = (+
p�t; 0);

where r1 describes a saddle path, and r2 a minimum path. The values at
the critical points are

L1(t) = L(r1(t); t) = t� 2t
p�t; L2(t) = L(r2(t); t) = t+ 2t

p�t:
In terms of grey-level blobs, this singularity describes the annihilation of
a dark grey-level blob. The boundary of the support region is obtained
by solving the equation L(x; y; t) = L1(t), which can be reduced to

x3 + 3tx + y2 � 2(�t) 32 = 0 (8.55)

(see �gure 8.9). Let y� and y+ denote the results of solving for y as
a function of x and t in (8.55). Closed-form expressions for the blob
descriptors can then be calculated as

C(t) = L1(t)� L2(t) = 4(�t) 32 ; (8.56)

A(t) =

Z 2
p�t

x=�p�t

Z y=y+(x; t)

y=y�(x; t)

dy dx =
24
p
3(�t) 54
5

; (8.57)

y

x

Figure 8.9. The support region of the grey-level blob. (The dashed line indicates
the continuation of the level curve corresponding to the base level of the blob).
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V (t) =

Z 2
p�t

x=�p�t

Z y+(x; t)

y=y�(x; t)

(2(�t) 32 � 3tx� x3 � y2) dy dx =
3456

p
3(�t) 114
385

:

If the sign of the (y2 + t) term in (8.51) instead is selected negative, the
trajectories of critical points will be similar. The only di�erence is that
the minimum point is replaced by a saddle point and the saddle point by
a maximum point. In terms of blobs, that bifurcation corresponds to the
annihilation of a bright blob.

Figure 8.10. The fold unfolding in two dimensions L(x; y; t) = x3+3xt�(y2+t)
describes (a) a saddle point and a minimum (maximum) point merging with
increasing scale, i.e., (b) the annihilation of a dark (bright) grey-level blob.

8.5.4. The cusp singularity in two dimensions

Consider next the generic unfolding of the cusp singularity

x4 + ux2 + vx� y2: (8.58)

To make this function satisfy the di�usion equation, replace x4 by x4 +
6tx2 + 3t3, x2 by x2 + t, and y2 by y2 + t. This gives

L(x; y; t) = x4 + (6t+ u)x2 + vx+ ut + 3t2 � (y2 + t): (8.59)

Here, the parameter u corresponds to a non-essential translation of the
scale parameter and can be disregarded. Moreover, assume that the sign
of the �(y2 + t) term is positive. Then, we get the unfolding

L(x; y; t) = x4 + 6x2t + vx+ 3t2 + y2 + t; (8.60)

where v is a free parameter. The critical points satisfy�
@xL = 4x3 + 12tx+ v = h(x) = 0;
@yL = 2y = 0;

(8.61)

and their type is determined by the sign of the Hessian

(HL)(x; y; t) = 24(x2 + t): (8.62)

After some calculations it can be shown that the roots to h(x) = 4x3 +
12tx+ v = 0 obey the following qualitative behaviour:
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� If t > �(v
8
)
2
3 then the equation h(x) = 0 has only one real root, and

the unique stationary point is a local minimum.

� If t < �(v
8
)
2
3 then h(x) = 0 has three distinct roots xi, satisfying

x1(t) < �p�t < x2(t) < +
p�t < x3(t). From (8.62) it follows that

x1(t) and x3(t) are local minima and that x2(t) is a saddle.

� If t = �(v
8
)
2
3 then h(x) has either one root of multiplicity three

or two roots of multiplicity one and two. The bifurcation occurs
at x = (v

8
)
1
3 , and corresponds to the root with multiplicity greater

than one. The behaviour around this point depends on the value of
v, see �gure 8.11.

Hence, the singularity describes a minimum-saddle pair annihilating un-
der the inuence of another minimum. In terms of blobs, this corresponds
to two grey-level blobs merging into one.

Note that variation of the parameter v a�ect the bifurcation diagram
of the critical points (�gure 8.11), while the bifurcation diagram for the
grey-level blobs remains the same (�gure 8.12). This demonstrates that
bifurcation relations between grey-level blobs are more stable than bifur-
cation relations between critical points.

t
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t

xx
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S
M

x

(c) : v > 0(b): v = 0

-
-

-
-M-

M- S

t
(a): v < 0

Figure 8.11. The cusp unfolding in two dimensions L(x; y; t) = x4 + 6x2t +
vx+3t2+(y2+t) describes a minimumand a saddle merging under the inuence
of another minimum. Di�erent events may occur depending on the value of v.

Figure 8.12. In terms of grey-level blobs, the three situations in �gure 8.11
correspond to two dark grey-level blobs merging into one (independent of the
value of v).
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If the sign of the �(y2+ t) is instead selected negative, then x1 and x2
will be saddle points, and x2 a maximum, while if the sign of the entire
unfolding is changed, all maxima are replace by minima and vice versa.

Zero-Crossings of the Laplacian. Introduce a parameter � such that

L�(x; y; t) = x4 + 6x2t+ vx+ 3t2�(y2 + t); (8.63)

and analyse the zero-crossings of the Laplacian, which are given by

@2L�

@x2
+
@2L�

@y2
= 12x2 + 12t+ 2� = 0: (8.64)

M M

M

t

1

1

(a)    v = 0, α  > 0

Z ZS

- -

-
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Z Z
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1
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t
(b)  v = 0,  α < 0

M+

1

1

t

M

M

-

-

Z Z
S

x

(c)  v > 0, α  > 0
t

1

1 x

S
Z

M

Z

S+

(d)  v > 0, α < 0

Figure 8.13. Locations of the zero-crossings of the Laplacian (marked by Z) and
critical points (marked by M+, M�, and S) for the cusp unfolding (8.63) in the
two-dimensional case. Note that during a certain scale interval the zero-crossings
of the Laplacian fail to enclose isolated local extrema.
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Obviously, there are two solutions x = �p�t � �=6 if t � ��=6, and we
can observe that these zero-crossing curves do not give a correct subdivi-
sion around the local extrema for all t (see �gure 8.13).

This example demonstrates that in two (and higher) dimensions there
is no absolute relationship between the locations of the Laplacian zero-
crossing curves and the local extrema of a signal. A Laplacian zero-
crossing curve may enclose either no extremum, one extremum, or more
than one local extremum. Only in the one-dimensional case it holds that
there is exactly one local extremum point between two zero-crossings of
the second derivative.

Drift velocity analysis. To analyse the drift velocity of the local ex-
tremum point not involved in the bifurcation, consider the one-dimensional
version of (8.60) (delete the (y2+ t) term), and di�erentiate with respect
to t:

@tx = � x

x2 + t
: (8.65)

To �nd the scale where the drift velocity is maximal, di�erentiate again
and set the derivative to zero:

@ttx =
2xt

(x2 + t)3
= 0: (8.66)

Here, we are not interested in the case x = 0, since the behaviour at the
bifurcation has already been analysed. Thus, as expected, the maximum
drift velocity occurs when t = 0. Then, x = (�v

4
)1=3 and

j@txjmax = � 1

x
= (

4

v
)
1
3 ; (8.67)

which shows that the maximum drift velocity tends to in�nity as v tends
to zero. This example demonstrates a further consequence of the results
in section 8.1.1, namely that even for critical points not directly involved
in bifurcations there is no absolute upper bound one their drift velocity, a
conclusion which valid both in one and two dimensions.

Application to edge tracking. This analysis gives a further explanation
to some of the problems that occur when edge focusing is applied to
\staircase edges" (see �gure 8.1 and the brief discussion in section 8.1.1).
From experiments (Bergholm 1989) it is known that, in general, only one
of the two edges in such con�gurations will be found by the focusing
algorithm, and that in certain cases even that edge might get lost.

The fact that only one of the edges will be found is obvious from the
bifurcation diagram in �gure 8.11 provided that the focusing procedure is
initiated from a su�ciently coarse scale and the bifurcation takes places
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su�ciently far away from the edge subject to tracking. The bifurcation
diagram and the previous analysis for local extrema also indicate that the
drift velocity of an edge point may increase rapidly even though the edge
is not directly involved in any bifurcation, and hence exceed the �nite
drift velocity estimate used by the edge focusing algorithm.

8.6. Relating di�erential singularities across scales

Although the analysis so far has been concerned with critical points, the
ideas behind it are general, and can be extended to other aspects of im-
age structures. Di�erential singularities (features which can be de�ned
as zero-crossings of (possibly non-linear) di�erential expressions) are con-
ceptually easy to relate across scales.

For simplicity, let us restrict the analysis to the two-dimensional case,
and consider features that at any scale t can be de�ned by

h(x; y; t) = 0 (8.68)

for some function h : R2�R+ ! RN, where N is either 1 or 2. Using the
implicit function theorem it is easy to analyze the dependence of (x; y)
on t in the solution to (8.68). The results to be derived give estimates
of the drift velocity of di�erent features due to scale-space smoothing,
and provides a theoretical basis for linking and identifying corresponding
features at adjacent scales.

8.6.1. Zero-dimensional entities (points)

Assume �rst that N = 2, and write h(x; y; t) = (h1(x; y; t); h2(x; y; t))
for some functions h1; h2 : R2� R+ ! R. The derivative of the mapping
h at a point P0 = (x0; y0; t0) is

h0jP0 =
�

@xh1 @yh1 @th1
@xh2 @yh2 @th2

�����
P0

=
�

@(h1;h2)
@(x;y)

@(h1;h2)
@(t)

����
P0
:

(8.69)

If the matrix @(h1; h2)=@(x; y) is non-singular at P0, then the solution
(x; y) to h(x; y; t0) = 0 will be an isolated point. Moreover, the implicit
function theorem guarantees that there exists some local neighbourhood
around P0 where (x; y) can be expressed as a function of t. The derivative
of that mapping t 7! (x; y) is:�

@tx

@ty

�����
P0

= �
�

@xh1 @yh1
@xh2 @yh2

�����
�1

P0

�
@th1
@th2

�����
P0

: (8.70)

If h is a function of the spatial derivatives of L only, which is the case,
for example, for the feature extractors treated in section 6.1.4, then the
fact that spatial derivatives of L satisfy the di�usion equation

@tLxiyj =
1
2(@xx + @yy)Lxiyj ; (8.71)
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can be used for replacing derivatives with respect to t by derivatives with
respect to x and y. In this way, closed form expression can be obtained
containing only partial derivatives of L with respect to x and y.

For example, the junction candidates given by (6:14) satisfy (~��u; ~��v) =
(0; 0). In terms of directional derivatives, (8.70) can then be written

�
@tu

@tv

�����
P0

= �
�

~��u�u ~��u�v

~��u�v ~��v�v

�����
�1

P0

�
@t~��u

@t~��v

�����
P0

: (8.72)

By di�erentiating the expressions for ~��u and ~��v with respect to t, by
using the fact that the spatial derivatives satisfy the di�usion equation,
and by expressing the result in terms of directional derivatives along the
preferred u- and v-directions (see section 6.1.1), the following expressions
can be obtained (the calculations have been done using Mathematica4)

~��u = L2
�vL�u�u�u;

~��v = L2
�vL�u�u�v + 2L�v(L�u�uL�v�v � L2

�u�v);

~��u�u = L2
�vL�u�u�u�u + 2L�u�u(L�u�uL�v�v � L2

�u�v) + 2L�v(L�u�vL�u�u�u � L�u�uL�u�u�v);

~��u�v = L2
�vL�u�u�u�v + 2L�u�v(L�u�uL�v�v � L2

�u�v) + 2L�v(L�v�vL�u�u�u � L�u�vL�u�u�v);

~��v�v = L2
�vL�u�u�v�v + 2L�v�v(L�u�uL�v�v � L2

�u�v)

+ 2L�v(L�u�uL�v�v�v + 2L�v�vL�u�u�v � 3L�u�vL�u�v�v);

@t~��u = L2
�v(L�u�u�u�u�u + L�u�u�u�v�v)=2

+ (L�u�uL�v�v � L2
�u�v)(L�u�u�u + L�u�v�v) + L�v(L�u�u�uL�v�v�v � L�u�u�vL�u�v�v);

@t~��v = L2
�v(L�u�u�u�u�v + L�u�u�v�v�v)=2 + (L�u�uL�v�v � L2

�u�v)(L�u�u�v + L�v�v�v)

+ L�v(L�v�v(L�u�u�u�u + L�u�u�v�v) + L�u�u(L�v�v�v�v + L�u�u�v�v)

� 2L�u�v(L�u�u�u�v + L�u�v�v�v))

+ L�v(L�u�u�v(L�u�u�v + L�v�v�v)� L�u�v�v(L�u�u�u + L�u�v�v)):

(These expressions simplify somewhat if we make use of L�u�u�ujP0 = 0,
which follows from ~��u = 0.) Note that as long as the Hessian matrix of
~� is non-degenerate, the sign of the ~�H and ~��u�u will be constant. This
means that the type of extremum remains the same. For local extrema of
the grey-level landscape, given by (Lx; Ly) = (0; 0), the expression for the
drift velocity, of course, reduces to previously derived expression (8.3).

8.6.2. One-dimensional entities (curves)

If N = 1, then there will no longer be any unique correspondence be-
tween points at adjacent scales. An ambiguity arises, very similar to what
is called the aperture problem in motion analysis. Nevertheless, we can
determine the drift velocity in the normal direction of the curve.

4Mathematic is a registered trademark of Wolfram Research Research Inc., U.S.A.
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Given a function h : R2�R+ ! R consider the solution to h(x; y; t) =
0. Assume that P0 = (x0; y0; t0) is a solution to this equation and that the
gradient of the mapping (x; y) 7! h(x; y; t0) is non-zero. Then, in some
neighbourhood around (x0; y0) the solution (x; y) to h(x; y; t0) = 0 de�nes
a curve. Its normal at (x0; y0) is given by (cos�; sin�) = (hx; hy)=(h

2
x +

h2y)
1=2 at P0. Consider next the function ~h : R� R+ ! R de�ned by

~h(s; t) = h(x0 + s cos�; y0 + s sin�; t). It has the derivative

~hs(0; t0) = hx(x0; y0; t0) cos�+ hy(x0; y0; t0) sin� =
q
h2x + h2y

���
P0
:

Since this derivative is non-zero, we can apply the implicit function theo-
rem. It follows that there exists some neighbourhood around P0 where
~h(s; t) = 0 de�nes s as a function of t. The derivative of this mapping is

@tsjP0 = � ~hs

����1

P0

~ht

���
P0

= � htp
h2x + h2y

�����
P0

: (8.73)

As an example of this, consider an edge given by non-maximum suppres-
sion

h = � = L2
xLxx + 2LxLyLxy + L2

yLyy = 0: (8.74)

By di�erentiating (8.74), by using the fact that the derivatives of L sat-
isfy the di�usion equation, and by expressing the result in terms of the
directional derivatives we get

� = L2
�vL�v�v = 0; (8.75)

��u = L2
�vL�u�v�v + 2L�vL�u�vL�u�u; (8.76)

��v = L2
�vL�v�v�v + 2L�vL

2
�u�v; (8.77)

�t = L2
�v(L�u�u�v�v + L�v�v�v�v)=2 + L�vL�u�v(L�u�u�u + L�u�v�v): (8.78)

To summarize, the drift velocity in the normal direction of a curved edge
in scale-space is (with ��u and ��u according to (8.76){(8.77))

(@tu; @tv) = � L�v(L�u�u�v�v + L�v�v�v�v) + 2L�u�v(L�u�u�u + L�u�v�v)

2((L�vL�u�v�v + 2L�u�vL�u�u)2 + (L�vL�v�v�v + 2L2
�u�v)

2)

���u

L�v

;
��v

L�v

�
:

(8.79)

Unfortunately, this expression cannot be further simpli�ed unless addi-
tional constraints are posed on L. For a straight edge, however, where all
partial derivatives with respect to u are zero, it reduces to

(@tu; @tv) = �1

2

L�v�v�v�v

L�v�v�v

(0; 1); (8.80)
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which agrees with the result in (8.5). For a curve given by the zero-
crossings of the Laplacian we have

(@tu; @tv) = � r2(r2L)

2((r2L�u)2 + (r2L�v)2)
(r2L�u;r2L�v); (8.81)

which also simpli�es to (8.80) if all directional derivatives in the u-direction
are set to zero. Similarly, for a parabolic curve, given by det(HL) =
LxxLyy � L2

xy = 0, the drift velocity in the normal direction is

(@tp; @tq) = � LqqLpppp + (Lpp + Lqq)Lppqq + LppLqqqq

2((LppLpqq + LqqLppp)2 + (LppLqqq + LqqLppq)2)

� (LppLpqq + LqqLppp; LppLqqq + LqqLppq): (8.82)

Here, the result has been expressed in a pq-coordinate system, with the p-
and q-axes aligned to the principal axes of curvature such that the mixed
second-order directional derivative L�p�q is zero.

8.7. Density of local extrema as function of scale

In some applications it is of interest to know how the density of local
extrema can be expected to vary with scale. One example is the derivation
of e�ective scale, a transformed scale parameter intended to capture the
concept of \scale-space lifetime" in a proper manner (see section 7.7).
Of course, this question seems to be very di�cult or even impossible
to answer to generally, since such a quantity can be expected to vary
substantially from one image to another. How should one then be able
to talk about \expected behaviour"? Should one consider all possible
(realistic) images, study how this measure evolves with scale and then
form some kind of average?

In this section a simple study will be performed. We will consider
random noise data with normal distribution. Under these assumptions it
turns out to be possible to derive a compact closed form expression for this
quantity. The analysis will be based on a treatment by Rice (1945) about
the expected density of zero-crossings and local maxima of stationary
normal processes; see also (Papoulis 1972; Cramer and Leadbetter 1967).

8.7.1. Continuous analysis

The density of local maxima � for a stationary normal process is given
by the second and fourth derivatives of the autocorrelation function R

� =
1

2�

s
�R

(4)(0)

R00(0)
: (8.83)
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This expression can also be written as (Rice 1945; Papoulis 1972)

� =
1

2�

vuutR1�1 !4S(!)d!R1
�1 !2S(!)d!

; (8.84)

where S is the spectral density

S(!) =

Z 1

�1
e�i!�R(�) d�: (8.85)

Since the scale-space representation L is generated from the input signal
f by a linear transformation, the spectral density of L, denoted SL, is
given by

SL(!) = jH(!)j2Sf (!); (8.86)

where Sf is the spectral density of f , and H(!) is the Fourier transform
of the impulse response h

H(!) =

Z 1

�1
h(t)e�i!t dt (8.87)

In our scale-space case, h is of course the Gaussian kernel

g(�; t) =
1p
2�t

e��
2=2t; (8.88)

which has the Fourier transform

G(!; t) = e�!
2t=2: (8.89)

Assuming that f is generated by white noise with Sf(w) = 1 this gives

SL(!) = e�!
2t: (8.90)

Using the formula (Spiegel 1968: 15.77)Z 1

0

xme�ax
2

dx =
�((m+ 1)=2)

2a(m+1)=2
; (8.91)

a closed form expression can be calculated for the density of local maxima
of a continuous signal, pc(t):

pc(t) =
1

2�

vuutR1�1 !4 e�!2td!R1
�1 !2 e�!2td!

=
1

2�

vuut2�(5=2)
2t5=2

2�(3=2)
2t3=2

=
1

2�

r
3

2

1p
t
: (8.92)

Of course, an identical result applies5 to local minima. To summarize,

5Observe that the same type of qualitative behaviour (pc(t) � t�
1
2 ) applies also

to the local extrema in the spatial derivatives of the scale-space representation (just
replace H = G by H = (i!)nG in the previous analysis).
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Proposition 8.5. (Density of local extrema; white noise; 1D)
In the scale-space representation of a one-dimensional continuous signal
generated by a white noise stationary normal process, the expected density
of local maxima (minima) in a smoothed signal at a certain scale decreases
with scale as t�1=2.

This scale dependence implies that a graph showing the density of local
maxima (minima) as function of scale can be expected6 to be a straight
line in a log-log diagram

log(pc(t)) =
1
2
log(3

2
)� log(2�)� 1

2
log(t) = constant� 1

2
log(t):

In section 7.7.1 it was shown that a natural way to convert the ordinary
scale parameter t into a transformed scale parameter, e�ective scale � , is
by �(t) = A+B log(p(t)), where p(t) again denotes the expected density
of local extrema at a certain scale t and A and B are arbitrary constants.
This result gives:

Corollary 8.6. (Effective scale for continuous signals; 1D)
For continuous one-dimensional signals the e�ective scale parameter �c
as function of the ordinary scale parameter t is (up to an arbitrary a�ne
transformation, i.e., for some arbitrary constants A0 and B0 > 0) given
by a logarithmic transformation

�c(t) = A0 +B0 log(t): (8.93)

An interesting question concerns what will happen if the uncorrelated
white noise model for the input signal is changed. A self-similar spectral
density that has been applied to fractals (Barnsley et al. 1988; G�arding
1988) is given by

Sf(w) = w��: (8.94)

For one-dimensional signals, reasonable values of � are obtained between
1 and 3. Of course, such a distribution is somewhat non-physical, since
Sf(w) will tend to in�nity as t tends to zero and neither one of the spectral
moments is convergent. However, when multiplied by a Gaussian function
the second and fourth order moments in (8.84) will converge provided that
� < 3. We obtain,

pc;�(t) =
1

2�

vuutR1�1 !4 e�!2t!��d!R1
�1 !2 e�!2t!��d!

=
1

2�

r
3� �

2

1p
t

(� < 3): (8.95)

6Of course, we cannot expect that a graph showing this curve for a particular signal
to be a straight line, since this would require some type of ergodicity assumption that
in general will not be satis�ed. However, the average behaviour over many di�erent
types of imagery can be expected to be close to this situation.
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Proposition 8.7. (Density of local extrema; fractal noise)
In the scale-space representation of a one-dimensional continuous signal
generated by a stationary normal process with spectral density !�� (! 2
[0; 3[), the expected density of local maxima (minima) in a smoothed signal
at a certain scale decreases with scale as t�1=2.

Note that also this graph will be a straight line in a log-log diagram.

8.7.2. Discrete analysis

From the previous continuous analysis it is apparent that the density of
local extrema may tend to in�nity when the scale parameter tends to zero.
As earlier indicated, this result is not applicable to discrete signals, since
in this case the density of local extrema will have an upper bound because
of the �nite sampling. Hence, to capture what happens in the discrete
case, a genuinely discrete treatment is necessary. The treatment will be
based on the discrete scale-space concept developed in chapter 3. Given
a discrete signal f : Z! R the scale-space representation L : Z�R+ ! R
is de�ned by

L(x; t) =
1X

n=�1
T (n; t) f(x� n); (8.96)

where T (n; t) = e�tIn(t) is the discrete analogue of the Gaussian kernel,
and In are the modi�ed Bessel functions of integer order (Abramowitz
and Stegun 1964). Equivalently, this scale-space family can be de�ned in
terms of a semi-discretized version of the di�usion equation

Consider the scale-space representation of a signal generated by a
random noise signal. The probability that a point at a certain scale is say
a local maximum point is equal to the probability that its value is greater
than (or possibly equal to)7 the values of its nearest neighbours:

P (xi is a local maximum at scale t)

= P ((L(xi; t) � L(xi�1; t)) ^ (L(xi; t) � L(xi+1; t))): (8.97)

If we assume that the input signal f is generated by a stationary nor-
mal process then also L will be a stationary normal process and the
distribution of any triple (Li�1; Li; Li+1)T , from now on denoted by � =
(�1; �2; �3)

T , will be jointly normal, which means that its statistics will be
completely determined by the mean vector and the autocovariance ma-
trix. Trivially, the mean of � is zero provided that the mean of f is zero.

7Although there are several ways to de�ne a local extremum of a discrete signal
using di�erent combinations of \>" and \�", these de�nitions will yield the same
result with respect to this application.
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Since the transformation from f to L is linear, the autocovariance CL for
the smoothed signal L will be given by

CL(�; t) = T (�; t) � T (�; t) � Cf(�) = T (�; 2t) � Cf(�); (8.98)

where Cf denotes the autocovariance of f . In the last equality we have
made use of the semigroup property T (�; s) �T (�; t) = T (�; s+ t) for the
family of convolution kernels. If the input signal consists of white noise,
then Cf will be the discrete delta function and CL(�; t) = T (�; 2t). Taking
the symmetry property T (�n; t) = T (n; t) into account, the distribution
of � will be jointly normal with mean vector m3D and covariance matrix
C3D given by:

m3D =

0
@ 0

0
0

1
A ; C3D =

0
@ T (0; 2t) T (1; 2t) T (2; 2t)

T (1; 2t) T (0; 2t) T (1; 2t)
T (2; 2t) T (1; 2t) T (0; 2t)

1
A :

(8.99)

By introducing new variables �1 = �2 � �1 and �2 = �2 � �3, it follows
that � = (�1; �2)T will be jointly normal and its statistics completely
determined by

m2D =

�
0
0

�
; C2D =

�
a0(t) a1(t)
a1(t) a0(t)

�
: (8.100)

From well-known rules for the covariance C(�; �) of a linear combination
it follows that

a0(t) = C(�1; �1) = C(�2; �2)

= 2(T (0; 2t)� T (1; 2t));
(8.101)

a1(t) = C(�1; �2) = C(�2; �1)

= T (0; 2t)� 2T (1; 2t) + T (2; 2t):
(8.102)

From a0(t) � a1(t) = T (0; t) � T (2; t) and the unimodality property
of T (T (i; t) � T (j; t) if jij > jjj) it follows that a0(t) > a1(t) and
trivially a0(t) > 0 for all t. Now pd(t) can be expressed in terms of a
two-dimensional integral

pd(t) =

Z Z
f�=(�1;�2) : (�1�0)^(�2�0)g

1p
(2�)2jC2Dj

e��
TC�1

2D�=2 d�1 d�2:

(8.103)

After some calculations (Lindeberg 1991: appendix A.5.4) it follows that

pd(t) =
1

4
+

1

2�
arctan

 
a1(t)p

a20(t)� a21(t)

!
: (8.104)

Observe that for any a0(t) and a1(t) this value is guaranteed to never
be outside the interval [0; 1

2
]. With the expressions for a0(t) and a1(t),
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given by smoothing with the discrete analogue of the Gaussian kernel,
the maximum value over variations in t is obtained for t = 0:

pd(0) =
1

3
: (8.105)

Proposition 8.8. (Density of local extrema;1D)
In the scale-space representation (8.96) of a one-dimensional discrete sig-
nal generated by a white noise stationary normal process, the expected
density of local maxima (minima) in a smoothed signal at a certain scale
t is given by (8.104) with a0(t) and a1(t) according to (8.101) and (8.102).

It is interesting to compare the discrete expression (8.104) with the earlier
continuous result (8.92). The scale value where the continuous estimate
gives a density equal to the discrete density at t = 0 is given by the
equation pc(t) = pd(0), that is by

1

2�

r
3

2

1p
t
=

1

3
(8.106)

which has the solution

tc{d =
27

8�2
� 0:3420 (8.107)

This corresponds to a �-value of about 0:5848. Below this scale value the
continuous analysis is, from that point of view, de�nitely not a valid ap-
proximation of what will happen to discrete signals. By combining propo-
sition 8.8 with the e�ective scale concept we get:

Corollary 8.9. (Effective scale for discrete signals; 1D)
For discrete one-dimensional signals the e�ective scale parameter �d as
function of the ordinary scale parameter t is given by

�d(t) = A00 + B00 log

0
BB@ 4�

3� + 6 arctan

�
a1(t)p

a2
0
(t)�a2

1
(t)

�
1
CCA (8.108)

for some arbitrary constants A00 and B00 > 0 with a0(t) and a1(t) given
by (8.101) and (8.102).

When de�ning the e�ective scale �d for discrete signals it is natural to let
t = 0 correspond to �d = 0. In that case A00 will be zero. Without loss of
generality, we will from now on set A00 = 0 and B00 = 1.
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8.7.3. Asymptotic behaviour at �ne and coarse scales

A second order MacLaurin expansion of pd(t) (Lindeberg 1991: appen-
dix A.5.5) yields

pd(t) =
1

3
� 1

2
p
3�

t +
1

6
p
3�

t2 + O(t3): (8.109)

This means that the e�ective scale �d(t) can be MacLaurin expanded
(Lindeberg 1991: appendix A.5.5)

�d(t) = log

�
pd(0)

pd(t)

�
=

p
3

2�
t+

�
1

2
p
3�

+
3

8�2

�
t2 +O(t3); (8.110)

showing that at �ne scales the e�ective scale � for one-dimensional dis-
crete signals is approximately an a�ne function of the ordinary scale
parameter t. On the other hand, a Taylor expansion of pd(t) at coarse
scales gives

pd(t) =
1

2�

r
3

2

1p
t

�
1 +

1

8t
+O(

1

t2
)

�
(8.111)

which asymptotically agrees with the continuous result in (8.92). By in-
serting this expression into the expression for e�ective scale and by using
pd(0) =

1
3 it follows that

�d(t) = log

�
pd(0)

pd(t)

�
= log

 
2�

3

r
2

3

!
+

1

2
log(t) + log

�
1� 1

8t
+ O(

1

t2
)

�
:

Hence, at coarse scales the e�ective scale � for one-dimensional discrete
signals is approximately (up to an arbitrary a�ne transformation) a log-
arithmic function of the ordinary scale parameter t.

The term log(1 � 1
8t
+ O( 1

t2
)) expresses how much the e�ective scale

derived for discrete signals di�ers from the e�ective scale derived for con-
tinuous signals, provided that the same values of the (arbitrary) constants
A and B are selected in both cases.

8.7.4. Comparisons between the continuous and discrete results

As an illustration of the di�erence between the density of local maxima
in the scale-space representation of a continuous and a discrete signal, we
show the graphs of pc and pd in �gure 8.14 (linear scale) and �gure 8.15
(log-log scale). As expected, the curves di�er signi�cantly for small t and
approach each other as t increases.

Numerical values quantifying this di�erence for a few values of t are
given in table 8.1. It shows the ratio

�di�(t) =
�d(t)� �c(t)

�c(2t)� �c(t)
=

�d(t)� �c(t)

log(2)=2
; (8.112)
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Figure 8.14. The density of local maxima of a discrete signal as function of the
ordinary scale parameter t in linear scale. (a) Graph for t 2 [0; 100]. (b) Enlarge-
ment of the interval t 2 [0; 10]. For comparison the graphs showing the density
of local extrema for a continuous signal pc(t) and the second order Taylor expan-
sion of pd(t) around t = 0 have also been drawn. As expected, the continuous
and discrete results di�er signi�cantly for small values of t but approach each
other as t increases. The MacLaurin expansion is a valid approximation only in
a very short interval around t = 0.
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Figure 8.15. The density of local maxima of a continuous and a discrete signal
as function of the ordinary scale parameter t in log-log scale (t 2 [0; 100]). The
straight line shows pc(t) and the other curve pd(t). It can be observed that pc
and pd approach each other as the scale parameter increases. When t tends to
zero, pc(t) tends to in�nity while pd(t) tends to a constant (13 ).
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t �di�(t)
0 1

0.0625 250.30 %
0.25 67.46 %
1.0 -41.82 %
4.0 -10.47 %
16.0 -2.32 %
64.0 -0.56 %
256.0 -0.14 %
1 0

Table 8.1. Indications about how the e�ective scale obtained from a discrete
analysis di�ers from the e�ective scale given by the continuous scale-space theory.
The quantity �di�(t) expresses the di�erence between �d(t) and �c(t) normalized
such that one unit (100 % ) in �di�(t) corresponds to the increase in �c induced
by an increase in t with a factor of two.

which is a natural measure for how much the e�ective scale obtained from
a continuous analysis di�ers from a discretely determined e�ective scale.
The quantity is normalized so that one unit in �di� corresponds to the
increase in �c induced by an increase in t with a factor of two.

8.7.5. Extension to two dimensions

The same type of analysis can, in principle, be carried out also for two-
dimensional discrete signals. The probability that a speci�c point at a
certain scale is a local maximum point is again equal to the probabil-
ity that its value is greater than the values of its neighbours. Depend-
ing on the connectivity concept (four-connectivity or eight-connectivity
on a square grid) we then obtain either a four-dimensional or an eight-
dimensional integral to solve. However, because of the dimensionality of
the integrals, no attempts have been made to calculate explicit expres-
sions for the variation of the density as function of scale. Instead, for the
purpose of implementation, the behaviour over scale has been simulated
for various uncorrelated random noise signals (see section 7.7.1). From
those experiments it has been empirically demonstrated that the t�� de-
pendence (with � � 1:0) constitutes a reasonable approximation at coarse
levels of scale.

The reason the exponent � changes from 0:5 to 1:0 when going from
one to two dimensions can intuitively be understood by a dimen-
sional analysis: Assume (as in appendix 7.7.1) that the standard
deviation of the Gaussian kernel, � =

p
t, can be linearly related

to a characteristic length, x, in the scale-space representation of an
N -dimensional signal at scale t. Moreover, assume that a character-
istic distance d between the local extrema in that signal is linearly
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related to x. Then, the density of local extrema will be proportional
to d�N � x�N � ��N , that is to t�N=2.

8.8. Summary

We have analysed the behaviour of critical points in scale-space and
shown that non-degenerate critical points will in general form regular
curves across scales. Along those we have provided generally valid esti-
mates of the drift velocity. At degenerate critical points the behaviour is
more complicated and bifurcations may take place. For one-dimensional
signals, the only bifurcation events possible when the scale parameter in-
creases, are annihilations of pairs of local maxima and minima, while for
two-dimensional signals both annihilations and creations of pairs of local
extrema and saddle points can occur. Applied to grey-level and scale-space
blobs only annihilations and merges will take place in the one-dimensional
case, while the list of possibilities in two-dimensions comprises four types:
annihilations, merges, splits and creations.

Finally, it should be pointed out that this analysis has been mainly
concerned with the scale-space concept for continuous signals. When im-
plementing this theory computationally it is obvious that one has to con-
sider sampled (that is, discrete) data. At coarse scales, when a character-
istic length of features in the image can be regarded as large compared
to the distance between adjacent grid points, it seems plausible that the
continuous results should constitute a reasonable approximation to what
will happen in the scale-space representation of a discrete signal and vice
versa. However, as indicated in section 8.7 this similarity will not nec-
essarily hold8 at �ne scales. In those cases, a genuinely discrete theory
might be needed. A thorough understanding of what happens to contin-
uous signals under scale-space smoothing constitutes a �rst step towards
this goal.

8Some conceptual complications arise in this context (for instance, what should
be meant by drift velocity for discrete signals). It seems di�cult to estimate such a
quantity accurately, especially at �ne scales, since in the discrete case local extrema
will not move continuously, but rather in steps from one pixel to the next. Thus, one
cannot talk about velocity, but rather about how long it takes until an extremum
point moves one pixel. An alternative approach to this problem would be to analyse
the feature points with sub-pixel accuracy (although this idea has not been carried
out). Other conceptual problems concern what should be meant by singularities or
degenerate and nondegenerate critical points in the discrete case. One possibility is to
de�ne these in terms of adjacent pixels having equal values, or by transitions (say e.g.,
blob bifurcations). But, will the classi�cation of possible blob events still be valid in
the discrete case?
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