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Scale-Space Theory

Theory of multi-scale representation of sensory data developed by the image pro-
cessing and computer vision communities. The purpose is to represent signals
at multiple scales in such a way that fine scale structures are successively sup-
pressed, and a scale parameter t is associated with each level in the multi-scale
representation.

For a given signal f :RN → R, a linear scale-space representation is a family
of derived signals L:RN × R → R, defined by L(·; 0) = f(·) and

L(·; t) = h(·; t) ∗ f(·) (1)

for some family h:RN × R → R of convolution kernels [1, 2]. An essential re-
quirement on a the scale-space family L is that the representation at a coarse
scale constitutes a simplification of the representations at finer scales. Several
different ways of formalizing this requirement about non-creation of new struc-
tures with increasing scales show that the Gaussian kernel
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constitutes a canonical choice for generating a scale-space representation [3, 4,
5, 6]. Equivalently, the scale-space family satisfies the diffusion equation

∂tL =
1
2
∇2L. (3)

The motivation for generating a scale-space representation of a given data set
originates from the basic fact into account that real-world objects are composed
of different structures at different scales and may appear in different ways de-
pending on the scale of observation. For example, the concept of a “tree” is
appropriate at the scale of meters, while concepts such as leaves and molecules
are more appropriate at finer scales. For a machine vision system analysing an
unknown scene, there is no way to know what scales are appropriate for describ-
ing the data. Thus, the only reasonable approach is to consider descriptions at
all scales simultaneously [1, 2].

From the scale-space representation, we can at any level of scale define scale-
space derivatives by

Lxα(x; t) = ∂xα (g(x; t) ∗ f(x)) (4)

where α = (α1, . . . , αD)T and ∂xαL = Lx1
α1 ...xD

αD constitute multi-index nota-
tion for the derivative operator ∂xα . Such Gaussian derivative operators provide
a compact way to characterize the local image structure around a certain image
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point at any scale. Specifically, the output from scale-space derivatives can be
combined into multi-scale differential invariants, to serve as feature detectors.

More generally, a scale-space representation with its Gaussian derivative op-
erators can serve as basis for expressing a large number of early visual operations,
including feature detection, stereo matching, computation of motion descriptors
and the computation of cues to surface shape [3, 4]. Neurophysiological studies
have shown that there are receptive field profiles in the mammalian retina and
visual cortex, which can be well modelled by the scale-space framework [7].

Pyramid representation [8] is a predecessor to scale-space representation,
constructed by simultaneously smoothing and subsampling a given signal. In
this way, computationally highly efficient algorithms can be obtained. A prob-
lem noted with pyramid representations, however, is that it is usually algorith-
mically hard to relate structures at different scales, due to the discrete nature
of the scale levels. In a scale-space representation, the existence of a continuous
scale parameter makes it conceptually much easier to express this deep structure
[2]. For features defined as zero-crossings of differential invariants, the implicit
function theorem directly defines trajectories across scales, and at those scales
where bifurcations occur, the local behaviour can be modelled by singularity
theory [3, 5].

Extensions of linear scale-space theory concern the formulation of non-linear
scale-space concepts more committed to specific purposes [9]. There are strong
relations between scale-space theory and wavelet theory, although these two
notions of multi-scale representation have been developed from slightly different
premises.
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