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Abstract. This article shows how a (linear) scale-space representation can be
defined for discrete signals of arbitrary dimension. The treatment is based upon
the assumptions that (i) the scale-space representation should be defined by con-
volving the original signal with a one-parameter family of symmetric smoothing
kernels possessing a semi-group property, and (ii) local extrema must not be
enhanced when the scale parameter is increased continuously.

It 1s shown that given these requirements the scale-space representation must
satisfy the differential equation 9;L = Ag.spL for some linear and shift invariant
operator As.sp satisfying locality, positivity, zero sum, and symmetry conditions.
Examples in one, two, and three dimensions illustrate that this corresponds to
natural semi-discretizations of the continuous (second-order) diffusion equation
using different discrete approximations of the Laplacean operator. In a special
case the multi-dimensional representation is given by convolution with the one-
dimensional discrete analogue of the Gaussian kernel along each dimension.

Keywords: scale, scale-space, diffusion, Gaussian smoothing, multi-scale rep-
resentation, wavelets, image structure, causality

1 Introduction

Image structures are intrinsically of a multi-scale nature. Objects in the world
and, hence, image features only exist as meaningful entities over certain ranges of
scale. The idea behind a scale-space 1s to explicitly cope with this inherent prop-
erty of measured data, by embedding a given signal into a family of gradually
smoothed and simplified signals, in which the fine scale information is succes-
sively suppressed. Each member of the scale-space family should be associated
with a specific value of a so-called scale parameter, somehow describing the cur-
rent level of scale. A natural requirement of such an embedding is that features
at coarser scales should correspond to (abstractions of) features at finer scales —
they should not be just accidental phenomena created by the smoothing method.

* The support from the Swedish National Board for Industrial and Technical Devel-
opment, NUTEK] is gratefully acknowledged.
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This property has been formalized in different ways by different authors.
When Witkin [21] introduced the term “scale-space” he observed a decreasing
number of zero-crossings when subjecting a signal to Gaussian smoothing. Koen-
derink [9] showed that natural constraints; causality, homogeneity, and isotropy,
necessarily imply that the scale-space of a two-dimensional signal must satisfy
the diffusion equation. Other formulations were given by Yuille and Poggio [22],
regarding the zero-crossings of the Laplacean, Babaud el al. [2], and Lindeberg
[12] who combined a decreasing number of local extrema with a semi-group
structure on the smoothing transformation. Recently, Florack et al. [6] showed
that the uniqueness of the Gaussian kernel for scale-space representation can be
derived under weaker assumptions by imposing scale invariance on a semi-group
of convolution kernels.

From the similarity of these results it can by now be regarded as well es-
tablished that within the class of linear transformations the natural way to
construct a scale-space L : R™ x IRy — IR of a continuous signal f : RY — R
is by convolution with the Gaussian kernel

L5 t) =905 )xf() (1)

where

g(l‘, t) — e—(xf+...+x?\,)/2t ’ (2)

\/27TtN

or equivalently, by solving the diffusion equation
1
oL =5ViL (3)

with initial condition L(-; 0) = f. In contrast to many other multi-scale rep-
resentations like pyramids (see, e.g., Burt [3]) or orthogonal wavelets (see, e.g.,
Mallat [17]), structures in the scale-space representation can be easily related
across scales, since it is described by a differential equation (see, e.g., [14, 16]).

When applying scale-space theory in practice it should, however, be noted
that real-life signals from standard detectors are discrete. The subject of this pa-
per is to develop how scale-space theory can be discretized while still maintaining
the scale-space properties exactly.

2 Scale-Space Theory for 1-D Discrete Signals

For one-dimensional signals it is possible to develop a complete discrete theory
based on the assumption that the number of local extrema in a signal must not
increase with scale. Below, are briefly summarized some of the main results from
earlier work on this [12, 13]. The hasty reader may proceed directly to Sec. 3,
where higher-dimensional signals are treated.

Definition1 Discrete scale-space kernel (1-D). A kernel K : Z — R is
said to be a scale-space kernel if for any signal f;, : Z — IR the number of local
extrema in fy,; = K * f;,, does not exceed the number of local extrema in f;,.
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Using classical results (mainly by Edrei and Schoenberg; see Karlin [8]) it is
possible to completely classify those kernels that satisfy this definition.

Theorem 2 Classification of discrete scale-space kernels (1-D). A kernel
K : Z — IR s a scale-space kernel if and only if its generating function

er(z) =5 K(n)z" is of the form

oQ

-1
= E o (g-127 +q12) (1+a22)(1+6lz )
PYrlz)=cz" e
o E(l_ﬁiz)(l—%fl)
e>0; k€7 qo1,q1,04,8,7,6 >0 B,y < 1; Z(ai+5i+7i+5i) c
i=1

The interpretation of this result is that discrete scale-space kernels obey the
following decomposition property:

Corollary 3 Primitive discrete smoothing transformations (1-D). For
discrete signals Z — 1R, there are five praimitive types of linear and shift-invariant
smoothing transformations, of which the last two are trivial;

— two-point weighted average or generalized binomial smoothing

fout(x):fzn(x)+azfzn(x_1) (O‘ZO)’
fout(x):fzn(x)‘i‘(szfzn(x‘i‘l) (62 ZO),

— moving average or first order recursive filtering

fout(x):fin(x)‘i‘ﬁifout(x_1) (OSBZ < 1);
fout(x):fzn(x)+72fout(x+1) (OSP}/Z < 1);

— infinitesimal smoothing or diffusion smoothing (see Theorem 4 for an exam-
ple),

— rescaling, and

— translation.

It follows that a discrete kernel is a scale-space kernel if and only if it can be
decomposed into the above primitive transformations. Moreover, the only non-
trivial smoothing kernels of finite support arise from binomial smoothing.

If Definition 1 is combined with a requirement that the family of smoothing
transformations must possess a semi-group property and have a continuous scale
parameter, then the result 1s that there is in principle only one way to construct
a scale-space for discrete signals.

Theorem 4 Scale-space for discrete signals; Necessity and sufficiency.
Given any signal [ : Z — R, let L : Z xRy — IR be a one-parameter family of
functions defined by L(x; 0) = f(z) (x € Z) and

oQ

L(z; t)= Y T(n; )f(x—n) (4)

n=—oQ
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(x €Z,1>0), where T : Z x Ry — IR is a one-parameter family of symmetric
functions satisfying the semi-group property T(-; s)*T(-; t) = T(-; s+t) and the
normalization criteriony . T(n; t) = 1. For any signal f and anyts > 1 1t
is required that the number of local extrema (zero-crossings) in L(x; ta2) must not
exceed the number of local extrema (zero-crossings)in L(x; t1). Then, necessarily

(and sufficiently),
T(n; t) = e *'I,(at) (5)

for some non-negative real «, where I, are the modified Bessel functions of
wnteger order. This kernel T is called the discrete analogue of the Gaussian kernel.

Similar arguments in the continuous case uniquely lead to the Gaussian kernel.
The term “diffusion smoothing” can be understood by noting that the scale-
space family L satisfies a semi-discretized version of the diffusion equation:

Theorem 5 Diffusion formulation of the discrete scale-space. The repre-
sentation L : Z x Ry — IR given by (4) with T : Z x Ry — IR according to (5)

and o« = 1 satisfies the system of ordinary differential equations
1 1
OL(w; 1) = 5(L(e + 15 1) = 2L(w; 1) + L(z = 1; 1)) = 5(V3L)(; ) (6)

with indtial condition L(z; 0) = f(x) for any discrete signal f: Z — TR in 1.

Despite the completeness of these results, they cannot be extended directly to
higher dimensions, since in two (and higher) dimensions there are no non-trivial
kernels guaranteed to never increase the number of local extrema in a signal.
One example of this, originally due to Lifshitz and Pizer [11], can be found in
[12] (see also Yuille [23]). Anyway, an important point about this study, is that it
gives a deep understanding of what one-dimensional linear transformations can
be regarded as smoothing transformations. It also shows that the only reasonable
way to convert the one-dimensional scale-space theory from continuous signals
to discrete signals is by discretizing the diffusion equation.

3 Selecting Scale-Space Axioms in Higher Dimensions

Koenderink [9] derives the scale-space for two-dimensional continuous images
from three assumptions; causality, homogeneity, and isotropy. The main idea is
that it should be possible to trace every greylevel at a coarse scale to a corre-
sponding greylevel at a finer scale. In other words, no new level curves should
be created when the scale parameter increases. Using differential geometry he
shows that these requirements uniquely lead to the diffusion equation.

It 1s of course impossible to apply these ideas directly in the discrete case,
since there are no direct correspondences to level curves or differential geometry
for discrete signals. Neither can the scaling argument by Florack et al. [6] be
carried out in a discrete situation. An alternative way of expressing the first
property, however, 1s by requiring that if for some scale level ty a point zy 1s
a local mazimum for the scale-space representation at that level (regarded as a
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function of the space coordinates only) then its value must not increase when the
scale parameter increases. Analogously, if a point is a local minimum then its
value must not decrease when the scale parameter increases.

It is clear that this formulation is equivalent to the formulation in terms of
level curves for continuous images, since if the greylevel value at a local maximum
(minimum) would increase (decrease) then a new level curve would be created.
Conversely, if a new level curve is created then some local maximum (minimum)
must have increased (decreased). An intuitive description of this requirement is
that it prevents local extrema from being enhanced and from “popping up out of
nowhere”. In fact, this is closely related to the maximum principle for parabolic
differential equations (see, e.g., Widder [20]).

In next section it will be shown that this condition combined with a contin-
uous scale parameter means a strong restriction on the smoothing method also
in the discrete case, and again it will lead to a discretized version of the diffu-
sion equation. In a special case, the scale-space representation will be reduced
to the family of functions generated by separated convolution with the discrete
analogue of the Gaussian kernel, T'(n; t).

3.1 Basic Definitions

Given a point # € Z” denote its neighbourhood of connected points by N(z) =
{€eZN (| t—€|oo< 1)A(€ # 7)) (corresponding to what is known as eight-
connectivity in the two-dimensional case). The corresponding set including the
central point  is written Ny (z). Define (weak) extremum points as follows:

Definition 6 Discrete local maximum. A point z € ZV is said to be a
(weak) local maximum of a function g : 7Y —Rif g(z) > g(&) for all & € N(x).

Definition 7 Discrete local minimum. A point z € Z” issaid to be a (weak)
local minimum of a function ¢ : Z" — IR if g(z) < g(&) for all £ € N(z).

The following operators are natural discrete correspondences to the Laplacean
operator V? in one (V3), two (VZ, VZXQ) and three (VZ, Vig,, szg,) dimensions
respectively (below the notation f_q o1 stands for f(z —1,y,2 + 1) etc.):
(V5fo = f-1 = 2fo + f1,
(Vafoo = fo1,0+ Faro+ fo—1 + for1 —4fo0,
(ViaFloo = 1/2(f-1,1+ for 1+ Far—1 + fra 41 — 4f00),
(V3000 = f=1,00+ fr100+ fo—1,0+ for1,0 + fo0,-1 + fo041 = 6f000,

(Viefooo=1/4  (for—r0+ o110+ fri-10+ friqio0+
foio-1+ 1041+ fri0-1+ fri041 +
foc1—1+ fo—1i41+ fot1,-1 4 fo41,41 — 12f00,0),

(VZ:fooo=1/4  (for—1—1+Ff1 141+ Fo1 41 -1+ fo1 4141+
oot om0+ fru,-10 + fr 4,41 = 8f0,0,0)
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4 Axiomatic Discrete Scale-Space Formulation

Given that the task is to state an axiomatic formulation of the first stages of
visual processing, the visual front end, a list of desired properties may be long;
linearity, translational invariance, rotational symmetry, mirror symmetry, semi-
group, causality, positivity, unimodality, continuity, differentiability, normaliza-
tion to one, nice scaling behaviour, locality, rapidly decreasing for large « and ¢,
existence of an infinitesimal generator (explained below), and invariance with
respect to certain greylevel transformations, etc. Such a list will, however, contain
redundancies, as does this one. Here, a (minimal) subset of these properties will
be taken as axioms. In fact, it can be shown that all the other above-mentioned
properties follow from the selected subset (see also [15, 16]).

The scale-space representation for higher-dimensional signals is constructed
analogously to the one-dimensional case. To start with, postulate that the scale-
space should be generated by convolution with a one-parameter family of kernels,

e, L(z; 0) = f(x) and

Liz; )= Y T(& Of(x—€) (1>0) . (7)
ceZV

This form of the smoothing formula corresponds to natural requirements about
linear shift-invariant smoothing and the existence of a continuous scale param-
eter. It is natural to require that all coordinate directions should be handled
identically. Therefore all kernels should be symmetric. Impose also a semi-group
condition on the family T". This means that all scale levels will be treated simi-
larly, that is, the smoothing operation does not depend on the scale value, and
the transformation from a lower scale level to a higher scale level is always given
by convolution with a kernel from the family:

L(+; t2) = {definition} = T'(; £2) * f = {semi-group} =
=(T(; ta—t1)*T(:; t1)) * f = {associativity} =
=T(5ta—t1)*(T(:; t1) * f) = {definition} = T'(-; to —t1)* L(; t1) . (8)
As smoothing criterion the non-enhancement requirement for local extrema is
taken. It is convenient to express it as a condition of the derivative of the scale-
space family with respect to the scale parameter. In order to ensure a proper

statement of this condition, where differentiability is guaranteed, it is necessary
to state a series of preliminary definitions leading to the desired formulation.

4.1 Definitions

Let us summarize this (minimal) set of basic properties, which a family should
satisfy in order to be a candidate family for generating a (linear) scale-space.

Definition 8 Pre-scale-space family of kernels. A one-parameter family of
kernels 7 : ZV x IR+ — IR is said to be a pre-scale-space family of kernels if it
satisfies
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— the semi-group property T'(-; s)«T(-; t) =T(; s+1),

the symmetry properties T(—wzy, 2a,...,2n; ) = T(x1,22,...,2n; t) and
T(PYN (21,29, ...,zn); 1) = T(x1, 20, ..., zn; 1) for all 2 = (21,29, ..., 2N) €
Z", allt € IRy, and all possible permutations P,iv of N elements, and

the continuity requirement || 7(-; ¢) — 6(+) |[1— 0 when ¢ | 0.

Definition 9 Pre-scale-space representation. Let f : Z" — IR be a dis-
crete signal and let 7' : zZ"V x IR; — IR be a pre-scale-space family of kernels.
Then, the one-parameter family of signals L : zV x Ry — IR given by (7) is
said to be the pre-scale-space representation of f generated by T

Provided that the input signal f is sufficiently regular, these conditions on the
family of kernels 7' guarantee that the representation L is differentiable and
satisfies a system of linear differential equations.

Lemma 10 A pre-scale-space representation is differentiable. Let
L: 7N x IRy — IR be the pre-scale-space representation of a signal f - zN —
IR in ly. Then L satisfies the differential equation

0L = AL 9)
for some linear and shifi-invariant operator A.

Proof. It f is sufficiently regular, e.g., if f € [;, define a family of operators
{7:,t > 0}, here from from ) to {y, by Zof = T(-; t) * f. Due to the conditions
imposed on the kernels it will satisfy the relation

L (] (7e = Teo) f = Jim | (Ze—e = ) (T f) [1= 0 (10)

where 7 is the identity operator. Such a family is called a strongly-continuous
semigroup of operators (see Hille and Phillips [7] p. 58-59). A semi-group is often
characterized by its infinitesimal generator A defined by

(11)

The set of elements f for which A exists is denoted D(.A). This set is not empty
and never reduces to the zero element. Actually, it is even dense in {; (see Hille
and Phillips [7] p. 307). If this operator exists then

L5 t4+h) =L, t) - Tnf =T f

jp HO e B
- Th(Tef) — (If) _ _ .
lim - = A(T.f) = AL(:; ).

According to a theorem by Hille and Phillips ([7] p. 308) strong continuity implies
(T2 f) = AT f = TLAS for all f € D(A). Hence, the scale-space family L must
obey the differential equation 9;1 = AL for some linear operator A. Since L
is generated from f by a convolution operation it follows that .4 must be shift-
invariant. O
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This property makes 1t possible to formulate the previously indicated scale-space
property in terms of derivatives of the scale-space representation with respect to
the scale parameter. As in the maximum principle, the greylevel value in every
local maximum point must not increase, while the greylevel value in every local
minimum point must not decrease.

Definition 11 Pre-scale-space property: Non-enhancement of extrema.
A differentiable one-parameter family of signals L : 7Y x IRy — IR is said to
possess pre-scale-space properties, or equivalently not to enhance local extrema,
if for every value of the scale parameter ¢, € IRy it holds that if zq € 7V is
a local extremum point for the mapping & — L(x; ) then the derivative of L
with respect to ¢ in this point satisfies

G L(wo; to) <0 if g is a local maximum point, (13)
e L(wo; to) > 0 if 2y is a local minimum point. (14)

Now it can be stated that a pre-scale-space family of kernels is a scale-space
family of kernels if it satisfies this property for any input signal.

Definition 12 Scale-space family of kernels. A one-parameter family of pre-
scale-space kernels T : ZV x IR; — IR is said to be a scale-space family of kernels
if for any signal f : ZY — IR € Iy the pre-scale-space representation of f gener-
ated by T possesses pre-scale-space properties, i.e.,1f for any signal local extrema
are never enhanced.

Definition 13 Scale-space representation. A pre-scale-space representation
L:ZY x IRy — IR of a signal f : 7" — R generated by a family of kernels
T:2ZN x IR; — IR, which are scale-space kernels, is said to be a scale-space
representation of f.

In the next section it will be shown how these requirements strongly restrict the
possible class of kernels and scale-space representations. For example, they will
lead to a number of restrictions on the operator A in Lemma 10:

Definition 14 Infinitesimal scale-space generator. A shift-invariant linear
operator A from [y to [y

(AL)(w; 1) = > agL(z =& 1) (15)
ceZ”

is said to be an infinitesimal scale-space generator, denoted Ag.gp, if the coefli-
cients ag € R satisfy

the locality condition a = 0 if £ ¢ N4 (0),
— the positivity constraint a; > 0if £ # 0,
— the zero sum condition ZEEZN ag = 0, as well as

the symmetry requirements U=y 6 en) = A(E1 Eaynfn) and ApN (¢, £abn) =

A(e, .. ey TOr Al & = (&1,82,...,8N) € Z" and all possible permutations
P,iv of N elements.
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4.2 Necessity

It will first be shown that these conditions necessarily imply that the family L
satisfies a semi-discretized version of the diffusion equation.

Theorem 15 Scale-space for discrete signals: Necessity. A scale-space
representation L : ZN x IRy — IR of a signal f: ZN — R salisfies the differ-
ential equation

0L = AgesyL (16)

with initial condition L(-; 0) = f(-) for some infinitesimal scale-space generator
Asesp. In one, two and three dimensions respectively (16) reduces to

L= V3L (17)
WL = a1 VIL 4+ asVi.L | (18)
L =1 ViL 4+ asVisL+ asViysL | (19)

for some constants oy > 0, g > 0 and az > 0.

Proof. The proof consists of two parts. The first part has already been presented
in Lemma 10, where it was shown that the requirements on the kernels imply that
the family L obeys a linear differential equation. Because of the shift invariance
AL can be written in the form (15). In the second part counterexamples will be
constructed from various simple test functions in order to delimit the class of
possible operators.

The extremum point conditions (13), (14) combined with Definitions 12-13
mean that A4 must be local, i.e., that a¢ = 0 if £ ¢ N4 (0). This is easily under-
stood by studying the following counterexample: First, assume that ag, > 0 for

some &y € N4 (0) and define a function f; : ZY — R by

e>01fx =0,
B 0if 2 € N(0),
hiz) = 1if ¢ = &, and (20)

0 otherwise.

Obviously, 0 is a local maximum point for f;. From (9) and (15) one obtains
0:L(0; 0) = €ap + ag,. It is clear that this value can be positive provided that
¢ is chosen small enough. Hence, L cannot satisfy (13). Similarly, it can also be
shown that a¢, < 0 leads to a violation of the non-enhancement property (14)
(let € < 0). Consequently, a; must be zero if £ ¢ N4 (0).

Moreover, the symmetry conditions imply that permuted and reflected coef-
ficients must be equal, i.e., a(_¢, ¢, en) = Q¢ 6a,...6) and ApN (¢, £ay. bn) =

A(e, 6. 6 TOr Al & = (§1,&2,...,6N) € Z" and all possible permutations PN
of N elements. For example, the two-dimensional version of (15) reads

aba
OL=|bech | L (21)

aba
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for some a, b and ¢. Then, consider the function given by

lif z € N;4(0), and

0 otherwise.

o) = { (22)

With the given (weak) definitions of local extremum points it is clear that 0
is both a local maximum point and a local minimum point. Hence 0;L(0; 0)
must be zero, and the coefficients sum to zero 77V te = 0, which in two

dimensions reduces to 4a 4+ 4b+ ¢ = 0 in (21). Obviously, (15) can be written

= (AL )= Y ag(Llxr =& ) = L(x; 1)), (23)

€EN(0)
and the two-dimensional special case (21) reduces to

1 /2 1/2
HL=a1 [1-41]L+as -2 L= Vil +asVi.L . (24)
1 /2 1/2

Finally, by considering the test function

e>01fx = 0,
Jalwy) =4 —lifa=¢ and (25)

0 otherwise.

for some € in N(0) one easily realizes that a; must be non-negative it £ € N(0).
It follows that oy > 0 and ag > 0in (24), which proves (18). (17) and (19) follow
from similar straightforward considerations. The initial condition L(-; 0) = f is
a direct consequence of the definition of pre-scale-space kernel.

|

4.3 Sufficiency
The reverse statement of Theorem 15 1s also true.

Theorem 16 Scale-space for discrete signals: Sufficiency. Let f : 7V —
IR be a discrete signal in by, let As.sp be an infinttesimal scale-space generator,
and let L - ZV x IRy — IR be the representation generated by the solution to the
differential equation

6tL = AScSpL
with initial condition L(-; 0) = f(-). Then, L is a scale-space representation of
I

Proof. 1t follows almost trivially that L possesses pre-scale-space properties, i.e.,
that L does not enhance local extrema, if the differential equation is rewritten
in the form

= (AL )= Y ag(Llxr =& ) = L(x; 1) . (26)

€EN(0)
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If at some scale level ¢ a point z is a local maximum point then all differences
L(x —¢&; t)— L(z; t) are non-positive, which means that 9; L(z; t) < 0 provided
that ag > 0. Similarly, if a point is a local minimum point then the differences
are all non-negative and 9;L(z; ¢) > 0.

What remains to be verified is that L actually satisfies the requirements for
being a pre-scale-space representation. Since L is generated by a linear differen-
tial equation, it follows that L can be written as the convolution of f with some
kernel 7', i.e., L(:; t) = T(-; t) * f. The requirements of pre-scale-space kernels
can be shown to hold by letting the input signal f be the discrete delta function.
The semi-group property of the kernels follows from the fact that the coefficients
¢ are constant, and the solution at a time s 4+t hence can be computed from the
solution at an earlier time s by letting the time increase by ¢. The symmetry
properties of the kernel are obvious from the symmetry of the differential equa-
tion. The continuity at the origin follows directly from the differentiability. O

These results show that a one-parameter family of discrete signals s a scale-
space representation if and only if it satisfies the differential equation (16) for
some infinitesimal scale-space generator.

5 Parameter Determination

For simplicity, from now on mainly two-dimensional signals will be considered.
If (18) is rewritten in the form

L =C((1-9)ViL+9V3.L) =CVIL , (27)

the interpretation of the parameter C is just a trivial rescaling of the scale
parameter. Thus, without loss of generality C' may be set to % in order to get the
same scaling constant as in the one-dimensional case. What is left to investigate
is how the remaining degree of freedom in the parameter v € [0, 1] affects the
scale-space representation.

If ¥ = 1 then a undesirable situation appears. Since the cross-operator only
links diagonal points, the system of ordinary differential equations given by (27)
can then be split into two uncoupled systems, one operating on the points with
even coordinate sum x + y and the other operating on the points with odd
coordinate sum. It is clear that this is really an unwanted behaviour, since then
even after a substantial amount of “blurring”, for certain types of input signals
the “smoothed” greylevel landscape may still have a rather saw-toothed shape.

5.1 Derivation of the Fourier Transform

Further arguments showing that v must not be too large can be obtained by
studying the Fourier transform of the corresponding scale-space family of kernels.

Proposition17 Fourier transform of the 2D discrete scale-space. Let L :
Y/ R4 — IR be the scale-space representation of a discrete signal f : 7Z* — R
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generated by (27) with initial condition L(-; 0) = f(-). Assume that f € .
Then the generating function of the kernel describing the transformation from
the original signal to the representation at a certain scale t is given by

or(z,w) = Z(m,n)€12 T(m,n; t)z"w" =
e—(2—7)+—(1;7)(z_1+z+w_1+w)+%(z_1w_1+z_1w+zw_1+zw) ) (28)
Its Fourier transform is
SDT(Za w) — ’l/)T(e_iU, e—iv) — e—(Z—'y)t + (1—7)(cosutcosv)t + (ycosucosu)t ) (29)

Proof. Discretizing (27) further in scale using Euler’s explicit method with scale
step At, gives an iteration formula of the form

LIt = (1= (2—y)At) L, +

(1 —7y)At

— (Lioyj+ Liyay + L0+ Lij ) +

v Al

e (Lf_yjor+ Dicigyn + Dipnjoa + Dl i), (30)

where the subscripts ¢ and j denote the spatial coordinates x and y respectively,

and the superscript k& denotes the iteration index. The generating function de-

scribing one iteration with this transformation is

(1 —7)At
2

(z_lw_l—i—z_lw—l—zw_l—l—zw) . (31)

Pstep(z,w) = (1 = (2 - 7)At) + (Z_1+Z+w_1—|—w)—|—

v At

4
Assume that the scale-space representation at a scale level ¢ is computed using
n iterations with a scale step At = % Then, the generating function describing
the composed transformation can be written @oomposedn (2, W) = (@step(z, w))".
After substitution of At for % and using limy, o (14 %2)" = e if limy, oo oy =
a, 1t follows that @omposedn(z) tends to ¢r(z,w) according to (28) when n —

o0, provided that the discretization (30) converges to the actual solution of (27).
O

5.2 Unimodality in the Fourier Domain
It is easy to verify that the Fourier transform is unimodal if and only if v < %

Proposition 18 Unimodality of the Fourier transform (2D).

The Fourier transform (29) of the kernel describing the transformation from
the original signal to the smoothed representation at a coarser level of scale s
unimodal f and only of v < %

Proof. Differentiation of (29) gives dy ¢ = —t(u,v)sin u (1 — y(1 4 cosw)) ¢ and
Gptp = —p(u,v)sinv (1 — y(1 + cosu))t. The Fourier transform decreases with
|u| and |v| for all w and v in [—m, #] if and only if the factors (1 — y(1 + cosv))
and (1 — (1 + cosu)) are non-negative for all v and v, i.e., if and only if v < %
Then, any directional derivative away from the origin is negative. a
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5.3 Separability

The transformation kernel is separable if and only if its Fourier transform is
separable, that is, if and only if ¢7(u, v) can be written on the form Ur(u)Vp(v)
for some functions Ur and Vp. From (29) it is realized that this separation is
possible if and only if v = 0. Hence,

Proposition19 Separability of the 2D discrete scale-space. The convolu-
tion kernel associated with the scale-space representation defined by Lz, y; 0) =

flz,y) and

1
L= 5 ((1=7)VEL+7Vie) (32)
1s separable if and only iof v = 0. Then L s given by
L(z,y; )= Y T(m;t) > T(n; )f(x—m,y—n) (t>0), (33)

where T(n; t) = e '1,(t) and I, are the modified Bessel functions of integer
order.

Proof. The Fourier transform ¢ (u,v) can be written in the form Urp(u)Vp(v)
for some functions Ur and Vp if and only if the term with cosucosv can be
eliminated from the argument of the exponential function, i.e., if and only if 7
is zero. In that case the Fourier transform reduces to

’l/)T(U, U) — 6(—2+cosu+cosv)t — 6(—1+cosu)te(—1+cosv)t (34)

which corresponds to separated smoothing with the one-dimensional discrete
analogue of the Gaussian kernel along each coordinate direction.

It can also be verified directly that (33) satisfies (32). Consider the possible
scale-space representation of an N-dimensional signal generated by separable
convolution with the one-dimensional discrete analogue of the Gaussian kernel;

l.e., given f: Z" — 1R define L : ZV x IRy — IR by

L(z;t)= Y In(& f(x—&) (t>0), (35)
xEZN
where Ty : Z" x IRy — IR is given by

N

Tn(& 0 =[]0 1) (36)

i=1

E=1(&,...,&n), and T : Z x IRy — IR is the discrete analogue of the Gaussian
kernel, Ty (n; t) = eI, (t). It will be shown that this representation satisfies a
semi-discretized version of the two-dimensional diffusion equation

1
oL = 5V§N+1L , (37)
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where

(Ving L) (s ) =Y Lz + e t) = 2L(z; ) + Lz —ei; t) . (38)

i=1

and e; denotes the unit vector in the i¢th coordinate direction. Consider

(TN )(&; t Z o) (&s ) [[ T 1) - (39)
i=1 FE)

Since Ty satisfies (6), this expression can be written

N
1
(O TN)(&5 Z 5 G—L ) -200(&; )+ TG+ L t))HTl(fj; t),
i=1 j#i
which 1s obviously equivalent to
TN = V2N+1 . (40)

The same relation holds for L provided that the differentiation and infinite sum-
mation operators commute. a

In other words, in the separable case the resulting higher-dimensional discrete
scale-space corresponds to repeated application of the one-dimensional scale-
space concept along each coordinate direction.

5.4 Discrete Iterations

The discretization of (27) in (30) using Euler’s explicit method with scale step
At corresponds to iterating with a kernel with the computational molecule

vy At (1—~v)At vy At
4 2 4
G801 — (2 — A Bt | (41)
vy At 1—vy)At vy At
4 2 4

Clearly, this kernel is unimodal if and only if v < % It is separable if and only if

v = At (see below). In that case, the corresponding one-dimensional kernel is a

discrete scale-space kernel in the sense of Definition 1 if and only if Af < % (see

Proposition 10 in [12]). This gives a further indication that y should not exceed
1

the value 5.

Proposition 20 Separability of the iteration kernel. The iteration kernel
(41), corresponding to discrete forward iteration with Euler’s explicit method, is
separable if and only if v = At. In that case, the corresponding one-dimensional
kernel is a discrete scale-space kernel if and only if 0 < v < 1/2.
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Proof. Since the kernel is symmetric and the coefficients sum to one, the kernel
is separable if and only if it can be written as a kernel (a, 1 — 2a, a) convolved
with itself, i.e., if and only if there exists an a > 0 such that a? = yAt/4,
a(l —a) = (1 —y)At/2, and (1 — @)? = 1 — (2 — y)At. The first equation has
one non-negative root a = 1/yAt/2. Insertion into the second equation gives
two conditions for At; either At = 0 or At = 5. One verifies that these roots
satisfy the third equation. The kernel (@, 1 — 2a, a) is a discrete scale-space
kernel if and only if a < % (see Equations (30) and (31) in [12]; compare also
with Theorem 2). O

The boundary case y = At = % gives the iteration kernel in Fig. 1(a) correspond-
ing to separated convolution with the one-dimensional binomial kernel (%, %, %)
frequently used in pyramid generation (see, e.g., Crowley [4]).

1/16 1/8 1/16 1/8 2/8 1/8 1/361/9 1/36 1/6 4/6 1/6
( 1/8 1/4 1/8 ) (2/8 —12/8 2/8) ( 1/9 4/9 1/9 ) (4/6 —20/3 4/6)

1/16 1/8 1/16 1/8 2/8 1/8 1/361/9 1/36 1/6 4/6 1/6
(a) (b) (c) (d)

Fig.1. Computational molecules corresponding to (from left to right); (a) discrete
iteration with At = v = %, (b) the Laplacean operator when v = %, (c) discrete
iteration with At =~ = %, and (d) the Laplacean operator when v = %

5.5 Spatial Isotropy

Another aspect that might affect the selection of 7 is spatial isotropy. It is not
clear that rotational invariance is a primary quality to be aimed at in the dis-
crete case, since then one is locked to a fixed square grid. It is also far from
obvious what should be meant by spatial isotropy in a discrete situation. Pos-
sibly, it is better to talk about the lack of spatial isotropy, spatial anisotropy,
or rotational asymmetry. However, since the Fourier transform is a continuous
function of u and v, one can regard its variation as a function of the polar angle,
given a fixed value of the radius, as one measure of this property. By express-
ing ¢¥r(u,v) in polar coordinates © = wcos¢, v = wsin¢g and examining the
resulting expression,

Ur(w cos ¢, wsin g) = M oo P s (42)
where
h(w cos 6,wsin ) = —(2 = 7) + (1 — 7)(cos(w cos §) + cos(w sin §)) +
3 cos(w cos ) cos(wsin ) | (43)

one realizes that the value of y that gives the smallest angular variation for a
fixed value of w, depends on w. Hence, with this formulation, the “rotational
invariance” is scale dependent. At coarse scales one obtains:
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Proposition 21 Rotational invariance in the Fourier domain (2D).
The value of v that gives the least rotational asymmetry for large scale phenom-
ena in the solution to the differential equation (27) isvy = L

§ .
Proof. The Taylor expansion of h for small values of w is (see [13] Appendix A.2.3)

h(wcos ¢, wsin @) = —lwz + i(1 + (67 — 2) cos? gsin? p)w* + O(W®) | (44)

2 24
where the O(w®) term depends on both ¢ and . Observe that if v = % then the
¢-dependence decreases with w as w® instead of as w?. a

This means that v = % asymptotically, i.e., with increasing spatial scale, gives the
most isotropic smoothing effect on coarse-scale events. The reason why spatial
isotropy 1s desired at coarse scales rather than at fine scales is because the grid
effects become smaller for coarse-scale phenomena, which in turn makes it more
meaningful to talk about rotational invariance. This selection of v corresponds
to approximating the Laplacean operator with the “the nine-point operator”
(see Fig. 1(d) and Dahlquist [5]). Note that when the separability is violated by
using a non-zero value of v, the discrete scale-space representation can anyway
be computed efficiently in the Fourier domain using (29).

6 Summary and Discussion

The proper way to apply the scale-space theory to discrete signals is appar-
ently by discretizing the diffusion equation. Starting from a requirement that
local extrema must not be enhanced when the scale parameter is increased con-
tinuously, it has been shown that within the class of linear transformations a
necessary and sufficient condition for a one-parameter family of representations
L:7ZN x IR; — IR to be a scale-space family of a discrete signal f : 7Z" — R
is that it satisfies the differential equation

oL = AsespL | (45)

with initial condition L(-; 0) = f(-) for some infinitesimal scale-space gener-
ator Ascsp. In one, two and three dimensions respectively it can equivalently
be stated that a family is a scale-space family if and only if for some linear
reparametrization of the scale parameter ¢ and for some v; € [0, 1] it satisfies

1
0L =gVl , (46)
1
1
0L = 5 (L=71 —72)ViL + 1 Vis L+ 72 VisL) (48)

The essence of (45)-(48) is that these equations correspond to discretizations of
first-order differential operators in scale, and second-order differential operators
in space.
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The effect of using different values of 7; in the two-dimensional case has
been analyzed in detail. Nevertheless, the question about definite selection is
left open. Unimodality considerations indicate that v must not exceed %, while
v = % gives the least degree of rotational asymmetry in the Fourier domain.

The family of scale-space kernels is separable if and only if ¥ = 0. In this case
the scale-space family is given by convolution with the one-dimensional discrete
analogue of the Gaussian kernel along each dimension. For this parameter setting
the closed-form expressions for several derived entities simplify (see, e.g., [12,
15]). Observe also that v = 0 arises a necessary consequence if the neighbourhood
concept (defined in Sec. 3.1) is redefined as N(z) = {¢ € ZV : (|| z; — ¢ |1 <
1)A (& # 2)} (corresponding to what is known as four-connectivity in the two-
dimensional case), since then necessarily o; = 0 (¢ > 1) in (18) and (19). Similar
results hold in higher dimensions. A possible disadvantage with choosing v = 0
is that it emphasizes the role of the coordinate axes as being special directions.

Finally, it should be remarked that if a linear and shift-invariant operator £,
commuting with the smoothing operator T, is applied to the scale-space rep-
resentation L of a signal f, then £L will be a scale-space representation of Lf.
One consequence of this is that multi-scale discrete derivative approximations
defined by linear filtering of the smoothed signal preserve the scale-space prop-
erties. This property, which provides a natural way to discretize the multi-scale
N-jet representation proposed by Koenderink and van Doorn [10], is developed

in [15].

7 Possible Extensions

The treatment so far has been restricted to signals defined on infinite and uni-
formly sampled square grids using uniform smoothing of all grid points. Below
the ways in which these notions can be generalized are outlined.

7.1 Anisotropic Smoothing

Perona and Malik [19] propose anisotropic smoothing as a way to reduce the
shape distortions arising in edge detection by smoothing across object boundaries
(see also Nordstrom [18]). The suggested methodology is to modify the diffusion
coefficients in order to favour intraregion smoothing over interregion smoothing.

Using the maximum principle they show that the resulting anisotropic scale-
space representation possesses a suppression property for local extrema similar
to that used in Koenderink’s [9] continuous scale-space formulation and this
discrete treatment. From the proofs of Theorems 15-16 it is obvious that the
discrete scale-space concept can easily be extended to such anisotropic diffusion
by letting the coefficients in the operator Ag.s, depend upon the input signal.
By this, the locality, positivity, and zero sum conditions will be preserved, while
the symmetry requirements must be relaxed. Introducing such an anisotropic
diffusion equation, however, violates the convolution form of smoothing as well
as the semi-group property. Therefore, when proving the necessity of the repre-
sentation a certain form of the smoothing formula may have to be assumed, for
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example, of the form (9) with the filter coefficients depending upon the input
signal. Note that, if the translational invariance and the symmetry with respect
to coordinate interchanges are relaxed in (45), then this equation corresponds
the (spatial) discretization of the (second-order) diffusion equation with variable
conductance, c(z; t),

(0 D)(x; t) = V(c(a; t)VIL(z; 1)) . (49)

Throughout this work uniform smoothing has been used at the cost of possible
smoothing across object boundaries. The motivation behind this choice has been
the main interest in using scale-space for detecting image structures. Therefore,
in the absence of any prior information, it is natural that the first processing
steps should be as uncommitted as possible. The approach taken has been to
first detect candidate regions of interest, and then, once candidates have been
detected as regions, improve their localization. Possibly, variable conductance
could be useful in the second step of this process. Another natural application
is to avoid the negative effects of smoothing thin or elongated structures.
There are, however, some problems that need to be further analyzed. Modify-
ing the diffusion coefficients requires some kind of a priori information concern-
ing which structures in the image are to be smoothed and which are not. In the
method by Perona and Malik there is a tuning function to be determined, giving
the diffusion coefficient as function of the gradient magnitude. When the scale
parameter ¢ tends to infinity, the solution to the anisotropic diffusion equation
tends to a function with various sharp edges. Hence, choosing a tuning function
somehow implies an implicit assumption about a “final segmentation” of the
image. It is not clear that such a concept exists or can be rigorously defined.

7.2 Finite Data

A practical problem always arising in linear filtering is what to do with pixels
near the image boundary for which a part of the filter mask stretches outside
the available image.

The most conservative outlook is, of course, to regard the output as unde-
fined as soon as a computation requires image data outside the available domain.
This is, however, hardly desirable for scale-space smoothing, since the (untrun-
cated) convolution masks have infinite support, while the peripheral coefficients
decrease towards zero very rapidly. A variety of ad hoc methods have been
proposed to deal with this; extension methods, subtraction of steady-state com-
ponents, solving the diffusion equation on a limited domain with (say, adiabatic)
boundary conditions, etc. However, no such technique can overcome the problem
with missing data. In some simple situations ad hoc extensions may do. But this
requires some kind of a priori information about the contents of the image.

Inevitably, the peripheral image values of a smoothed finite image will be
less reliable than the central ones. Instead, if accurate values really are required
near the image boundary, then the vision system should try to acquire addi-
tional data such that the convolution operation becomes well-defined up to the
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prescribed accuracy. This is easily achieved within the active vision paradigm
simply by moving the camera so that more values become available in a suffi-
ciently large neighbourhood of the object of interest. The task of analyzing an
object manifesting itself at a certain scale requires input data in a region around
the object. The width of this frame depends both on the current level of scale
and the prescribed accuracy of the analysis.

Of course, a genuinely finite approach is also possible. In this presentation
this subject has not been developed, since the associated problems are some-
how artificial and difficult to handle in a consistent manner, although the non-
enhancement property can be easily formulated for finite data and although in
the one-dimensional case the concepts of sign-regularity and semi-groups of to-
tally positive matrices [8] in principle provide possible tools for dealing with this
issue. One way to avoid both the infiniteness and the boundary problems is by
using a spherical camera. Then, the ordinary planar camera geometry appears
as an approximate description for foveal vision, that is, small solid angles in the
central field of vision.

7.3 Other Types of Grids

The assumption of a square grid is not a necessary restriction. The same type
of treatment can be carried out on, for example, a hexagonal grid with the
semi-group property preserved, and also on a grid corresponding to non-uniform
spatial sampling provided that the diffusion coefficients are modified accordingly.
In the latter case some a priori form of the smoothing formula may have to be
adopted when proving the necessity of the representation. An interesting case to
consider might actually be the non-uniformly sampled spherical camera.

7.4 Further Work

Finally, it should be pointed out that there is one main issue that has not been
considered here, namely scale-dependent spatial sampling. This issue is certainly
of importance in order to improve the computational efficiency both when com-
puting the representation and for algorithms working on the data. The scale-
space concept outlined here uses the same spatial resolution at all levels of scale.
The pyramid representations (see, e.g., Burt [3]) on the other hand imply a fixed
relation between scale and resolution beyond which refinements are not possible.

Since the smoothed images at coarser scales become progressively more re-
dundant, it seems plausible that some kind of subsampling can be done at the
coarser scales without too much loss of information. It would be interesting to
carry out an analysis about how much information is lost by such an operation,
and to which extent a subsampling operator can be introduced in this represen-
tation, while still maintaining the theoretical properties associated with having
a continuous scale parameter, and without introducing any severe discontinuities
along the scale direction that would be a potential source to numerical difficulties
for algorithms working on the output from the representation.
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