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Abstract. This article shows how a (linear) scale-space representation can be
de�ned for discrete signals of arbitrary dimension. The treatment is based upon
the assumptions that (i) the scale-space representation should be de�ned by con-
volving the original signal with a one-parameter family of symmetric smoothing
kernels possessing a semi-group property, and (ii) local extrema must not be
enhanced when the scale parameter is increased continuously.

It is shown that given these requirements the scale-space representation must
satisfy the di�erential equation @tL = AScSpL for some linear and shift invariant
operator AScSp satisfying locality, positivity, zero sum, and symmetry conditions.
Examples in one, two, and three dimensions illustrate that this corresponds to
natural semi-discretizations of the continuous (second-order) di�usion equation
using di�erent discrete approximations of the Laplacean operator. In a special
case the multi-dimensional representation is given by convolution with the one-
dimensional discrete analogue of the Gaussian kernel along each dimension.

Keywords: scale, scale-space, di�usion, Gaussian smoothing, multi-scale rep-
resentation, wavelets, image structure, causality

1 Introduction

Image structures are intrinsically of a multi-scale nature. Objects in the world
and, hence, image features only exist as meaningful entities over certain ranges of
scale. The idea behind a scale-space is to explicitly cope with this inherent prop-
erty of measured data, by embedding a given signal into a family of gradually
smoothed and simpli�ed signals, in which the �ne scale information is succes-
sively suppressed. Each member of the scale-space family should be associated
with a speci�c value of a so-called scale parameter, somehow describing the cur-
rent level of scale. A natural requirement of such an embedding is that features
at coarser scales should correspond to (abstractions of) features at �ner scales |
they should not be just accidental phenomena created by the smoothing method.
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This property has been formalized in di�erent ways by di�erent authors.
When Witkin [21] introduced the term \scale-space" he observed a decreasing
number of zero-crossings when subjecting a signal to Gaussian smoothing. Koen-
derink [9] showed that natural constraints; causality, homogeneity, and isotropy,
necessarily imply that the scale-space of a two-dimensional signal must satisfy
the di�usion equation. Other formulations were given by Yuille and Poggio [22],
regarding the zero-crossings of the Laplacean, Babaud et al. [2], and Lindeberg
[12] who combined a decreasing number of local extrema with a semi-group
structure on the smoothing transformation. Recently, Florack et al. [6] showed
that the uniqueness of the Gaussian kernel for scale-space representation can be
derived under weaker assumptions by imposing scale invariance on a semi-group
of convolution kernels.

From the similarity of these results it can by now be regarded as well es-
tablished that within the class of linear transformations the natural way to
construct a scale-space L : IRN � IR+ ! IR of a continuous signal f : IRN ! IR
is by convolution with the Gaussian kernel

L(�; t) = g(�; t) � f(�) ; (1)

where

g(x; t) =
1

p
2�t

N
e�(x

2
1+:::+x

2
N )=2t ; (2)

or equivalently, by solving the di�usion equation

@tL =
1

2
r2L (3)

with initial condition L(�; 0) = f . In contrast to many other multi-scale rep-
resentations like pyramids (see, e.g., Burt [3]) or orthogonal wavelets (see, e.g.,
Mallat [17]), structures in the scale-space representation can be easily related
across scales, since it is described by a di�erential equation (see, e.g., [14, 16]).

When applying scale-space theory in practice it should, however, be noted
that real-life signals from standard detectors are discrete. The subject of this pa-
per is to develop how scale-space theory can be discretized while still maintaining
the scale-space properties exactly.

2 Scale-Space Theory for 1-D Discrete Signals

For one-dimensional signals it is possible to develop a complete discrete theory
based on the assumption that the number of local extrema in a signal must not
increase with scale. Below, are briey summarized some of the main results from
earlier work on this [12, 13]. The hasty reader may proceed directly to Sec. 3,
where higher-dimensional signals are treated.

De�nition1 Discrete scale-space kernel (1-D). A kernel K : ZZ ! IR is
said to be a scale-space kernel if for any signal fin : ZZ ! IR the number of local
extrema in fout = K � fin does not exceed the number of local extrema in fin.
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Using classical results (mainly by Edrei and Schoenberg; see Karlin [8]) it is
possible to completely classify those kernels that satisfy this de�nition.

Theorem2 Classi�cation of discrete scale-space kernels (1-D). A kernel
K : ZZ ! IR is a scale-space kernel if and only if its generating function
'K(z) =

P1

n=�1K(n)zn is of the form

'K(z) = c zk e(q�1z
�1+q1z)

1Y
i=1

(1 + �iz)(1 + �iz
�1)

(1� �iz)(1� iz�1)
;

c > 0; k;2 Z; q�1; q1; �i; �i; i; �i � 0 �i; i < 1;
1X
i=1

(�i+�i+i+�i) <1:

The interpretation of this result is that discrete scale-space kernels obey the
following decomposition property:

Corollary3 Primitive discrete smoothing transformations (1-D). For
discrete signals ZZ ! IR there are �ve primitive types of linear and shift-invariant
smoothing transformations, of which the last two are trivial;

{ two-point weighted average or generalized binomial smoothing

fout(x) = fin(x) + �ifin(x� 1) (� � 0);

fout(x) = fin(x) + �ifin(x+ 1) (�i � 0);

{ moving average or �rst order recursive �ltering

fout(x) = fin(x) + �ifout(x� 1) (0 � �i < 1);

fout(x) = fin(x) + ifout(x+ 1) (0 � i < 1);

{ in�nitesimal smoothing or di�usion smoothing (see Theorem 4 for an exam-
ple),

{ rescaling, and
{ translation.

It follows that a discrete kernel is a scale-space kernel if and only if it can be
decomposed into the above primitive transformations. Moreover, the only non-
trivial smoothing kernels of �nite support arise from binomial smoothing.

If De�nition 1 is combined with a requirement that the family of smoothing
transformations must possess a semi-group property and have a continuous scale
parameter, then the result is that there is in principle only one way to construct
a scale-space for discrete signals.

Theorem4 Scale-space for discrete signals; Necessity and su�ciency.
Given any signal f : ZZ! IR, let L : ZZ� IR+ ! IR be a one-parameter family of
functions de�ned by L(x; 0) = f(x) (x 2 ZZ) and

L(x; t) =
1X

n=�1

T (n; t)f(x � n) ; (4)
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(x 2 ZZ, t > 0), where T : ZZ� IR+ ! IR is a one-parameter family of symmetric
functions satisfying the semi-group property T (�; s)�T (�; t) = T (�; s+t) and the
normalization criterion

P1

n=�1 T (n; t) = 1. For any signal f and any t2 > t1 it
is required that the number of local extrema (zero-crossings) in L(x; t2) must not
exceed the number of local extrema (zero-crossings) in L(x; t1). Then, necessarily
(and su�ciently),

T (n; t) = e��tIn(�t) (5)

for some non-negative real �, where In are the modi�ed Bessel functions of
integer order. This kernel T is called the discrete analogue of the Gaussian kernel.

Similar arguments in the continuous case uniquely lead to the Gaussian kernel.
The term \di�usion smoothing" can be understood by noting that the scale-

space family L satis�es a semi-discretized version of the di�usion equation:

Theorem5 Di�usion formulation of the discrete scale-space. The repre-
sentation L : ZZ� IR+ ! IR given by (4) with T : ZZ� IR+ ! IR according to (5)
and � = 1 satis�es the system of ordinary di�erential equations

@tL(x; t) =
1

2
(L(x + 1; t)� 2L(x; t) + L(x� 1; t)) =

1

2
(r2

2L)(x; t) (6)

with initial condition L(x; 0) = f(x) for any discrete signal f : ZZ ! IR in l1.

Despite the completeness of these results, they cannot be extended directly to
higher dimensions, since in two (and higher) dimensions there are no non-trivial
kernels guaranteed to never increase the number of local extrema in a signal.
One example of this, originally due to Lifshitz and Pizer [11], can be found in
[12] (see also Yuille [23]). Anyway, an important point about this study, is that it
gives a deep understanding of what one-dimensional linear transformations can
be regarded as smoothing transformations. It also shows that the only reasonable
way to convert the one-dimensional scale-space theory from continuous signals
to discrete signals is by discretizing the di�usion equation.

3 Selecting Scale-Space Axioms in Higher Dimensions

Koenderink [9] derives the scale-space for two-dimensional continuous images
from three assumptions; causality, homogeneity, and isotropy. The main idea is
that it should be possible to trace every greylevel at a coarse scale to a corre-
sponding greylevel at a �ner scale. In other words, no new level curves should
be created when the scale parameter increases. Using di�erential geometry he
shows that these requirements uniquely lead to the di�usion equation.

It is of course impossible to apply these ideas directly in the discrete case,
since there are no direct correspondences to level curves or di�erential geometry
for discrete signals. Neither can the scaling argument by Florack et al. [6] be
carried out in a discrete situation. An alternative way of expressing the �rst
property, however, is by requiring that if for some scale level t0 a point x0 is
a local maximum for the scale-space representation at that level (regarded as a
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function of the space coordinates only) then its value must not increase when the
scale parameter increases. Analogously, if a point is a local minimum then its
value must not decrease when the scale parameter increases.

It is clear that this formulation is equivalent to the formulation in terms of
level curves for continuous images, since if the greylevel value at a local maximum
(minimum) would increase (decrease) then a new level curve would be created.
Conversely, if a new level curve is created then some local maximum (minimum)
must have increased (decreased). An intuitive description of this requirement is
that it prevents local extrema from being enhanced and from \popping up out of
nowhere". In fact, this is closely related to the maximum principle for parabolic
di�erential equations (see, e.g., Widder [20]).

In next section it will be shown that this condition combined with a contin-
uous scale parameter means a strong restriction on the smoothing method also
in the discrete case, and again it will lead to a discretized version of the di�u-
sion equation. In a special case, the scale-space representation will be reduced
to the family of functions generated by separated convolution with the discrete
analogue of the Gaussian kernel, T (n; t).

3.1 Basic De�nitions

Given a point x 2 ZZ
N denote its neighbourhood of connected points by N (x) =

f� 2 ZN : (k x� � k1� 1)^ (� 6= x)g (corresponding to what is known as eight-
connectivity in the two-dimensional case). The corresponding set including the
central point x is written N+(x). De�ne (weak) extremum points as follows:

De�nition6 Discrete local maximum. A point x 2 ZZ
N is said to be a

(weak) local maximum of a function g : ZZN ! IR if g(x) � g(�) for all � 2 N (x).

De�nition7 Discrete local minimum. A point x 2 ZZ
N is said to be a (weak)

local minimum of a function g : ZZN ! IR if g(x) � g(�) for all � 2 N (x).

The following operators are natural discrete correspondences to the Laplacean
operator r2 in one (r2

3), two (r2
5;r2

�2) and three (r2
7;r2

+3 ;r2
�3) dimensions

respectively (below the notation f�1;0;1 stands for f(x � 1; y; z + 1) etc.):

(r2
3f)0 = f�1 � 2f0 + f1;

(r2
5f)0;0 = f�1;0 + f+1;0 + f0;�1 + f0;+1 � 4f0;0;

(r2
�2f)0;0 = 1=2(f�1;�1 + f�1;+1 + f+1;�1 + f+1;+1 � 4f0;0);

(r2
7f)0;0;0 = f�1;0;0 + f+1;0;0 + f0;�1;0 + f0;+1;0 + f0;0;�1 + f0;0;+1 � 6f0;0;0;

(r2
+3f)0;0;0 = 1=4 (f�1;�1;0 + f�1;+1;0 + f+1;�1;0 + f+1;+1;0 +

f�1;0;�1+ f�1;0;+1 + f+1;0;�1 + f+1;0;+1 +

f0;�1;�1 + f0;�1;+1 + f0;+1;�1 + f0;+1;+1 � 12f0;0;0);

(r2
�3f)0;0;0 = 1=4 (f�1;�1;�1 + f�1;�1;+1 + f�1;+1;�1 + f�1;+1;+1 +

f+1;�1;�1 + f+1;�1;+1 + f+1;+1;�1 + f+1;+1;+1 � 8f0;0;0):
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4 Axiomatic Discrete Scale-Space Formulation

Given that the task is to state an axiomatic formulation of the �rst stages of
visual processing, the visual front end , a list of desired properties may be long;
linearity, translational invariance, rotational symmetry, mirror symmetry, semi-
group, causality, positivity, unimodality, continuity, di�erentiability, normaliza-
tion to one, nice scaling behaviour, locality, rapidly decreasing for large x and t,
existence of an in�nitesimal generator (explained below), and invariance with
respect to certain greylevel transformations, etc. Such a list will, however, contain
redundancies, as does this one. Here, a (minimal) subset of these properties will
be taken as axioms. In fact, it can be shown that all the other above-mentioned
properties follow from the selected subset (see also [15, 16]).

The scale-space representation for higher-dimensional signals is constructed
analogously to the one-dimensional case. To start with, postulate that the scale-
space should be generated by convolution with a one-parameter family of kernels,
i.e., L(x; 0) = f(x) and

L(x; t) =
X

�2ZZ
N

T (�; t)f(x � �) (t > 0) : (7)

This form of the smoothing formula corresponds to natural requirements about
linear shift-invariant smoothing and the existence of a continuous scale param-
eter. It is natural to require that all coordinate directions should be handled
identically. Therefore all kernels should be symmetric. Impose also a semi-group
condition on the family T . This means that all scale levels will be treated simi-
larly, that is, the smoothing operation does not depend on the scale value, and
the transformation from a lower scale level to a higher scale level is always given
by convolution with a kernel from the family:

L(�; t2) = fde�nitiong = T (�; t2) � f = fsemi-groupg =
= (T (�; t2 � t1) � T (�; t1)) � f = fassociativityg =

= T (�; t2 � t1) � (T (�; t1) � f) = fde�nitiong = T (�; t2 � t1) � L(�; t1) : (8)

As smoothing criterion the non-enhancement requirement for local extrema is
taken. It is convenient to express it as a condition of the derivative of the scale-
space family with respect to the scale parameter. In order to ensure a proper
statement of this condition, where di�erentiability is guaranteed, it is necessary
to state a series of preliminary de�nitions leading to the desired formulation.

4.1 De�nitions

Let us summarize this (minimal) set of basic properties, which a family should
satisfy in order to be a candidate family for generating a (linear) scale-space.

De�nition8 Pre-scale-space family of kernels. A one-parameter family of
kernels T : ZZN � IR+ ! IR is said to be a pre-scale-space family of kernels if it
satis�es
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{ T (�; 0) = �(�),
{ the semi-group property T (�; s) � T (�; t) = T (�; s + t),
{ the symmetry properties T (�x1; x2; :::; xN; t) = T (x1; x2; :::; xN; t) and
T (PN

k (x1; x2; :::; xN); t) = T (x1; x2; :::; xN; t) for all x = (x1; x2; :::; xN) 2
ZZ
n, all t 2 IR+, and all possible permutations PN

k of N elements, and
{ the continuity requirement k T (�; t)� �(�) k1! 0 when t # 0.

De�nition9 Pre-scale-space representation. Let f : ZZN ! IR be a dis-
crete signal and let T : ZZN � IR+ ! IR be a pre-scale-space family of kernels.
Then, the one-parameter family of signals L : ZZN � IR+ ! IR given by (7) is
said to be the pre-scale-space representation of f generated by T .

Provided that the input signal f is su�ciently regular, these conditions on the
family of kernels T guarantee that the representation L is di�erentiable and
satis�es a system of linear di�erential equations.

Lemma10 A pre-scale-space representation is di�erentiable. Let
L : ZZN � IR+ ! IR be the pre-scale-space representation of a signal f : ZZN !
IR in l1. Then L satis�es the di�erential equation

@tL = AL (9)

for some linear and shift-invariant operator A.
Proof. If f is su�ciently regular, e.g., if f 2 l1, de�ne a family of operators
fTt; t > 0g, here from from l1 to l1, by Ttf = T (�; t) � f . Due to the conditions
imposed on the kernels it will satisfy the relation

lim
t!t0

k (Tt � Tt0)f k1= lim
t!t0

k (Tt�t0 � I)(Tt0f) k1= 0 ; (10)

where I is the identity operator. Such a family is called a strongly-continuous
semigroup of operators (see Hille and Phillips [7] p. 58-59). A semi-group is often
characterized by its in�nitesimal generator A de�ned by

Af = lim
h#0

Thf � f

h
: (11)

The set of elements f for which A exists is denoted D(A). This set is not empty
and never reduces to the zero element. Actually, it is even dense in l1 (see Hille
and Phillips [7] p. 307). If this operator exists then

lim
h#0

L(�; �; t + h)� L(�; �; t)
h

= lim
h#0

Tt+hf � Ttf
h

= (12)

lim
h#0

Th(Ttf) � (Ttf)
h

= A(Ttf) = AL(�; t):
According to a theorem by Hille and Phillips ([7] p. 308) strong continuity implies
@t(Ttf) = ATtf = TtAf for all f 2 D(A). Hence, the scale-space family L must
obey the di�erential equation @tL = AL for some linear operator A. Since L
is generated from f by a convolution operation it follows that A must be shift-
invariant. ut
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This property makes it possible to formulate the previously indicated scale-space
property in terms of derivatives of the scale-space representation with respect to
the scale parameter. As in the maximum principle, the greylevel value in every
local maximum point must not increase, while the greylevel value in every local
minimum point must not decrease.

De�nition11 Pre-scale-space property: Non-enhancement of extrema.
A di�erentiable one-parameter family of signals L : ZZN � IR+ ! IR is said to
possess pre-scale-space properties, or equivalently not to enhance local extrema,
if for every value of the scale parameter t0 2 IR+ it holds that if x0 2 ZZ

N is
a local extremum point for the mapping x 7! L(x; t0) then the derivative of L
with respect to t in this point satis�es

@tL(x0; t0) � 0 if x0 is a local maximum point, (13)

@tL(x0; t0) � 0 if x0 is a local minimum point: (14)

Now it can be stated that a pre-scale-space family of kernels is a scale-space
family of kernels if it satis�es this property for any input signal.

De�nition12 Scale-space family of kernels. A one-parameter family of pre-
scale-space kernels T : ZZN�IR+ ! IR is said to be a scale-space family of kernels
if for any signal f : ZZN ! IR 2 l1 the pre-scale-space representation of f gener-
ated by T possesses pre-scale-space properties, i.e., if for any signal local extrema
are never enhanced.

De�nition13 Scale-space representation. A pre-scale-space representation
L : ZZN � IR+ ! IR of a signal f : ZZN ! IR generated by a family of kernels
T : ZZN � IR+ ! IR, which are scale-space kernels, is said to be a scale-space
representation of f .

In the next section it will be shown how these requirements strongly restrict the
possible class of kernels and scale-space representations. For example, they will
lead to a number of restrictions on the operator A in Lemma 10:

De�nition14 In�nitesimal scale-space generator. A shift-invariant linear
operator A from l1 to l1

(AL)(x; t) =
X

�2ZZ
N

a�L(x� �; t) ; (15)

is said to be an in�nitesimal scale-space generator, denoted AScSp, if the coe�-
cients a� 2 R satisfy

{ the locality condition a� = 0 if � 62 N+(0),
{ the positivity constraint a� � 0 if � 6= 0,
{ the zero sum condition

P
�2ZZ

N a� = 0, as well as

{ the symmetry requirements a(��1;�2;:::;�N ) = a(�1;�2;:::;�N ) and aPN
k
(�1;�2;:::;�N ) =

a(�1;�2;:::;�N ) for all � = (�1; �2; :::; �N) 2 ZZ
N and all possible permutations

PN
k of N elements.
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4.2 Necessity

It will �rst be shown that these conditions necessarily imply that the family L
satis�es a semi-discretized version of the di�usion equation.

Theorem15 Scale-space for discrete signals: Necessity. A scale-space
representation L : ZZN � IR+ ! IR of a signal f : ZZN ! IR satis�es the di�er-
ential equation

@tL = AScSpL (16)

with initial condition L(�; 0) = f(�) for some in�nitesimal scale-space generator
AScSp. In one, two and three dimensions respectively (16) reduces to

@tL = �1r2
3L ; (17)

@tL = �1r2
5L + �2r2

�2L ; (18)

@tL = �1r2
7L + �2r2

+3L+ �3r2
�3L ; (19)

for some constants �1 � 0, �2 � 0 and �3 � 0.

Proof. The proof consists of two parts. The �rst part has already been presented
in Lemma 10, where it was shown that the requirements on the kernels imply that
the family L obeys a linear di�erential equation. Because of the shift invariance
AL can be written in the form (15). In the second part counterexamples will be
constructed from various simple test functions in order to delimit the class of
possible operators.

The extremum point conditions (13), (14) combined with De�nitions 12-13
mean that A must be local, i.e., that a� = 0 if � 62 N+(0). This is easily under-
stood by studying the following counterexample: First, assume that a�0 > 0 for

some �0 62 N+(0) and de�ne a function f1 : ZZ
N ! IR by

f1(x) =

8>><
>>:
" > 0 if x = 0,

0 if x 2 N (0),
1 if x = �0, and
0 otherwise.

(20)

Obviously, 0 is a local maximum point for f1. From (9) and (15) one obtains
@tL(0; 0) = �a0 + a�0 . It is clear that this value can be positive provided that
" is chosen small enough. Hence, L cannot satisfy (13). Similarly, it can also be
shown that a�0 < 0 leads to a violation of the non-enhancement property (14)
(let " < 0). Consequently, a� must be zero if � 62 N+(0).

Moreover, the symmetry conditions imply that permuted and reected coef-
�cients must be equal, i.e., a(��1;�2;:::;�N ) = a(�1;�2;:::;�N ) and aPN

k
(�1;�2 ;:::;�N ) =

a(�1;�2;:::;�N ) for all � = (�1; �2; :::; �N) 2 ZZ
N and all possible permutations PN

k

of N elements. For example, the two-dimensional version of (15) reads

@tL =

0
@a b a
b c b
a b a

1
AL (21)
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for some a, b and c. Then, consider the function given by

f2(x; y) =

�
1 if x 2 N+(0), and
0 otherwise.

(22)

With the given (weak) de�nitions of local extremum points it is clear that 0
is both a local maximum point and a local minimum point. Hence @tL(0; 0)
must be zero, and the coe�cients sum to zero

P
�2ZZ

N a� = 0, which in two

dimensions reduces to 4a+ 4b+ c = 0 in (21). Obviously, (15) can be written

@tL = (AL)(x; t) =
X

�2N(0)

a�(L(x � �; t) � L(x; t)) ; (23)

and the two-dimensional special case (21) reduces to

@tL = �1

0
@ 1
1 �4 1

1

1
AL + �2

0
@ 1=2 1=2

�2
1=2 1=2

1
AL = �1r2

5L + �2r2
�2L : (24)

Finally, by considering the test function

f3(x; y) =

8<
:
� > 0 if x = 0,

�1 if x = ~�, and
0 otherwise.

(25)

for some ~� in N (0) one easily realizes that a� must be non-negative if � 2 N (0).
It follows that �1 � 0 and �2 � 0 in (24), which proves (18). (17) and (19) follow
from similar straightforward considerations. The initial condition L(�; 0) = f is
a direct consequence of the de�nition of pre-scale-space kernel. ut

4.3 Su�ciency

The reverse statement of Theorem 15 is also true.

Theorem16 Scale-space for discrete signals: Su�ciency. Let f : ZZN !
IR be a discrete signal in l1, let AScSp be an in�nitesimal scale-space generator,

and let L : ZZN � IR+ ! IR be the representation generated by the solution to the
di�erential equation

@tL = AScSpL

with initial condition L(�; 0) = f(�). Then, L is a scale-space representation of
f .

Proof. It follows almost trivially that L possesses pre-scale-space properties, i.e.,
that L does not enhance local extrema, if the di�erential equation is rewritten
in the form

@tL = (AL)(x; t) =
X

�2N(0)

a�(L(x � �; t) � L(x; t)) : (26)
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If at some scale level t a point x is a local maximum point then all di�erences
L(x� �; t)�L(x; t) are non-positive, which means that @tL(x; t) � 0 provided
that a� � 0. Similarly, if a point is a local minimum point then the di�erences
are all non-negative and @tL(x; t) � 0.

What remains to be veri�ed is that L actually satis�es the requirements for
being a pre-scale-space representation. Since L is generated by a linear di�eren-
tial equation, it follows that L can be written as the convolution of f with some
kernel T , i.e., L(�; t) = T (�; t) � f . The requirements of pre-scale-space kernels
can be shown to hold by letting the input signal f be the discrete delta function.
The semi-group property of the kernels follows from the fact that the coe�cients
� are constant, and the solution at a time s+ t hence can be computed from the
solution at an earlier time s by letting the time increase by t. The symmetry
properties of the kernel are obvious from the symmetry of the di�erential equa-
tion. The continuity at the origin follows directly from the di�erentiability. ut

These results show that a one-parameter family of discrete signals is a scale-
space representation if and only if it satis�es the di�erential equation (16) for
some in�nitesimal scale-space generator.

5 Parameter Determination

For simplicity, from now on mainly two-dimensional signals will be considered.
If (18) is rewritten in the form

@tL = C
�
(1 � )r2

5L + r2
�2L

�
= Cr2

L ; (27)

the interpretation of the parameter C is just a trivial rescaling of the scale
parameter. Thus, without loss of generality C may be set to 1

2 in order to get the
same scaling constant as in the one-dimensional case. What is left to investigate
is how the remaining degree of freedom in the parameter  2 [0; 1] a�ects the
scale-space representation.

If  = 1 then a undesirable situation appears. Since the cross-operator only
links diagonal points, the system of ordinary di�erential equations given by (27)
can then be split into two uncoupled systems, one operating on the points with
even coordinate sum x + y and the other operating on the points with odd
coordinate sum. It is clear that this is really an unwanted behaviour, since then
even after a substantial amount of \blurring", for certain types of input signals
the \smoothed" greylevel landscape may still have a rather saw-toothed shape.

5.1 Derivation of the Fourier Transform

Further arguments showing that  must not be too large can be obtained by
studying the Fourier transform of the corresponding scale-space family of kernels.

Proposition17 Fourier transform of the 2D discrete scale-space. Let L :
ZZ

2� IR+ ! IR be the scale-space representation of a discrete signal f : ZZ2 ! IR
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generated by (27) with initial condition L(�; 0) = f(�). Assume that f 2 l1.
Then the generating function of the kernel describing the transformation from
the original signal to the representation at a certain scale t is given by

'T (z; w) =
P

(m;n)2ZZ
2 T (m;n; t)zmwn =

e�(2�)+
(1�)

2 (z�1+z+w�1+w)+ 

4 (z
�1w�1+z�1w+zw�1+zw) : (28)

Its Fourier transform is

'T (z; w) =  T (e
�iu; e�iv) = e�(2�)t + (1�)(cosu+cosv)t + ( cosu cosu)t : (29)

Proof. Discretizing (27) further in scale using Euler's explicit method with scale
step �t, gives an iteration formula of the form

Lk+1i;j = (1� (2� )�t) Lki;j +

(1� )�t

2
(Lki�1;j + Lki+1;j + Lki;j�1 + Lki;j+1) +

�t

4
(Lki�1;j�1 + Lki�1;j+1 + Lki+1;j�1 + Lki+1;j+1); (30)

where the subscripts i and j denote the spatial coordinates x and y respectively,
and the superscript k denotes the iteration index. The generating function de-
scribing one iteration with this transformation is

'step(z; w) = (1� (2� )�t) +
(1� )�t

2
(z�1 + z + w�1 + w) +

�t

4
(z�1w�1 + z�1w + zw�1 + zw) : (31)

Assume that the scale-space representation at a scale level t is computed using
n iterations with a scale step �t = t

n . Then, the generating function describing
the composed transformation can be written 'composed;n(z; w) = ('step(z; w))n.
After substitution of �t for t

n
and using limn!1(1+

�n
n
)n = e� if limn!1�n =

�, it follows that 'composed;n(z) tends to 'T (z; w) according to (28) when n !
1, provided that the discretization (30) converges to the actual solution of (27).

ut

5.2 Unimodality in the Fourier Domain

It is easy to verify that the Fourier transform is unimodal if and only if  � 1
2 .

Proposition18 Unimodality of the Fourier transform (2D).
The Fourier transform (29) of the kernel describing the transformation from
the original signal to the smoothed representation at a coarser level of scale is
unimodal if and only if  � 1

2 .

Proof. Di�erentiation of (29) gives @u = � (u; v) sin u (1� (1 + cos v)) t and
@v = � (u; v) sin v (1� (1 + cos u)) t. The Fourier transform decreases with
juj and jvj for all u and v in [��; �] if and only if the factors (1� (1 + cos v))
and (1� (1 + cos u)) are non-negative for all u and v, i.e., if and only if  � 1

2 .
Then, any directional derivative away from the origin is negative. ut
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5.3 Separability

The transformation kernel is separable if and only if its Fourier transform is
separable, that is, if and only if  T (u; v) can be written on the form UT (u)VT (v)
for some functions UT and VT . From (29) it is realized that this separation is
possible if and only if  = 0. Hence,

Proposition19 Separability of the 2D discrete scale-space. The convolu-
tion kernel associated with the scale-space representation de�ned by L(x; y; 0) =
f(x; y) and

@tL =
1

2

�
(1� )r2

5L+ r2
�2

�
(32)

is separable if and only if  = 0. Then L is given by

L(x; y; t) =
1X

m=�1

T (m; t)
1X

n=�1

T (n; t)f(x �m; y � n) (t > 0); (33)

where T (n; t) = e�tIn(t) and In are the modi�ed Bessel functions of integer
order.

Proof. The Fourier transform  T (u; v) can be written in the form UT (u)VT (v)
for some functions UT and VT if and only if the term with cosu cos v can be
eliminated from the argument of the exponential function, i.e., if and only if 
is zero. In that case the Fourier transform reduces to

 T (u; v) = e(�2+cosu+cosv)t = e(�1+cosu)te(�1+cosv)t (34)

which corresponds to separated smoothing with the one-dimensional discrete
analogue of the Gaussian kernel along each coordinate direction.

It can also be veri�ed directly that (33) satis�es (32). Consider the possible
scale-space representation of an N -dimensional signal generated by separable
convolution with the one-dimensional discrete analogue of the Gaussian kernel;
i.e., given f : ZZN ! IR de�ne L : ZZN � IR+ ! IR by

L(x; t) =
X

x2ZZ
N

TN (�; t)f(x � �) (t > 0); (35)

where TN : ZZN � IR+ ! IR is given by

TN (�; t) =
NY
i=1

T1(�i; t) ; (36)

� = (�1; :::; �N), and T1 : ZZ � IR+ ! IR is the discrete analogue of the Gaussian
kernel, T1(n; t) = e�tIn(t). It will be shown that this representation satis�es a
semi-discretized version of the two-dimensional di�usion equation

@tL =
1

2
r2

2N+1L ; (37)
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where

(r2
2N+1L)(x; t) =

NX
i=1

L(x+ ei; t)� 2L(x; t) + L(x� ei; t) ; (38)

and ei denotes the unit vector in the ith coordinate direction. Consider

(@tTN )(�; t) =
NX
i=1

(@tT1)(�i; t)
Y
j 6=i

T1(�j ; t) : (39)

Since T1 satis�es (6), this expression can be written

(@tTN )(�; t) =
NX
i=1

1

2
(T1(�i � 1; t)� 2T1(�i; t) + T1(�i + 1; t))

Y
j 6=i

T1(�j; t);

which is obviously equivalent to

@tTN =
1

2
r2

2N+1TN : (40)

The same relation holds for L provided that the di�erentiation and in�nite sum-
mation operators commute. ut

In other words, in the separable case the resulting higher-dimensional discrete
scale-space corresponds to repeated application of the one-dimensional scale-
space concept along each coordinate direction.

5.4 Discrete Iterations

The discretization of (27) in (30) using Euler's explicit method with scale step
�t corresponds to iterating with a kernel with the computational molecule0

B@
�t
4

(1�)�t
2

�t
4

(1�)�t
2 1� (2� )�t (1�)�t

2
�t
4

(1�)�t
2

�t
4

1
CA : (41)

Clearly, this kernel is unimodal if and only if  � 2
3 . It is separable if and only if

 = �t (see below). In that case, the corresponding one-dimensional kernel is a
discrete scale-space kernel in the sense of De�nition 1 if and only if �t � 1

2 (see
Proposition 10 in [12]). This gives a further indication that  should not exceed
the value 1

2 .

Proposition20 Separability of the iteration kernel. The iteration kernel
(41), corresponding to discrete forward iteration with Euler's explicit method, is
separable if and only if  = �t. In that case, the corresponding one-dimensional
kernel is a discrete scale-space kernel if and only if 0 �  � 1=2.
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Proof. Since the kernel is symmetric and the coe�cients sum to one, the kernel
is separable if and only if it can be written as a kernel (a; 1� 2a; a) convolved
with itself, i.e., if and only if there exists an a � 0 such that a2 = �t=4,
a(1 � a) = (1 � )�t=2, and (1 � a)2 = 1 � (2 � )�t. The �rst equation has
one non-negative root a =

p
�t=2. Insertion into the second equation gives

two conditions for �t; either �t = 0 or �t = . One veri�es that these roots
satisfy the third equation. The kernel (a; 1 � 2a; a) is a discrete scale-space
kernel if and only if a � 1

2 (see Equations (30) and (31) in [12]; compare also
with Theorem 2). ut
The boundary case  = �t = 1

2 gives the iteration kernel in Fig. 1(a) correspond-
ing to separated convolution with the one-dimensional binomial kernel (14 ;

1
2 ;

1
4)

frequently used in pyramid generation (see, e.g., Crowley [4]).

 
1=16 1=8 1=16
1=8 1=4 1=8
1=16 1=8 1=16

!

(a)

 
1=8 2=8 1=8
2=8 �12=8 2=8
1=8 2=8 1=8

!

(b)

 
1=36 1=9 1=36
1=9 4=9 1=9
1=36 1=9 1=36

!

(c)

 
1=6 4=6 1=6
4=6 �20=3 4=6
1=6 4=6 1=6

!

(d)

Fig. 1. Computational molecules corresponding to (from left to right); (a) discrete
iteration with �t =  = 1

2
, (b) the Laplacean operator when  = 1

2
, (c) discrete

iteration with �t =  = 1

3
, and (d) the Laplacean operator when  = 1

3
.

5.5 Spatial Isotropy

Another aspect that might a�ect the selection of  is spatial isotropy. It is not
clear that rotational invariance is a primary quality to be aimed at in the dis-
crete case, since then one is locked to a �xed square grid. It is also far from
obvious what should be meant by spatial isotropy in a discrete situation. Pos-
sibly, it is better to talk about the lack of spatial isotropy, spatial anisotropy,
or rotational asymmetry. However, since the Fourier transform is a continuous
function of u and v, one can regard its variation as a function of the polar angle,
given a �xed value of the radius, as one measure of this property. By express-
ing  T (u; v) in polar coordinates u = ! cos �, v = ! sin� and examining the
resulting expression,

 T (! cos �; ! sin�) = eh(! cos�;! sin �)t ; (42)

where

h(! cos �; ! sin�) = �(2 � ) + (1� )(cos(! cos �) + cos(! sin�)) +

 cos(! cos�) cos(! sin�) ; (43)

one realizes that the value of  that gives the smallest angular variation for a
�xed value of !, depends on !. Hence, with this formulation, the \rotational
invariance" is scale dependent. At coarse scales one obtains:
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Proposition21 Rotational invariance in the Fourier domain (2D).
The value of  that gives the least rotational asymmetry for large scale phenom-
ena in the solution to the di�erential equation (27) is  = 1

3 .

Proof. The Taylor expansion of h for small values of ! is (see [13] Appendix A.2.3)

h(! cos�; ! sin�) = �1

2
!2 +

1

24
(1 + (6 � 2) cos2 � sin2 �)!4 + O(!6) ; (44)

where the O(!6) term depends on both � and . Observe that if  = 1
3
then the

�-dependence decreases with ! as !6 instead of as !4. ut
This means that  = 1

3 asymptotically, i.e., with increasing spatial scale, gives the
most isotropic smoothing e�ect on coarse-scale events. The reason why spatial
isotropy is desired at coarse scales rather than at �ne scales is because the grid
e�ects become smaller for coarse-scale phenomena, which in turn makes it more
meaningful to talk about rotational invariance. This selection of  corresponds
to approximating the Laplacean operator with the \the nine-point operator"
(see Fig. 1(d) and Dahlquist [5]). Note that when the separability is violated by
using a non-zero value of , the discrete scale-space representation can anyway
be computed e�ciently in the Fourier domain using (29).

6 Summary and Discussion

The proper way to apply the scale-space theory to discrete signals is appar-
ently by discretizing the di�usion equation. Starting from a requirement that
local extrema must not be enhanced when the scale parameter is increased con-
tinuously, it has been shown that within the class of linear transformations a
necessary and su�cient condition for a one-parameter family of representations
L : ZZN � IR+ ! IR to be a scale-space family of a discrete signal f : ZZN ! IR
is that it satis�es the di�erential equation

@tL = AScSpL ; (45)

with initial condition L(�; 0) = f(�) for some in�nitesimal scale-space gener-
ator AScSp. In one, two and three dimensions respectively it can equivalently
be stated that a family is a scale-space family if and only if for some linear
reparametrization of the scale parameter t and for some i 2 [0; 1] it satis�es

@tL =
1

2
r2

3L ; (46)

@tL =
1

2

�
(1� 1)r2

5L+ 1r2
�2L

�
; (47)

@tL =
1

2

�
(1 � 1 � 2)r2

7L + 1r2
+3L+ 2r2

�3L
�
: (48)

The essence of (45){(48) is that these equations correspond to discretizations of
�rst-order di�erential operators in scale, and second-order di�erential operators
in space.
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The e�ect of using di�erent values of 1 in the two-dimensional case has
been analyzed in detail. Nevertheless, the question about de�nite selection is
left open. Unimodality considerations indicate that  must not exceed 1

2 , while
 = 1

3 gives the least degree of rotational asymmetry in the Fourier domain.
The family of scale-space kernels is separable if and only if  = 0. In this case

the scale-space family is given by convolution with the one-dimensional discrete
analogue of the Gaussian kernel along each dimension. For this parameter setting
the closed-form expressions for several derived entities simplify (see, e.g., [12,
15]). Observe also that  = 0 arises a necessary consequence if the neighbourhood
concept (de�ned in Sec. 3.1) is rede�ned as N (x) = f� 2 ZN : (k xi � � k1�
1) ^ (� 6= x)g (corresponding to what is known as four-connectivity in the two-
dimensional case), since then necessarily �i = 0 (i > 1) in (18) and (19). Similar
results hold in higher dimensions. A possible disadvantage with choosing  = 0
is that it emphasizes the role of the coordinate axes as being special directions.

Finally, it should be remarked that if a linear and shift-invariant operator L,
commuting with the smoothing operator T�, is applied to the scale-space rep-
resentation L of a signal f , then LL will be a scale-space representation of Lf .
One consequence of this is that multi-scale discrete derivative approximations
de�ned by linear �ltering of the smoothed signal preserve the scale-space prop-
erties. This property, which provides a natural way to discretize the multi-scale
N-jet representation proposed by Koenderink and van Doorn [10], is developed
in [15].

7 Possible Extensions

The treatment so far has been restricted to signals de�ned on in�nite and uni-
formly sampled square grids using uniform smoothing of all grid points. Below
the ways in which these notions can be generalized are outlined.

7.1 Anisotropic Smoothing

Perona and Malik [19] propose anisotropic smoothing as a way to reduce the
shape distortions arising in edge detection by smoothing across object boundaries
(see also Nordstr�om [18]). The suggested methodology is to modify the di�usion
coe�cients in order to favour intraregion smoothing over interregion smoothing.

Using the maximumprinciple they show that the resulting anisotropic scale-
space representation possesses a suppression property for local extrema similar
to that used in Koenderink's [9] continuous scale-space formulation and this
discrete treatment. From the proofs of Theorems 15-16 it is obvious that the
discrete scale-space concept can easily be extended to such anisotropic di�usion
by letting the coe�cients in the operator AScSp depend upon the input signal.
By this, the locality, positivity, and zero sum conditions will be preserved, while
the symmetry requirements must be relaxed. Introducing such an anisotropic
di�usion equation, however, violates the convolution form of smoothing as well
as the semi-group property. Therefore, when proving the necessity of the repre-
sentation a certain form of the smoothing formula may have to be assumed, for
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example, of the form (9) with the �lter coe�cients depending upon the input
signal. Note that, if the translational invariance and the symmetry with respect
to coordinate interchanges are relaxed in (45), then this equation corresponds
the (spatial) discretization of the (second-order) di�usion equation with variable
conductance, c(x; t),

(@tL)(x; t) = r(c(x; t)rL(x; t)) : (49)

Throughout this work uniform smoothing has been used at the cost of possible
smoothing across object boundaries. The motivation behind this choice has been
the main interest in using scale-space for detecting image structures. Therefore,
in the absence of any prior information, it is natural that the �rst processing
steps should be as uncommitted as possible. The approach taken has been to
�rst detect candidate regions of interest, and then, once candidates have been
detected as regions, improve their localization. Possibly, variable conductance
could be useful in the second step of this process. Another natural application
is to avoid the negative e�ects of smoothing thin or elongated structures.

There are, however, some problems that need to be further analyzed. Modify-
ing the di�usion coe�cients requires some kind of a priori information concern-
ing which structures in the image are to be smoothed and which are not. In the
method by Perona and Malik there is a tuning function to be determined, giving
the di�usion coe�cient as function of the gradient magnitude. When the scale
parameter t tends to in�nity, the solution to the anisotropic di�usion equation
tends to a function with various sharp edges. Hence, choosing a tuning function
somehow implies an implicit assumption about a \�nal segmentation" of the
image. It is not clear that such a concept exists or can be rigorously de�ned.

7.2 Finite Data

A practical problem always arising in linear �ltering is what to do with pixels
near the image boundary for which a part of the �lter mask stretches outside
the available image.

The most conservative outlook is, of course, to regard the output as unde-
�ned as soon as a computation requires image data outside the available domain.
This is, however, hardly desirable for scale-space smoothing, since the (untrun-
cated) convolution masks have in�nite support, while the peripheral coe�cients
decrease towards zero very rapidly. A variety of ad hoc methods have been
proposed to deal with this; extension methods, subtraction of steady-state com-
ponents, solving the di�usion equation on a limited domain with (say, adiabatic)
boundary conditions, etc. However, no such technique can overcome the problem
with missing data. In some simple situations ad hoc extensions may do. But this
requires some kind of a priori information about the contents of the image.

Inevitably, the peripheral image values of a smoothed �nite image will be
less reliable than the central ones. Instead, if accurate values really are required
near the image boundary, then the vision system should try to acquire addi-
tional data such that the convolution operation becomes well-de�ned up to the
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prescribed accuracy. This is easily achieved within the active vision paradigm
simply by moving the camera so that more values become available in a su�-
ciently large neighbourhood of the object of interest. The task of analyzing an
object manifesting itself at a certain scale requires input data in a region around
the object. The width of this frame depends both on the current level of scale
and the prescribed accuracy of the analysis.

Of course, a genuinely �nite approach is also possible. In this presentation
this subject has not been developed, since the associated problems are some-
how arti�cial and di�cult to handle in a consistent manner, although the non-
enhancement property can be easily formulated for �nite data and although in
the one-dimensional case the concepts of sign-regularity and semi-groups of to-
tally positive matrices [8] in principle provide possible tools for dealing with this
issue. One way to avoid both the in�niteness and the boundary problems is by
using a spherical camera. Then, the ordinary planar camera geometry appears
as an approximate description for foveal vision, that is, small solid angles in the
central �eld of vision.

7.3 Other Types of Grids

The assumption of a square grid is not a necessary restriction. The same type
of treatment can be carried out on, for example, a hexagonal grid with the
semi-group property preserved, and also on a grid corresponding to non-uniform
spatial sampling provided that the di�usion coe�cients are modi�ed accordingly.
In the latter case some a priori form of the smoothing formula may have to be
adopted when proving the necessity of the representation. An interesting case to
consider might actually be the non-uniformly sampled spherical camera.

7.4 Further Work

Finally, it should be pointed out that there is one main issue that has not been
considered here, namely scale-dependent spatial sampling. This issue is certainly
of importance in order to improve the computational e�ciency both when com-
puting the representation and for algorithms working on the data. The scale-
space concept outlined here uses the same spatial resolution at all levels of scale.
The pyramid representations (see, e.g., Burt [3]) on the other hand imply a �xed
relation between scale and resolution beyond which re�nements are not possible.

Since the smoothed images at coarser scales become progressively more re-
dundant, it seems plausible that some kind of subsampling can be done at the
coarser scales without too much loss of information. It would be interesting to
carry out an analysis about how much information is lost by such an operation,
and to which extent a subsampling operator can be introduced in this represen-
tation, while still maintaining the theoretical properties associated with having
a continuous scale parameter, and without introducing any severe discontinuities
along the scale direction that would be a potential source to numerical di�culties
for algorithms working on the output from the representation.
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