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Abstract: Although traditional scale-space theory
provides a well-founded framework for dealing with
image structures at di�erent scales, it does not directly
address the problem of how to select appropriate scales
for further analysis.

This paper introduces a new tool for dealing with
this problem. A heuristic principle is proposed stat-
ing that local extrema over scales of di�erent combi-
nations of normalized scale invariant derivatives are
likely candidates to correspond to interesting struc-
tures. Support is given by theoretical considerations
and experiments on real and synthetic data.

The resulting methodology lends itself naturally
to two-stage algorithms; feature detection at coarse
scales followed by feature localization at �ner scales.
Experiments on blob detection, junction detection and
edge detection demonstrate that the proposed method
gives intuitively reasonable results.

1 Introduction

An inherent property of objects in the world and de-
tails in images is that they only exist as meaningful
entities over certain ranges of scale. The scale-space
representation, introduced by Witkin [28] and Koen-
derink [13], provides a methodology for handling such
size or scale variations in image data. The basic idea
is to embed any measured signal into a one-parameter
family of gradually smoothed and simpli�ed signals,
in which the �ne scale information is successively sup-
pressed.

For continuous signals f : RN ! R the scale-space
L : RN � R+ ! R is de�ned as the solution to the
di�usion equation
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with initial condition L(�; 0) = f(�), or equivalently,
by convolution with the Gaussian kernel L(�; t) =
g(�; t) � f(�), where g : RN � R+ ! R is given by

g(x; t) =
1

(2�t)N=2
e�(x

2

1
+:::+x2N )=(2t); (2)

and x = (x1; :::; xN)T . There are several mathemat-
ical results (see e.g. [13, 15, 1, 29, 17, 22, 10]) indi-
cating that within the class of linear transformations
this scale-space theory describes the canonical way to
formulate a multi-scale representation. In fact, as-
suming that the �rst stages of visual processing, the
visual front end, are to perform linear operations and
be invariant to translations, rotations and rescalings
in space, it can be shown that the Gaussian kernels
and their associated smoothed derivatives

Lx�(�; t) = @x�(g � f) = (@x�g) � f = g � (@x�f); (3)
at various scales arise by necessity. By combining the
output from such Gaussian derivative operators at any
speci�c scale, smoothed di�erential descriptors can be
de�ned at that scale. De�ning such descriptors at all
scales gives a multi-scale di�erential geometric repre-
sentation of the signal; a type of representation that
is useful for a large number of early vision tasks.

Although this (traditional) scale-space theory pro-
vides a well-founded framework for handling image
structures at di�erent scales, it does not directly ad-
dress the problem of selecting appropriate scales and
structures from the scale-space representation for fur-
ther analysis. Early work in this direction was per-
formed by Bischof and Caelli [3] concerning the zero-
crossings of the Laplacean operator. Another ap-
proach was developed by Lindeberg [18, 19], who con-
sidered blob-like structures at di�erent scales in scale-
space and constructed a multi-scale tree-like repre-
sentation called the scale-space primal sketch. A sig-
ni�cance measure was postulated as the volume that
certain primitives of the representation, called scale-
space blobs, occupy in scale-space. The scale lev-
els in turn were determined from scales where the
scale-space blobs assumed their maximum (normal-
ized) blob response over scales. Experimentally it was
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demonstrated that the approach could be used for ex-
tracting regions of interest with associated scale levels,
which in turn could serve as to guide various early vi-
sual processes [18, 7].

In this paper a related but not identical parameter
variation principle will be introduced for �nding inter-
esting scales | the evolution properties over scales of
di�erent nonlinear combinations of normalized scale-
invariant derivatives of low order computed from the
scale-space representation. The heuristic principle to
be employed is that local maxima over scale of these
entities correspond to interesting structures. By the-
oretical considerations and numerical experiments it
will be demonstrated that the proposed methodology
gives useful and intuitively reasonable results in dif-
ferent types of situations.

2 Basic idea for scale selection

A well-known property of the scale-space representa-
tion is that the amplitude of spatial derivatives

Lx�(�; t) = @x�L(�; t) = @x�1
1

::: @x�N
N

L(�; t) (4)

in general decrease with scale, i.e. if a signal is sub-
jected to scale-space smoothing, then the numeri-
cal values of spatial derivatives computed from the
smoothed data can be expected to decrease. As an
example of this, consider, say, a sinusoidal input sig-
nal of some given frequency !0; for simplicity in one
dimension,

f(x) = sin!0x: (5)

It is straightforward to show that in this case the so-
lution to the (one-dimensional) di�usion equation is
given by

L(x; t) = e�!
2

0
t=2 sin!0x: (6)

Hence, the amplitude of the scale-space representa-
tion, Lmax, as well as the amplitude of the mth order
smoothed derivative, Lxm ;max, decrease exponentially
with scale

Lmax(t) = e�!
2

0
t=2; Lxm;max(t) = !m0 e�!

2

0
t=2: (7)

An alternative formulation of the scale-space concept
is in terms of normalized (dimensionless) coordinates,
� = x=� = x=

p
t. One motivation for introducing

such a coordinate system is scale invariance; see Flo-
rack et al [10]. In these coordinates the normalized
(dimensionless) derivative operator is

@� =
p
t @x: (8)

For the sinusoidal signal the amplitude of a normalized
derivative as function of scale is given by

L�m;max(t) = tm=2 !m0 e�!
2

0
t=2; (9)

i.e., it �rst increases and then decreases. It assumes
a unique maximum at tmax;L�m = m=!20. Introducing

�0 = 2�=!0 shows that the �-value (� =
p
t) for which

L�m;max(t) assumes its maximum is proportional to
the wavelength, �0, of the signal:

�max;L�m =

p
m

2�
�0: (10)

Note that the maximum value

L�m;max(tmax;L�m ) = mm=2 e�m=2 (11)

is independent of the frequency of the signal. Note
also the symmetry in the situation, i.e., given any
scale t0, the maximally ampli�ed frequency is given
by !max =

p
m=t0, and for any !0 the scale with

maximum ampli�cation is tmax = m=!20.
In other words, for these normalized derivatives it

holds that sinusoidal signals are treated in a similar
(scale invariant) way independent of their frequency
(see Figure 1).
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Figure 1: The amplitude of �rst order normalized deriva-
tives as function of scale for sinusoidal input signals of
di�erent frequency (!1 = 0:5, !2 = 1:0 and !3 = 2:0).

Note that although there is an intuitive similarity
between this scale response and a local Fourier trans-
form, there are two fundamental di�erences; (i) the
normalization factor, and (ii) this method allows for
local estimates of the frequency content without any
explicit setting of a window size.

3 Proposed method for scale selection

As shown above, the scale at which a normalized
derivative assumes its maximum is in the case of sinu-
soidal signals proportional to the wavelength of the
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signal. Now, I propose to generalize this observa-
tion to more complex signals, leading to the following
heuristic principle, which is to be applied in situations
when no other information is available. In the absence
of other evidence, a scale level at which some (possi-
bly non-linear) combination of normalized derivatives
assumes a local maximum can be treated as re
ecting
the characteristic length of a corresponding structure
in the data.

This principle is similar although not equivalent to
the parameter variation method in [18, 19], where in-
teresting scale levels are determined frommaximaover
scales of a (normalized) blob measure. The underly-
ing motivation behind using maxima over scales for
scale selection is to select scale levels where the oper-
ator response is at its strongest, and other interfering
structures have been suppressed.
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Figure 2: Scale-space signatures of the (absolute value
of the) normalized Laplacean for two details of a sun-

ower image; (left) grey-level image, (right) signature of
jr2

normLj computed at the central point.

Figure 2 illustrates the variation over scale of a sim-
ple measure formulated in terms of normalized spatial
derivatives; it displays the scale variation of the ab-
solute value of the normalized Laplacean computed
at two di�erent points. These graphs are called the
scale-space signatures of jr2

normLj = jtr2Lj.
Clearly, the maximum over scales in the top row

of Figure 2 is obtained at a �ner scale than in the
bottom row. An examination of the ratio between
the scale levels where the graphs attain their maxima
shows that this value is roughly equal to the ratio of
the sizes of the sun
owers in the centers of the two
images respectively (in agreement with the heuristic
principle).

4 Blob detection

The reason why this particular di�erential expres-
sion has been selected here is because it constitutes
an entity commonly used in blob detection; see e.g.
[25, 6, 5, 27]. Figure 3 shows the result of extend-
ing this approach to multi-scale blob detection. It
shows scale-space extrema (points that are local ex-
trema both in space and scale) of jr2

normLj. Every
extremum is graphically illustrated by an ellipse in-
dicating the local directional statistics in the image1.

Figure 3: Multi-scale blob detection using normalized
scale-space extrema of the squared Laplacean; (left) grey-
level image, (right) ellipses illustrating the scale-space ex-
trema superimposed onto a bright copy of the original grey-
level image (the size of each ellipse is proportional to scale
at which the maximum is assumed, while the shape of the
ellipse is given by the local directional statistics in a neigh-
bourhood of the maximum). (Adapted from [23]).

Note the ability of the method to adaptively zoom
in to di�erent scales, and also how well the computed
ellipses describe the blobs in the image, considering
how little information is used in the processing. In
order to study this behaviour analytically, consider

f(x1; x2) = g(x1; x2; t0) =
1

2�t
e�(x

2

1
+x2

2
)=(2t) (12)

as a simplemodel of a two-dimensional blob with char-
acteristic length

p
t0. From the semi-group property

of the Gaussian kernel g(�; t) � g(�; t) = g(�; t0 + t) it
follows that the scale-space representation L of f is

L(x1; x2; t) = g(x1; x2; t0 + t): (13)

Clearly, the spatial maximum of jr2Lj is assumed at
(x1; x2)T = (0; 0)T . The corresponding normalized

1More precisely, each ellipse represents a secondmomentma-
trix (a matrix similar to A in (27)) computed using a Gaussian
window function with scale value proportional to the scale at
which the scale-space maximum of r2

normL is assumed; see [23]
for a detailed desciption and theoretical analysis of this method.
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entity is

t(r2L)(0; 0; t) =
t

� (t0 + t)2
: (14)

Di�erentiation with respect to t gives that the maxi-
mum is given by

@t(r2
normL)(0; 0; t) = 0 () t = t0; (15)

which veri�es that the maximum is assumed at a scale
proportional to a characteristic length of the blob.

5 Junction detection

It will now be described how the above scale selection
method can be used also for scale selection concerning
other feature detectors formulated in terms of non-
linear combinations of smoothed derivatives.

5.1 Selection of detection scale

As a �rst example, consider an entity commonly used
for junction detection | the curvature of level curves
in intensity data (see e.g. [12, 14]), which in terms of
spatial derivatives can be expressed as

� =
L2
x2Lx1x1 � 2Lx1Lx2Lx1x2 + L2

x1Lx2x2

(L2
x1 + L2

x2 )
3=2

: (16)

In order to give a stronger response near edges, this
entity is usually multiplied by the gradient magnitude
raised to some power, k. A natural choice is k = 3.
This leads to a polynomial expression (see also [4, 7])

~� = L2
x2
Lx1x1 � 2Lx1Lx2Lx1x2 + L2

x1
Lx2x2 : (17)

Figure 4 shows the result of accumulating the signa-
ture of the corresponding normalized entity ~�norm =
t2~� at two di�erent details of a toy block image, and
then computing the curvature descriptor at the scale
where the maximum is assumed. Note that the scale
maximum in the top row is obtained at a �ner scale
than the maximum in the bottom row, re
ecting the
fact that the corner is much sharper (and neighbor-
ing junctions are much closer) in the �rst case than
in the second case. In order to study this behaviour
analytically, consider

f(x1; x2) = Et0(x1)Et0(x2) (18)

as a simple model of a di�use L-junction, where Et0

describes a di�use step edge

Et0(xi) =

Z xi

x0=�1

g(x0; t0) dx
0: (19)
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Figure 4: Scale-space signature of (the absolute value of)
the rescaled level curve curvature ~�norm = t

2 ~� computed
at two di�erent details of a toy block image; (left) grey-
level image, (middle) signature of ~�norm accumulated at
the central point, (right) ~�norm computed at the scale at
which the maximum is assumed.

From the semi-group of the Gaussian kernel, it follows
that the scale-space representation L of f is given by

L(x1; x2; t) = Et0+t(x1)Et0+t(x2): (20)

Di�erentiation with respect to x1 and x2 gives

Lx1 = g(x1; t0 + t)Et0(x2);
Lx1x1 = (�x1=t) g(x1; t0 + t)Et0(x2);
Lx1x2 = (x1x2=t2) g(x1; t0 + t) g(x2; t0 + t);

(21)

etc. Insertion of these expressions into (17) gives that
~�norm at the central point is

~�norm(0; 0; t) =
t2

16�2(t0 + t)4
: (22)

This expression is of the same form as (14). Hence,
the maximum over scales is assumed at a scale level
proportional to the di�useness of the junction,

@t(~�norm(0; 0; t)) = 0 () t = t0: (23)

It turns out that selecting scales where the normalized
rescaled level curve curvature assumes a maximum is
an applicable method when detecting features, here
junction candidates. This method may, however, lead
to poor localization, since in general the scale maxi-
mum will be assumed at a rather coarse scales, where
the drift due to scale-space smoothingmay be substan-
tial, and also adjacent features may begin to interfere
with each other. Therefore, some postprocessing is
necessary in order to improve the localization.
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5.2 Selection of localization scale

A simple method for improving the localization is as
follows: Following F�orstner and G�ulch [11] consider at
every point x0 2 R2 in a neighbourhood of a junction
candidate the line lx0 perpendicular to the gradient
vector (rL)(x0) = (Lx1 ; Lx2)

T (x0) at that point. The
equation of this line is

Dx0(x) = ((rL)(x0))T (x� x0) = 0: (24)

A simple estimate of the location of the junction candi-
date is obtained from the point x 2 R2 that minimizes

min
x

Z
x02R2

(Dx0(x))2wx0(x
0) dx0 (25)

for some window function wx0 : R2 ! R (centered
at the point x0 at which the signature is computed).
Minimizing this expression corresponds to minimizing
the weighted integral of the squares of the distances
from x to all lx0 in the neighbourhood. (Note that
Dx0(x) describes the distance from x to the line lx0

multiplied by the gradient magnitude. Hence, every
distance is given a weight proportional to the square
gradient magnitude multiplied by the window func-
tion). After expansion (25) can be expressed as

min
x

xTAx� 2xTb+ c () Ax = b (26)

where x = (x1; x2)T , and

A =

Z
x02R2

(rL)(x0) (rL)T (x0)w(x0) dx0; (27)

b =

Z
x02R2

(rL)(x0) (rL)T (x0)x0w(x0) dx0; (28)

c =

Z
x02R2

x0T (rL)(x0) (rL)T (x0)x0w(x0) dx0: (29)

Provided that the 2 � 2 matrix A is non-degenerate,
the minimum value is given by

dmin = min
x

xTAx� 2xTb+ c = c� bTA�1b; (30)

with the associated localization estimate x = A�1b. A
common problem in least squares estimation concerns
how to choose the region over which to perform the
�tting. Here, the following method is proposed:

� Selection of window function and spatial

points: When computing A, b and c above, let
the window function wx0 be a Gaussian function
centered at the point x0 where ~�norm assumes a
spatial maximum, and let the scale value of this
window function be proportional to the (detec-
tion) scale at which the scale maximum in ~�norm
was assumed,

� Criterion for selecting local scale: Compute
the gradient estimates (rL)(x0) from smoothed
grey-level data, and set the (localization) scale
to the scale that minimizes the residual as func-
tion of scale. In practice, in order to obtain an
expression of dimension [length]2, determine the
minimumover scales of dmin given by (30) divided
by trace(A) (this denominator is the weighted av-
erage of the gradient magnitude in the neighbour-
hood), i.e.,

~dmin =
dmin

traceA
=

c� bTA�1b

traceA
: (31)

The basic ideas behind this approach are:

� Firstly, that the detection scale should give a rep-
resentative region around the candidate junction.
Experimentally, this has been demonstrated to be
the case in a large number of situations.

� Secondly, the idea of setting the localization scale
to the scale at which the residual is minimized
is as follows: At too �ne a scale where noise is
present, the gradient directions will be randomly
distributed, which in turn means that the residual
error will increase. At too coarse a scale the scale-
space smoothing will lead to increasing shape dis-
tortions and hence increase the error. Selecting
the minimum gives a natural trade-o� between
these two e�ects.

Note, in particular, that for an ideal (sharp) junc-
tion, the localization scale given by this method
will always be zero in the noise free case.

Figure 5 illustrates the result of applying this method
to the examples in Figure 4. It shows (smaller) win-
dows around the interest points together with the
scale-space signature of ~dmin, and the rescaled level
curve curvature ~� computed at the scale at which the
minimumwas assumed.

As an illustration of the stability of the method
with respect to noise and violations of the corner-type
junction model, Figure 8 shows the result of apply-
ing it to a rounded corner with and without added
Gaussian noise (standard deviation 64 compared to
the grey-level range [0::255]). Note the similarity of
the scale-space signatures of ~�norm at coarse scales,
and that the minimum in the signature of ~dmin is ob-
tained at a �ner scale in the top row than in the bot-
tom row, re
ecting the much lower noise level in the
�rst case, and hence the reduced need for smoothing.
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Figure 5: Scale-space signature of the least squares resid-
ual, ~dmin (computed using a Gaussian window function
with scale level proportional to the scale at which ~�norm
assumed its maximum over scales in Figure 4); (left) grey-
level image, (middle) scale-space signature of ~dmin accu-
mulated at the central point, (right) ~�norm computed at
the scale where ~dmin assumes its minimum. Note that the
minimum in the top row is assumed at a �ner scale than in
the bottom row, re
ecting the fact that the junction in the
top row is sharper than the junction in the bottom row.

6 Edge detection

A similar approach for scale selection can also be ap-
plied in edge detection. The method that will be pro-
posed is similar to the edge focusing method developed
by Bergholm [2], in the sense that edges are detected
at a coarse scale, and the followed to �ner scales. A
main di�erence compared to that work is that here a
method for selecting those scale levels is addressed.

A natural way to de�ne edges from a two-
dimensional continuous image is as the points for
which the gradient magnitude assumes a maximum
in the gradient direction, see e.g. Canny [8], or Korn
[16]. In di�erential geometric terms the condition for
a point to be an edge point may be stated as

�
L�v�v = 0;
L�v�v�v < 0;

(32)

where @�v = cos�@x1+sin�@x2 denotes the directional
derivative operator in the (normalized) gradient direc-
tion (cos �; sin�)T = (Lx1 ; Lx2)

T=(L2
x1 + L2

x2)
1=2.

6.1 Selection of detection scale

A natural measure of the strength of the edge response
is the normalized gradient magnitude L�v;norm =

p
t L�v. A qualitative di�erence between this mea-

sure and the earlier treated blob and junction strength
measures, r2

normL and ~�norm respectively, however, is
that this entity cannot be expected to decrease in the
same way for su�ciently large scale values. As an ex-
ample of this, consider the response of a di�use step
edge

f(x) = Et0(x) =

Z x

x0=�1

g(x0; t0) dx
0; (33)

for which the variation over scales of the normalized
gradient magnitude increases monotonically

(@�Lt0 )(0; t) =
p
t g(0; t0 + t) �

p
tp

t0 + t
: (34)

A similar result holds for edges in the scale-space rep-
resentation L(x1; x2; t) = g(x1; x2; t0 + t) of a Gaus-
sian blob f(x1; x2) = g(x1; x2; t0). It is straightfor-
ward to show that the edge position is given by

~L�v�v =
x2 + y2 � t0 � t

(t0 + t)2
g(x1; x2; t0 + t) = 0; (35)

and that the normalized gradient magnitude is con-
stant over scales at the edge points

p
t L�v(x1; x2; t)

���
L�v�v=0

= e�1=2: (36)

Of course, there are also situations when L�v;norm de-
creases. As an example of this, consider one of the
edges at a double asymmetric step edge, which disap-
pears by annihilation of a minimum-maximumpair in
the gradient magnitude. A simple local model of this
situation is the polynomial

L�v = x31 + 3x1(t� tb); (37)

which represents the fold unfolding (see e.g. Poston
and Stewart [26]), and also satis�es the di�usion equa-
tion. Setting L�v�v = 3(x21 + t� tb) = 0, gives that the
variation over scales at the edge point x1;edge(t) =
(tb � t)1=2 (t � tb) follows

L�v;norm =
p
t L�v = 4

p
t (tb � t)3=2: (38)

Clearly, L�v decreases with scale when t approaches the
bifurcation scale tb.

Figure 6 shows the result of accumulating the sig-
nature of the normalized gradient magnitude at two
di�erent details of the previously treated toy block
image. Note that the maximum at the step edge (top
row) is assumed at much a coarser scale than is the
maximum at the double edge (bottom row). Also, the
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0 1 2 3 4 5 6 7
41

41.5

42

42.5

43

43.5

44

  

 

 

 
 

     

 

   
 

0 1 2 3 4 5 6 7
8

10

12

14

16

18

       
 
      

   
                            

 
         
                                       

 
                                                      

 
         

 
                                                                

   
 
                    

 

  
 

                   
           

 
                       

 
           

   
 

  
     

  
 

 

                             
           

 

            
                                 

 
                      
 
 

 
               

 
          

                     

 
                                    
 
   

      
 

           
 

                                                      

Figure 6: Scale-space signature of the normalized gradi-
ent magnitude L�v;norm =

p
t L�v at a straight edge (top

row) and a double edge (bottom row); (left) grey-level im-
age, (middle) signature of L�v;norm accumulated at the cen-
tral point, (right) (unthresholded) edges detected at the
scale at which the maximum was assumed.

relative variation over scales of the normalized gradi-
ent magnitude is much larger in the second case.

To summarize, scale selection using maxima in L�v

can be expected to give rise to rather coarse scale lev-
els, delimited from above by the bifurcation scales at
which the edges disappear. Notably, the scales where
these maxima are assumed do not depend directly on
the di�useness t0 of the original edge. At double edges
(and staircase edges) the behaviour is di�erent, and
relatively �ner scale levels will be selected (propor-
tional to the distance between adjacent edges).

6.2 Selection of localization scale

Clearly, this type of scale selection may lead to poor
localization, in particular at curved edges, where the
total drift due to scale-space smoothing may be sub-
stantial. Therefore it is necessary to apply a second
stage selection of localization scale. It turns out that
this selection can be performed analogously to the pre-
vious method concerning junctions, although the re-
sults become better if the directional statistics is based
on the normal directions to the edges than the gradient
vectors. Hence, for every point x0 in a neighbourhood
of an edge, consider the line lx0 given by

nT (x� x0) = 0; (39)

where n = (n1; n2)T denotes the normal direction to a
level curve of L�v�v, which at any edge point is a normal
direction to the edge. In terms of spatial derivatives

the components of n can be written

n1 = Lx (LxLxxx + 2(LxxLxx + L2
xy))+

Ly (LyLxyy + 2(LxLxxy + Lxy(Lxx + Lyy)));

n2 = Ly (LyLyyy + 2(L2
xy + LyyLyy))+

Lx (LxLxxy + 2(LyLxyy + Lxy(Lxx + Lyy)));

where above the notation x = (x1; x2)T has been tem-
porarily replaced by (x; y)T . Following previous sec-
tion, consider the point x that minimizes

min
x

Z
x02R2

(Dx0(x))2wx0(x
0) dx0; (40)

for some window function wx0 . In order to preserve
the weighting with respect to gradient magnitude, it
is natural to de�ne Dx0 by

Dx0(x) = ~nT (x � x0) = 0; (41)

with the gradient vector replaced by

~n = j(rL)(x0)j njnj : (42)

The minimization problem (40) is of the same type as
(26) with A, b and c de�ned as in (27){(29), and with
(rL)(x0) replaced by ~n. From motivations analogous
to previous section, it is natural to select the scale that
minimizes the normalized residual

~dmin =
dmin

traceA
=

c� bTA�1b

traceA
: (43)

Since, however, A may degenerate to a rank one ma-
trix at ideal straight edges, in actual computations
A�1 above is replaced by the pseudo inverse of A.

Applying this method to the top row example in
Figure 6 gives the result shown in Figure 7. Note that
a rather �ne scale is selected indicating the sharp-
ness of the edge. As a test of the stability of the
method, the second and third rows show correspond-
ing results for a smoothed version of the image in the
�rst row, with and without added (white Gaussian)
noise (standard deviation 25% of the grey-level range).
Observe that the minimum in the second row is as-
sumed at a much coarser scale indicating the higher
noise level, and hence the increased need for smooth-
ing. The fourth row shows an interesting example,
where a coarse scale is selected at a shadow edge. Fig-
ure 9 shows a stability tests in the neighbourhood of
a curved junction.

Finally it should be remarked that in order to in-
troduce as few commitments into the processing as
possible, no thresholding on gradient magnitude has
been performed in these experiments (except in Fig-
ure 9). The results of scale adaption should therefore
be interpreted as locally valid in a neighbourhood of
the edge through the central point.
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Figure 7: Scale-space signature of the least squares resid-
ual, ~dmin (computed using a Gaussian window function
with scale level proportional to the scale at which L�v;norm

assumed its maximum over scales in Figure 6); (left) grey-
level image, (middle) scale-space signature of ~dmin accu-
mulated at the central point, (right) (unthresholded) edges
computed at the scale where ~dmin assumes its minimum.

7 Discrete implementation

Discretizing the normalized derivative operators leads
to two problems; (i) how to discretize the ordinary
derivative approximations kernels so that scale-space
properties are preserved, and (ii) how to discretize the
normalization factor.

The �rst problem can be solved by using the scale-
space concept for discrete signals [17], which is given
by

L(�; �; t) = T (�; �; t) � f(�; �); (44)

where T (m;n; t) = T1(m; t)T1(n; t) and T1(m; t) =
e�tIm(t) is the one-dimensional discrete analogue of
the Gaussian kernel, de�ned in terms of the modi-
�ed Bessel functions In. The scale-space properties of
L transfer to any discrete derivative approximations

Lxi
1
xj
2

that are de�ned as the result of applying di�er-

ence operators �xi
1
xj
2

to L [22].

Concerning the normalization problem, it is
straightforward to verify that the normalized deriva-
tive operator given by (8) corresponds to rescaling the
Gaussian derivative kernels such that the integral of
the positive part of the kernel remains constant over
scales. Such kernels of �rst order have been used, for
example, in edge detection and edge classi�cation by
Korn [16], and Zhang and Bergholm [30], as well as in
pyramids by Crowley and his co-workers [9].

Given this analogy, it is natural to normalize the
discrete derivative approximation kernels �xi

1
xj
2

T such

that the l1 norm remains constant over scales. Of
course, it is not necessary to perform any explicit con-
volution with a normalized derivative approximation
kernel. In practice, concerning e.g. �rst order deriva-
tives, the discrete approximations to Lx1 and Lx2 can
be multiplied by the discrete normalization constant,

�1(t) =

p
2p

� (T1(0; t) + T1(1; t))
; (45)

which can be shown to approach
p
t when t increases.

8 Summary and discussion

The main purpose of this paper has been to outline
how the evolution properties over scales of normalized
Gaussian derivatives can be used for �nding interest-
ing scales for further analysis.

A heuristic principle has been proposed stating
that, in the absence of other evidence, local extrema
over scales of normalized di�erential geometric de-
scriptors are candidates for representing characteris-
tic lengths of corresponding structures in the image.
Once such a detection scale (outer scale) has been
selected, a complementary second stage selection of
localization scale (inner scale) is applied, based on
the mutual consistency of directional information com-
puted in a local neighbourhood of the selected point.

Experimentally, the methodology has been demon-
strated to give useful results both analytically and by
experiments on real and synthetic data.

Of course, the task of selecting \the best scale" for
handling real-world image data, about which usually
no a priori information is available, is impossible if
treated as a pure mathematical problem. Therefore,
the proposed heuristic principle should not be inter-
preted as any \optimal solution", but rather a system-
atic method for generating initial hypotheses in situ-
ations when no or very little information is available
about what can be expected to be in the scene.
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Choice of di�erential invariants: An open prob-
lem that remains to be addressed concerns what dif-
ferential properties are useful. Of course, the di�er-
ential entity should be selected in order to re
ect the
type of structures to be studied. More generally, it is
straightforward to show that the scale invariant prop-
erties of di�erential expressions transfer to all homo-
geneous di�erential entities that can be expressed on
the form

DL =
IX

i=1

ci

JY
j=1

L�u�ij ; (46)

where L�u� = L�um�vn denotes a mixed directional
derivative of order j�j = m + n, �v is the gradient di-
rection, �u the perpendicular direction, j�ijj > 0 for all
i = [1::I] and j = [1::J ], and

JX
j=1

j�ijj = N (47)

for all i 2 [1::I]. Assume that a local extremum
over scales in the the corresponding normalized en-
tity DnormL = tN=2DL is assumed at scale t0. Then,
under rescalings of the original signal f , i.e. f 0(x) =
f(sx), the extremum over scales in DnormL

0 is as-
sumed at t00 = t0=s

2.

Linking structures across scales: Because of sim-
plicity of presentation and implementation, the scale-
space signatures have here been accumulated at points
which are assumed to be given (and �xed). In prac-
tice, concerning, e.g. blob detection and junction de-
tection, is is natural to require all feature points to
be spatial maxima with respect to the di�erential en-
tity considered. Hence, it is necessary to impose some
additional constraint, e.g. by either (i) detecting scale-
space maxima, that are points which are maximawith
respect to both scale and space of the di�erential en-
tity considered (one such approach concerning blob
detection is developed in [23]), or (ii) linking features
across scales and registering the signature along such
a path through scale-space. An approach of the latter
type, concerning the extrema of the grey-level land-
scape (blobs), is developed in [18, 19], where the life-
time of the path is used as an important component
for formulating a signi�cance measure. More gener-
ally, the linking approach can be applied also to other
entities, like extrema of the Laplacean or the rescaled
level curve curvature. In [20, 21] it is described how
the implicit function theorem allows for a formal de�-
nition of scale linking concerning features formulated
as di�erential singularities, that are entities which are
zero-crossings of expressions of the form (46).
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Figure 8: Junction detection: Scale-space signatures of ~�norm and ~dmin computed with and without added (white
Gaussian) noise. (left) grey-level image. (middle left) signature of ~�norm at the central point, (middle right) signature of
~dmin at the central point, (right) ~�norm computed at the scale where ~dmin assumes its minimum. Note that the minimum
in the top row in ~dmin is assumed at a �ner scale than in the bottom row, re
ecting the much lower noise level in the �rst
case. The e�ect of the noise on the signature of ~�norm is only minor, except for a new peak that appears at �ner scales.
(Noise standard deviation 64, grey-level range [0..255]).
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Figure 9: Edge detection: Scale-space signatures of L�v;norm and ~dmin computed with and without added (white
Gaussian) noise. (left) grey-level image; (middle left) signature of L�v;norm at the central point, (middle) signature of
~dmin at the central point, (middle right) unthresholded edges detected at the scale where ~dmin assumes its minimum,
(right) edges after hysteresis thresholding on the gradient magnitude (low threshold 2.0, high threshold 4.0). Note that
the minimum in the top row in ~dmin is assumed at a �ner scale than in the bottom row, re
ecting the much lower noise
level in the �rst case. The e�ect of the noise on the signature of L�v;norm is minor, the only di�erence is that the value is
larger at �ner scales. (Noise standard deviation 64, grey-level range [0..255]).
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