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ABSTRACT

The subject of scale selection is essential to many as-
pects of multi-scale and multi-resolution processing of
image data. This article shows how a general heuristic
principle for scale selection can be applied to the prob-
lem of detecting and localizing junctions. In a �rst un-
committed processing step initial hypotheses about in-
teresting scale levels (and regions of interest) are gen-
erated from scales where normalized di�erential invari-
ants assume maxima over scales (and space). Then,
based on this scale (and region) information, a more
re�ned processing stage is invoked tuned to the task at
hand. The resulting method is the �rst junction detec-
tor with automatic scale selection.

Whereas this article deals with the speci�c problem
of junction detection, the underlying ideas apply also
to other types of di�erential feature detectors, such as
blob detectors, edge detectors, and ridge detectors.

1. INTRODUCTION

A basic problemwhen extracting information frommea-
sured data, such as images, originates from the fact
that objects in the world, and hence image structures,
exist as meaningful entities only over certain ranges of
scale. In essence, it manifests itself as follows:

To derive any information from data, it is necessary
to interact with it using operators. The type of infor-
mation that can be obtained by this is to a large extent
determined by the relationship between the size of the
actual structures in the data and the size of the probes.
In contrast to certain ideal mathematical entities, such
as \point" or \line", which appear in a qualitatively
similar way independent of the scale of observation, a
description of real world data may vary substantially
depending on the scale at which it is computed. This
problem is especially acute for a vision system with the
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task to analyse unknown scenes about which no or very
little a priori information is available.

A general framework for analysing structures at dif-
ferent scales is provided by scale-space theory (Witkin
1983; Koenderink 1984; Yuille and Poggio 1986; Flo-
rack et al. 1992; Lindeberg 1994a, 1994b). It is based
on the general idea that in situations when no informa-
tion is available about appropriate scales for analysis,
the only reasonable approach is to consider descriptions
at all scales. The essence of the results obtained from
this theory is that if one assumes that the �rst stages of
visual processing should be as uncommitted as possi-
ble and have no particular bias, then convolution with
Gaussian kernels and their derivatives is singled out as
a canonical class of low-level operators. The output
from these operators can then be used as a basis for
expressing a large number of early visual operations
at multiple scales, such as feature detection, matching,
and computation of shape cues.

This article deals with the problem of selecting in-
teresting structures and appropriate scales from the
scale-space representation. One approach concerning
blob-like image structures was developed in (Lindeberg
1993a) based on the idea of selecting scale levels where
a certain blob measure assumes maxima over scales.
Here, a generalization of that idea (Lindeberg 1993b)
is applied to the problem of detecting junctions. This
results in a genuine two-stage approach with detection
at coarse scales followed by localization to �ner scales.
Methods are presented for selecting both these scale
levels automatically.

2. METHOD FOR SCALE SELECTION

The scale-space representation of anN -dimensional con-
tinuous signal f : RN ! R is the one-parameter family
of functions L : RN �R+! R

L(�; t) = g(�; t) � f (1)



obtained by convolving f with the one-parameter fam-
ily of Gaussian kernels

g(x; t) =
1

(2�t)N=2
e�(x

2

1
+:::+x2N )=2t; (2)

where x = (x1; :::; xN)T 2 RN and t 2 R+ is the scale
parameter. A well-known property of this representa-
tion is that the amplitude of spatial derivatives

Lx�(�; t) = @x�L(�; t) = @x�1
1

: : : @x�N
N

L(�; t) (3)

in general decrease with scale. This can be seen, for ex-
ample, for a one-dimensional sine wave, f(x) = sin!0x,
for which the scale-space representation is L(x; t) =

e�!
2

0
t=2 sin!0x, and the amplitude of any spatial deriva-

tive decreases exponentially with scale

Lxm;max(t) = !m0 e�!
2

0
t=2: (4)

A natural way to reparametrize the spatial coordinates
in scale-space is in terms of normalized (dimensionless)
coordinates, � = x=� = x=

p
t, (Florack et al. 1992).

The corresponding normalized derivative operator is

@� =
p
t @x: (5)

For the sinusoidal signal the amplitude of any normal-
ized derivative is

L�m;max(t) = tm=2 !m0 e�!
2

0
t=2; (6)

i.e., it �rst increases and then decreases. Introducing
�0 = 2�=!0 shows that the �-value (� =

p
t) for which

L�m;max(t) assumes its maximum over scales is propor-
tional to the wavelength, �0, of the signal:

�max;L�m =

p
m

2�
�0: (7)

Note that the maximum value L�m;max(tmax;L�m ) =

mm=2 e�m=2 is independent of !0. Hence, all frequen-
cies are treated in a similar manner. Observe the simi-
larity to a local Fourier transform, although this method
allows for local measurements of frequency contents
without explicit setting of window size.
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Figure 1: The amplitude of �rst order normalized deriva-

tives as function of scale for sinusoidal input signals of dif-
ferent frequencies (!1 = 0:5, !2 = 1:0 and !3 = 2:0).

2.1. Generalization: Homogeneous polynomial

combinations of normalized derivatives

Whereas we have so far been concerned with a spe-
ci�c signal, it can be shown (Lindeberg 1994c) that
for a large class of di�erential invariants (which can
be used for expressing di�erent types of feature de-
tectors) it holds that such maxima over scales have
a nice behaviour under rescalings of the input signal.
If a normalized di�erential invariant DnormL assumes
a maximum over scales at a certain point (x0; t0) in
scale-space, then if a rescaled signal f 0 is de�ned by
f 0(sx) = f(x), a scale-space maximum in the corre-
sponding normalized di�erential entity DnormL

0 is as-
sumed at (sx0; s2t0).

This means that if a di�erential invariant can be
found that assumes a maximum over scales for a de-
sired class of signals, this maximumwill follow any size
variations in the image data, and can be used for size
measurements. Here, we shall apply this idea to the
problem of junction detection, by selecting junctions
candidates and scales for treating those from points
where a (speci�c) normalized di�erential invariant si-
multaneously assumes maxima with respect to scale
and space. Such points are called scale-space maxima.

This is a natural generalization of the common ap-
proach of taking a spatial maximum of an operator
response as the estimate of the location of a feature.

3. SCALE SELECTION IN JUNCTION

DETECTION

It is well-known that junctions provide important cues
to three-dimensional structure. For example, T -junc-
tions generically indicate interposition and hence depth
discontinuities. A commonly used technique for detect-
ing junction candidates in grey-level images is to detect
extrema in the curvature of level curves multiplied by
the gradient magnitude raised to some power (Kitchen
and Rosenfeld 1982; Koenderink and Richards 1988).
A special choice is to multiply the level curve curvature
by the gradient magnitude raised to the power of three.
This leads to a polynomial expression,

~� = L2x2Lx1x1 � 2Lx1Lx2Lx1x2 + L2x1Lx2x2 : (8)

Fig. 2 shows the result of detecting scale-space maxima
in the corresponding normalized entity ~�norm = t2~�
(obtained by replacing all derivative operators @xi byp
t @xi). Each scale-space maximum is illustrated by a

circle with the size (area) equal to the detection scale
(measured as t = �2). Observe that a set of junction
candidates is generated with reasonable interpretation
in the scene. Moreover, the circles give natural regions
of interest around the candidate junctions.



Figure 2: Junction candidates detected from an indoor
scene by selecting the 100 scale-space maxima having the
strongest maximum normalized response.

Figure 3: Corresponding results for a synthetic image with
junctions of di�erent spatial extent. (Here, each junction
candidate is illustrated by a sphere centered at the scale-
space maximum of ~�norm with the radius proportional to
the detection scale.)

3.1. Properties of the scale selection method

It can be shown that for a di�use junction model de-
�ned as the product of two error functions along the
coordinate directions (f(x1; x2) = �(x1; t0) �(x2; t0)
where �(xi; t0) =

R xi
x0=�1 g(x0; t0) dx0) the magnitude

of ~�norm increases monotonically with scale.

On the other hand, for a non-symmetric Gaussian
blob, (f(x1; x2) = g(x1; t1) g(x2; t2)) the magnitude of
~�norm decreases with scale.

Hence, ~�norm can be expected to increase with scales
when an in�nite extent junction model constitutes a

reasonable approximation, and to decrease with scales
when so much smoothing is applied that the shape
distortions are substantial. Therefore, selecting scale
levels (and spatial points) from scale-space maxima of
~�norm can be expected to give rise to larger scale values
for junctions having larger spatial extent .

These e�ects are illustrated in �g. 4, which shows
scale-space signatures of ~�norm for junctions of di�erent
spatial extent (obtained by tracking spatial maxima in
~�norm across scales and registering the value of ~�norm
at each scale). The peak is assumed at coarser scales for
the junction having larger spatial extent. (This prop-
erty is also evident in �g. 3.)
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Figure 4: Scale-space signatures of ~�norm for di�use L-
junctions (t0 = 1:0) of di�erent spatial extent. (Horizontal
axis: E�ective scale � log t.)

4. SELECTION OF LOCALIZATION SCALE

Whereas the junction detection method presented so
far is conceptually clean, it can certainly lead to poor
localization, since shape distortions may be substantial
at coarse scales in scale-space. A straightforward way
to improve the location estimate is by determining the
point x that minimizes the (perpendicular) distance to
all edge tangents in a neighbourhood of the junction



candidate x0. By de�ning these edge tangents with the
gradient vectors as normals and by weighting each dis-
tance by the pointwise gradient magnitude, this prob-
lem can be given a standard least squares formulation
(F�orstner and G�ulch 1987),

min
x2R2

xTAx� 2xTb+ c () Ax = b; (9)

where x = (x1; x2)
T , wx0 is a window function, and A,

b, and c are entities determined by the local statistics
of the gradient directions in a neighbourhood of x0,

A =

Z
x02R2

(rL)(x0) (rL)T (x0)wx0(x
0) dx0;

b =

Z
x02R2

(rL)(x0) (rL)T (x0)x0wx0(x
0) dx0;

c =

Z
x02R2

x0
T
(rL)(x0) (rL)T (x0)x0wx0(x

0) dx0:

4.1. Window function and localization scale.

To select the window function in (9) a Gaussian kernel
with scale value equal to the detection scale is pro-
posed as the �rst uncommitted choice. To determine
the localization scale for computing the gradient vec-
tors rL, a new heuristic principle is proposed that the
location estimate should be computed at the scale that
minimizes the normalized residual ,

~dmin = min
x2R2

xTAx� 2xT b+ c

traceA
=

c� bTA�1b

traceA
:

The motivation for this choice is that at very �ne scales,
where a large amount of noise and other �ne-scale struc-
tures can be expected to be present, the �rst-order
derivative operator will mainly respond to such struc-
tures. Hence, the gradient directions can be expected
to be roughly randomly distributed, and the normal-
ized residual will in general be large. When the amount
of smoothing is increased, the �ne-scale structures will
be suppressed, and the locally computed gradient di-
rections will be better aligned to the underlying corner
structure. On the other hand, if too much smooth-
ing is applied, the shape distortions due to scale-space
smoothing will be dominant, and the residual will in-
crease. Hence, selecting the minimum gives a natural
trade-o� between these two e�ects.

Fig. 5 shows these e�ects for a synthetic T -junction.
Note that coarser scale levels are selected when the
noise level is increased. (Observe that for an ideal step
junction the selected localization scale will always be
zero.) Numerical values of the selected scale tdmin and
the minimum residual ~dmin are given in table 1.

0 1 2 3 4 5 6
0

10

20

30

40

50

0 1 2 3 4 5 6
0

10

20

30

40

50

0 1 2 3 4 5 6
0

50

100

150

200

250

Figure 5: Scale-space signatures of the normalized residual
~dmin at a synthetic sharp T -junction (t0 = 0:0) at noise
levels 1 %, 10 %, and 100 % (from top to bottom).

sharp T -junction (90�, t0 = 0:0)

noise level tdmin
~dmin error

0.0 0.0 0.2 0.05
1.0 0.3 0.4 0.07
3.0 0.8 0.7 0.12
10.0 2.0 1.7 0.23
30.0 5.0 4.2 0.56
100.0 13.0 9.7 1.34

Table 1: The scale levels tdmin where the minima over
scales in ~dmin are assumed for the T -junction in �gure 5.
(These data are median values of 21 experiments.) The
last column gives the distance (measured in units of pixel
lengths) between the estimated and the true position.

5. COMPOSED TWO-STAGE METHOD

To summarize, the composed scheme is based on the
following heuristic principles:

1. Detection. In absence of other evidence, detect
junction candidates at the scales (and spatial points)
where the normalized rescaled level curve curva-
ture assumes maxima over scale (and space).



2. Localization. In absence of further information,
compute localization estimates at the scales that
minimize the normalized residual ~dmin over scale.
The new localization estimate is x = A�1b.

3. Iterations. Optionally, repeat these steps until
the increment is su�ciently small.

The left image in �g. 6 shows the result of applying
this procedure (with �ve iterations in the last step),
and graphically illustrating each junction candidate by
a circle with the area equal to the localization scale.
The right image shows the result of suppressing those
points for which the procedure did not converge after
�ve iterations, and also suppressing overlapping blobs.
Fig. 7 gives the result of applying the composed proce-
dure to another image.

Figure 6: Improved estimates for the candidates in �g. 2.

Figure 7: Composed junction detection: In the left image,
the size of the circles reect the detection scales, and in the
right image the size reects the localization scales.

6. SUMMARY AND DISCUSSION

The subject of scale selection is essential to many prob-
lems in computer vision and automated image analysis.
This article has shown how this general problem can be

approached in junction detection and junction localiza-
tion by studying the evolution properties over scales of
certain non-linear combinations of normalized Gaus-
sian derivatives. The presented method, which is the
�rst junction detector with automatic scale selection,
is basically free from tuning parameters. The only es-
sential parameter is the number of junction candidates
to be treated in the initial step.

Further experiments (Lindeberg 1994c) demonstrate
that for junctions with su�ciently large opening angles
true subpixel accuracy is obtained even in the pres-
ence of moderately high noise levels (typically 10{100%
added Gaussian noise related to the contrast).

Of course, the task of selecting \the best scale" for
handling real-world image data (about which usually
no or very little a priori information is available) is
intractable if treated as a pure mathematical problem.
Therefore, the proposed heuristic principles should not
be interpreted as \optimal solutions", but rather as
systematic methods for generating initial hypotheses in
situations where no or very little information is avail-
able about what can be expected to be in the scene.
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