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Abstract. This article describes how a certain way of expressing low-level fea-
ture detectors, in terms of singularities of di�erential expressions de�ned at mul-
tiple scales in scale-space, simpli�es the analysis of the e�ect of smoothing. It
is shown how such features can be related across scales, and generally valid
expressions for drift velocities are derived with examples concerning edges, junc-
tions, Laplacean zero-crossings, and blobs. A number of invariance properties
are pointed out, and a particular representation de�ned from such singularities,
the scale-space primal sketch, is treated in more detail.

Keywords: scale-space, drift velocity, feature detection, primal sketch, singu-
larity, invariance.

1 Introduction

A common way of implementing low-level feature detectors in computer vision
and image processing is by applying non-linear operations to smoothed input
data. Examples of this are edge detection, junction detection, and blob detec-
tion. The pre-smoothing step can be motivated either heuristically by the need
for noise suppression in real-world signals, or by the fact that image structures
only exist as meaningful entities over certain ranges of scale. The latter argument
is one of the main motivations for the development of the multi-scale represen-
tation known as scale-space representation, in which a given signal is subjected
to smoothing by Gaussian kernels of successively increasing width.

This aim of this article is to show why a certain way of formulating such low-
level feature detectors, in terms of singularities of di�erential expressions de�ned
from the scale-space representation, is attractive from theoretical viewpoint. An
overview of the scheme proposed is shown in Fig. 1. Any given signal is subjected
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Fig. 1. Schematic overview of the di�erent types of computations required for detecting
features in terms of di�erential singularities at multiple scales.

to the following operations: (i) smoothing to a number of scales, (ii) derivative
computations at each scale, (iii) combination of the derivatives at each scale into
(non-linear) di�erential geometric entities, and (iv) detection of zero-crossings in
these. It will be shown how the e�ect of the smoothing operation in this scheme
can be analyzed by (i) showing how features de�ned in this way can be related
across scales; a subject which can be referred to as the \deep structure of scale-
space", and (ii) by deriving drift velocities for a large class of feature detectors.
A number of invariance properties with respect to natural transformations of
the spatial coordinates and the grey-level domain will also be listed.

Before starting it should be pointed out that this scheme is not presented
as solely new. Some of the results presented in the paper are (at least partly)
known, or have been touched upon before; see, e.g., Koenderink and van Doorn
[8], who proposed the multi-scale N-jet representation, Florack et al. [5], who
showed how a minimal set of di�erential invariants can be derived at any scale,
or Lindeberg [11] who analysed the behaviour of scales of local extrema and
related entities. The purpose with this presentation is rather to emphasize the
role of the singularities in the scheme in Fig. 1, and to illustrate how they are
attractive for the theoretical analysis of di�erent feature detectors. For simplicity,
the treatment is developed for two-dimensional signals. The approach, however,
is valid in arbitrary dimensions.

The scale-space concept dealt with is the traditional di�usion-based scale-
space for continuous signals developed by Witkin [16], Koenderink [7], and
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Babaud et al. [1], which is given by the solution to

@tL =
1

2
r2L =

1

2
(Lxx + Lyy) (1)

with initial condition L(�; 0) = f(�). At any scale in this representation and at
any point P0 = (x0; y0) 2 IR2, denote by @�v the directional derivative in the
gradient direction of L, and by @�u the derivative in the perpendicular direction.
In terms of derivatives along the Cartesian coordinate directions it holds that

@�u = sin�@x � cos �@y ; @�v = cos �@x + sin�@y ; (2)

where (cos�; sin�) is the normalized gradient direction of L at P0.

2 Feature Detection from Singularities in Scale-Space

2.1 Examples of Di�erential Formulations of Feature Detectors

A natural way to de�ne edges from a continuous grey-level image L : IR2 !
IR is as the union of the points for which the gradient magnitude assumes a
maximum in the gradient direction. This method is usually referred to as \non-
maximumsuppression", (see e.g. Canny [4]). Assuming that the second and third
order directional derivatives of L in the v-direction are not simultaneously zero,
a necessary and su�cient condition for P0 to be a gradient maximum in the
gradient direction may be stated as:�

L�v�v = 0 ;
L�v�v�v < 0 :

(3)

Since only the sign information is important, this condition can be restated as�
~L�v�v = L2�vL�v�v = L2xLxx + 2LxLyLxy + L2yLyy = 0 ;
~L�v�v�v = L3�vL�v�v�v = L3xLxxx + 3L2xLyLxxy + 3LxL2yLxyy + L3yLyyy < 0 :

(4)

An entity commonly used for junction detection is the curvature of level curves
in intensity data (see e.g. Kitchen [6] or Koenderink and Richards [9]). In terms
of directional derivatives it can be expressed as

� =
L�u�u

L�v
: (5)

In order to to give a stronger response near edges, the level curve curvature is
usually multiplied by the gradient magnitude (see, e.g., Brunnstr�om et al. [3])

j~�j = jL2�vL�u�uj = jL2yLxx � 2LxLyLxy + L2xLyyj : (6)

Assuming that the �rst- and second-order di�erentials of ~� are not simultane-
ously degenerate, a necessary and su�cient condition for a point P0 to be a
maximum in this rescaled level curve curvature is that:8<

:
@�u(~�) = 0 ; @�v(~�) = 0 ;
H(~�) = ~�H = ~��u�u~��v�v � ~�2�u�v > 0 ;
sign(~�)~��u�u < 0 :

(7)
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Zero-crossings of the Laplacean

r2L = L�u�u + L�v�v = Lxx + Lyy = 0 (8)

have been used for stereo matching (see, e.g., Marr [15]) and blob detection (see,
e.g., Blostein and Ahuja [2]). Blob detection methods can also be formulated in
terms of local extrema (see, e.g., Lindeberg and Eklundh [10]).

2.2 Invariance Properties of Di�erential Singularities

One of the main reasons why the formulation in terms of singularities is impor-
tant is because these singularities do not depend on the actual numerical values
of the di�erential geometric entities, but only on their relative relations. In this
way, they will be less a�ected by scale-space smoothing, which is well-known to
decrease the amplitude of the variations in a signal and its derivatives.

In fact, the di�erential entities used above are invariant to a number of
primitive transformations of both the original and the smoothed grey-level sig-
nal; translations, rotations, and (uniform) rescalings in space as well as a�ne
intensity transformations. (This set is similar but not equal to the set of trans-
formations used by Florack et al. [5] to derive necessity results about di�erential
invariants from intensity data; the main di�erence is that [5] considers invariance
with respect to arbitrary monotone intensity transformations, while the di�eren-
tial singularities used here are invariant to uniform rescalings of the coordinate
axes, i.e., size changes.)

To give a precise formulation of this, let L�um�vn = L�u� denote a mixed di-
rectional derivative of order j�j = m + n, where � = (m;n), and let D be a
(possibly non-linear) homogeneous di�erential expression of the form

DL =
IX

i=1

ci

JY
j=1

L�u�ij ; (9)

where j�ijj > 0 for all i = [1::I] and j = [1::J ], and
PJ

j=1 j�ijj = N for all
i 2 [1::I]. Moreover, let SDL denote the singularity set of this operator, i.e.,
SDL = f(x; t) : DL(x; t) = 0g, and let G be the Gaussian smoothing operator,
i.e., L = Gf . Under these transformations of the spatial domain (represented by
x 2 IR2) and the intensity domain (represented by either the unsmoothed f or
the smoothed L) the singularity sets transform as follows:

Transformation De�nition Invariance
translation (T L)(x; t) = L(x +�x; t) SD G T f = SD T G f = T SD G f
rotation (RL)(x; t) = L(Rx; t) SD GR f = SD RG f = RSD G f
uniform scaling (UL)(x; t) = L(sx; t) SD G U f = SD U G f = U SD G f
a�ne intensity (AL)(x; t) = aL(x; t) + b SD GA f = SD AG f = SD G f

Above, R is a rotation matrix,�x is a vector (2 IR2), while a, b and s are scalar
constants. The de�nitions of the transformed singularity sets are as follows;
T SDL = f(x; t) : DL(x + �x; t) = 0g, RSDL = f(x; t) : DL(Rx; t) = 0g,
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and USDL = f(x; t) : DL(sx; s2t) = 0g. The commutative properties of G
with T , R, and A are trivial consequences of the translational invariance, ro-
tational invariance, and linearity of Gaussian smoothing. Under uniform rescal-
ings f 0(x; y) = f(sx; sy), however, it holds that L0 = Gf 0 is related to L by
L0(x; y; t0) = L(sx; sy; s2t0), which means that U applied to a singularity set
also a�ects the scale levels. The commutative properties of SD with T , U , and
A follow from corresponding invariance properties of linear derivative operators
combined with the homogeneity of (9), while the commutativity with respect to
R follows from the rotational invariance of the directional derivatives L�u�ij .

3 Relating Di�erential Singularities at Di�erent Scales

Consider a feature, which at any level of scale can be de�ned by

h(x; y; t) = 0 (10)

for some function h : IR2 � IR+ ! IRN , where N is either 1 or 2. Using the
implicit function theorem it is easy to analyze the dependence of (x; y) on t in
the solution to (10). The results to be derived give estimates of the drift velocity
of di�erent features due to scale-space smoothing, and provides a theoretical
basis for relating corresponding features at adjacent scales. It does hence enable
well-de�ned linking and/or identi�cation of features across scales.

3.1 Zero-Dimensional Entities (Points)

Assume �rst thatN is equal to 2, that is, that h(x; y; t) = (h1(x; y; t); h2(x; y; t))
for some functions h1; h2 : IR

2 � IR+ ! IR. The derivative of the mapping h at
a point P0 = (x0; y0; t0) is

h0jP0 =

�
@xh1 @yh1 @th1
@xh2 @yh2 @th2

�����
P0

=
�
@(h1;h2)
@(x;y)

@(h1 ;h2)
@(t)

����
P0

: (11)

If @(h1; h2)=@(x; y) is a non-singular matrix at P0, then the solution (x; y) to
h(x; y; t0) = 0 will be an isolated point. Moreover, the implicit function theorem
guarantees that there exists some local neighbourhood around P0 where (x; y)
can be expressed as a function of t. The derivative of that mapping t 7! (x; y)
is: �

@tx
@ty

�����
P0

= �

�
@xh1 @yh1
@xh2 @yh2

�����
�1

P0

�
@th1
@th2

�����
P0

: (12)

If h is a function of the spatial derivatives of L only, which is the case, for
example, for the feature extractors treated in Sect. 2.1, then the fact that spatial
derivatives of L satisfy the di�usion equation @t = (@xx + @yy)=2, can be used
for replacing derivatives with respect to t by derivatives with respect to x and y.
Hence, closed form expression can be obtained containing only partial derivatives
of L with respect to x and y. For example, the junction candidates given by (7)
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satisfy (~��u; ~��v) = (0; 0). In terms of directional derivatives, (12) can then be
written �

@tu
@tv

�����
P0

= �

�
~��u�u ~��u�v
~��u�v ~��v�v

�����
�1

P0

�
@t~��u
@t~��v

�����
P0

: (13)

By di�erentiating the expressions for ~��u and ~��v with respect to t, by using the
fact that the spatial derivatives satisfy the di�usion equation, and by expressing
the result in directional derivatives in the u- and v-directions the following ex-
pressions can be obtained (the calculations have been done using Mathematica):

~��u�u = L2

�vL�u�u�u�u + 2L�u�u(L�u�uL�v�v � L2

�u�v) + 2L�v(L�u�vL�u�u�u � L�u�uL�u�u�v);
~��u�v = L2

�vL�u�u�u�v + 2L�u�v(L�u�uL�v�v � L2

�u�v) + 2L�v(L�v�vL�u�u�u � L�u�vL�u�u�v);
~��v�v = L2

�vL�u�u�v�v + 2L�v�v(L�u�uL�v�v � L2

�u�v) + 2L�v(L�u�uL�v�v�v + 2L�v�vL�u�u�v � 3L�u�vL�u�v�v);
@t~��u = L2

�v(L�u�u�u�u�u + L�u�u�u�v�v)=2
+(L�u�uL�v�v � L2

�u�v)(L�u�u�u + L�u�v�v) + L�v(L�u�u�uL�v�v�v � L�u�u�vL�u�v�v);
@t~��v = L2

�v(L�u�u�u�u�v + L�u�u�v�v�v)=2 + (L�u�uL�v�v � L2

�u�v)(L�u�u�v + L�v�v�v)
+L�v(L�v�v(L�u�u�u�u + L�u�u�v�v) + L�u�u(L�v�v�v�v + L�u�u�v�v)� 2L�u�v(L�u�u�u�v + L�u�v�v�v))
+L�v(L�u�u�v(L�u�u�v + L�v�v�v)� L�u�v�v(L�u�u�u + L�u�v�v)):

(These expressions simplify somewhat if we make use of L�u�u�ujP0 = 0, which
follows from ~��u = 0.) Note that as long as the Hessian matrix of ~� is non-
degenerate, the sign of the ~�H and ~��u�u will be constant. This means that the
type of extremumwill be the same. For local extrema of the grey-level landscape,
given by (Lx; Ly) = (0; 0), the expression for the drift velocity reduces to

rt = �
1

2
(HL)�1r2(rL) ; (14)

where HL denotes the Hessian matrix and rL the gradient vector. Observe that
regularity presents no problem, since L satis�es the di�usion equation, and for
t > 0 any solution to the di�usion equation is in�nitely di�erentiable.

3.2 One-Dimensional Entities (Curves)

IfN is equal to 1, then there will no longer be any unique correspondence between
points at adjacent scales. An ambiguity occurs, very similar to what is called the
aperture problem in motion analysis. Nevertheless, we can determine the drift
velocity in the normal direction of the curve. Given a function h : IR2�IR+ ! IR
consider the solution to h(x; y; t) = 0. Assume that P0 = (x0; y0; t0) is a solution
to this equation and that the gradient of the mapping (x; y) 7! h(x; y; t0) is
non-zero. Then, in some neighbourhood around (x0; y0) the solution (x; y) to
h(x; y; t0) = 0 de�nes a curve. Its normal at (x0; y0) is given by (cos�; sin�) =
(hx; hy)=(h

2
x + h2y)

1=2 at P0. Consider the function ~h : R � IR+ ! IR ~h(s; t) =
h(x0 + s cos�; y0 + s sin �; t), which has the derivative

~hs(0; t0) = hx(x0; y0; t0) cos �+ hy(x0; y0; t0) sin� =
q
h2x + h2y

���
P0

: (15)

Since this derivative is non-zero, we can apply the implicit function theorem.
It follows that there exists some neighbourhood around P0 where ~h(s; t) = 0
de�nes s as a function of t. The derivative of this mapping is
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@tsjP0 = � ~hs

����1
P0

~ht

���
P0

= �
htq

h2x + h2y

������
P0

: (16)

As an example of this consider an edge given by non-maximum suppression

h = � = L2xLxx + 2LxLyLxy + L2yLyy = 0 : (17)

By di�erentiating (17), by using the fact that the derivatives of L satisfy the
di�usion equation, and by expressing the result in terms of the directional deriva-
tives we get

� = L2�vL�v�v = 0;
��u = L2�vL�u�v�v + 2L�vL�u�vL�u�u;
��v = L2�vL�v�v�v + 2L�vL

2
�u�v;

�t = L2�v(L�u�u�v�v + L�v�v�v�v)=2 + L�vL�u�v(L�u�u�u + L�u�v�v) :

(18)

To summarize, the drift velocity in the normal direction of a (curved) edge in
scale-space is (with ��u and ��u according to (18))

(@tu; @tv) = �
L�v(L�u�u�v�v + L�v�v�v�v) + 2L�u�v(L�u�u�u + L�u�v�v)

2((L�vL�u�v�v + 2L�u�vL�u�u)2 + (L�vL�v�v�v + 2L2�u�v)2)
(
��u

L�v
;
��v
L�v

) : (19)

Unfortunately, this expression cannot be further simpli�ed unless additional con-
straints are posed on L. For a straight edge, however, where all partial derivatives
with respect to u are zero, it reduces to

(@tu; @tv) = �
1

2

L�v�v�v�v

L�v�v�v
(0; 1) (20)

(see also [11, 14]). For a curve given by the zero-crossings of the Laplacean we
have

(@tu; @tv) = �
r2(r2L)

2((r2L�u)2 + (r2L�v)2)
(r2L�u;r

2L�v) ; (21)

which also simpli�es to (20) if all directional derivatives in the u-direction are set
to zero. Similarly, for a parabolic curve, given by det(HL) = LxxLyy � L2xy = 0,
the drift velocity in the normal direction is

(@tx; @ty) = �
LyyLxxxx�2LxyLxxxy+(Lxx+Lyy)Lxxyy�2LxyLxyyy+LxxLyyyy

2((LxxLxyy�2LxyLxxy+LyyLxxx)2+(LxxLyyy�2LxyLxyy+LyyLxxy )2)

(LxxLxyy � 2LxyLxxy + LyyLxxx; LxxLyyy � 2LxyLxyy + LyyLxxy):

This expression simpli�es somewhat in a pq-coordinate system, with the p- and
q-axes aligned to the principal axes of curvature so that the mixed second-order
directional derivative L�p�q is zero.
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4 Invariance Properties of the Scale-Space Primal Sketch

A particular type of representation constructed in this way is the scale-space
primal sketch [10, 14]. It is a tree-like multi-scale representation aimed at making
explicit blobs in scale-space as well as the relations between blobs at di�erent
scales. It is constructed by �rst de�ning one type of blobs, called grey-level
blobs, at all levels of scale. The de�nition of this concept should be obvious from
Fig. 2. Every local extremum is associated with a grey-level blob, whose extent

Fig. 2. Grey-level blob de�nition for bright blobs of a two-dimensional signal. In two
dimensions a grey-level blob is generically given by a local extremum and the level
curve through a speci�c saddle point, denoted delimiting saddle point.

is determined by the level curve through a speci�c saddle point, called delimiting
saddle point. Formally, grey-level blobs can be de�ned by a water-shed analogy:
Given any di�erentiable signal f : IR! IR consider any pair of maxima, A and
B. They are connected by an in�nite set of paths PA;B. On each path, pA;B,
the grey-level function assumes a minimum. To reach another maximum from
A, one must at least descend to the grey-level

zbase(A) = sup
B2M

sup
pA;B2PA;B

inf
(�;�)2pA;B

f(�; �) ; (22)

where M is the set of all local maxima; zbase(A) is the grey-level value of the de-
limiting saddle point associated with the local maximumA. The support region
Dsupp(A) of the blob is the region

Dsupp(A) = fr 2 IR2 : sup
pA;r2PA;r

inf
(�;�)2pA;r

f(�; �) � zbase(A)g : (23)

Finally, the grey-level blob associated with A is the (three-dimensional) set

Gblob(A) = f(x; y; z) 2 IR2�IR : ((x; y) 2 Dsupp(A))^(zbase(A) � z � f(x; y))g :
(24)

In general, to every grey-level blob existing at some level of scale there will
correspond a similar blob both at a �ner scale and a coarser scale. This notion can
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be made precise by applying the implicit function theorem to the extremum and
saddle point associated with each blob. Grey-level blobs along an extremum path
across scales are linked as long as neither the extremum point nor its delimiting
saddle point is involved in any bifurcation, that is, as long as the Hessian remains
non-degenerate. The resulting (four-dimensional) objects, which have extent in
both space (x; y), grey-level z, and scale t, are called scale-space blobs (see [10,
11, 14] for a detailed description). From the bifurcations between these objects,
which can be of four types; annihilation, merge, split, and creation, a tree-like
data structure can be constructed with the scale-space blobs as primitives and
the bifurcations as arcs between them.

Earlier work has shown that this representation can be used for extracting
blob-like image structures from grey-level images without any prior information
about the contents of the image. A signi�cance measure is postulated as the
(four-dimensional) volume the scale-space blobs occupy in scale-space,

Svol,norm(r) =

Z t0max

t=t0
min

Vtrans(Gvolume(r(t)); t) d(�e�(t)) ; (25)

however normalized in order to enable uniform treatment of structures at di�er-
ent scales. Vtrans(Gvolume(r(t)); t) denotes a transformed volume of a grey-level
blob along an extremum path r delimited by two scale values t0min and t0max,
while �e� : IR ! IR is a transformation mapping the ordinary scale parameter
into a transformed scale parameter called e�ective scale. For continuous signals
�e� is given by �e�(t) = C1 + C2 log t for some constants, C1 and C2 (see [12]).

Since the scale-space primal sketch is de�ned solely in terms of local extrema,
level curves through saddle points, and bifurcations between critical points, it
inherits the invariance properties listed in Sect. 2.2. This means that the topo-
logical relations in the tree-like data structure are preserved under translations,
rotations, and (uniform) rescalings in space as well as a�ne intensity transfor-
mations. The relative ranking on signi�cance obeys the following properties:

Invariance with respect to translations and rotations is trivial, since the scale-
space representation and volumes are invariant to such operations. Concerning
a�ne intensity transformations, it is obvious that the grey-level blob volumes are
insensitive to the grey-level o�set. Invariance with respect to linear stretching is
achieved by dividing the measured grey-level volumes by the variation level of
the input image in the transformation function Vtrans. Because of the invariance
of the scale-space primal sketch with respect to coordinate rescaling, the only
way an extremum path is a�ected by this operation is by moving it so that
the scale values t0min and t0max are multiplied by a constant factor. Clearly the
logarithmic measure �e� is invariant to this, since it corresponds to a translation
of the integration domain,which a�ects all scale-space blobs in the same way. The
intention with the transformation function Vtrans is that the integrand should
also be well-behaved under this operation.

The scale-space primal sketch satis�es the following properties, which are
essential for a low-level image representation: (i) it is based on the underlying
topology, since it is de�ned from families of level curves; (ii) it is hierarchical in
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the sense that the primitives are related through a tree-like data structure, and
there is a natural ranking of events in order of signi�cance; (iii) it is local in
the sense that the primitives of the representation have �nite support and only
in
uence their nearest neighbours (in fact, it can be used for delimiting regions
in space (and intervals in scale) for further processing); (iv) it is continuous in
the sense that the topology of the overall representation is preserved as long as
the relations in the underlying images remain the same; (v) it is invariant to
transformations such as rotations and translations in space; (vi) it is compatible
with rescalings of both the spatial coordinates and the grey-level intensity. For
discrete signals, the rotations must be multiples of 90 degrees, the translations
must be pixel-wise, and the spatial rescaling factor must be an integer in order
to preserve the invariance.

5 Summary and Discussion

It has been shown how the formulation of feature detectors in terms of di�erential
singularities makes it theoretically simple to analyze their behaviour over scales.
Even though further work may be needed before implementing the drift velocity
estimates derived for the di�erent feature detectors, these expressions completely
describe the theoretical evolution properties of such non-linear combinations
de�ned in scale-space. The discretization of the scheme in Fig. 1 is treated in
[13, 14], where experimental results are also presented.
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