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Abstract

We develop how a notion of e�ective scale can be introduced in a formal way. For continuous

signals a scaling argument directly gives that a natural unit for measuring scale-space lifetime

is in terms of the logarithm of the ordinary scale parameter. That approach is, however, not

appropriate for discrete signals, since then an in�nite lifetime would be assigned to structures

existing in the original signal. Here we show how such an e�ective scale parameter can be

de�ned as to give consistent results for both discrete and continuous signals. The treatment is

based upon the assumption that the probability that a local extremum disappears during a short

scale interval should not vary with scale. As a tool for the analysis we give estimates of how

the density of local extrema can be expected to vary with scale in the scale-space representation

of di�erent random noise signals, both in the continuous and discrete cases.

Keywords: scale-space, e�ective scale, scale-space lifetime, discrete smoothing transforma-

tions, density of local extrema, multi-scale representation, computer vision, digital signal

processing
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1 Introduction

When Witkin [19] coined the term scale-space, he empirically observed a \marked correspon-

dence" between the perceptual salience of structures in a signal and the lengths of the intervals

during which those structures exist in scale-space:

... those intervals that survive over a broad range of scales tend to leap out at the

eye ...

This observation indicates that the lifetime of structures1 in scale-space may be an important

property to take into account when extracting information from signals. However, if we are to

base a signi�cance measure on such an entity, it is of crucial importance to measure it in proper

units, so that signi�cance values of structures existing at di�erent scales can be appropriately

compared. In principle, the ordinary scale parameter t, as obtained from the di�usion equation

@L

@t
=

1

2
r2L (1)

with initial condition L(�; 0) = f de�ning the scale-space representation L : RN � R+ ! R of

a continuous signal f : RN ! R [19, 7, 20, 8], is arbitrary and could be transformed by any

strictly increasing change of variables. In other words, given a structure existing during a scale

interval [t1; t2] in scale-space, we could in principle for any strictly increasing function h : R! R

imagine de�ning the lifetime of that structure as tlife = h(t2)� h(t1).

The goal of this paper is to introduce such a transformed scale parameter, which will be

termed e�ective scale and denoted by � , so that scale-space lifetime can be measured as plain

di�erences of scale values expressed in this unit.

For continuous signals the problem is almost trivial. A scaling argument directly implies

(see Appendix A.2) that a natural way to de�ne scale-space lifetime is by letting the e�ective

scale parameter be the logarithm of the ordinary scale parameter. This relation is well-known

1See Appendix A.1 for a discussion about scale-space lifetime and further motivations to this work.
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and has been used for example in pyramid representations, which usually comprise a logarithmic

sampling along the scale direction (see e.g. Burt [3] or Crowley [5]).

However, for discrete signals the situation is no longer as simple, at least not if we are

interested in a scale-space representation with a continuous scale parameter2 [8]. The scaling

argument cannot be carried out due to the �nite inner scale [7] of the sampled data. If we anyway

would apply the continuous results to discrete signals and naively measure the scale-space lifetime

of a structure existing between scales t1 and t2 by tlife = log t2� log t1 it is clear that the lifetime

of �ne scale structures would be substantially overestimated compared to the lifetime of coarse

scale structures. For example, a structure existing in the original signal (corresponding to the

scale parameter equal to zero) would be assigned an in�nite lifetime. On the other hand, if we

would measure the scale-space lifetime by tlife = t2 � t1 then instead the lifetime of coarse scale

structures would be overestimated, since it is well-known that (at least at coarse scales) \things

happen approximately logarithmically with scale".

In this presentation we will develop how such a transformed scale parameter valid also for

discrete signals can be introduced in a formal manner. The treatment is based on the assumption

that the relative decay rate of local extrema should be constant across scales for certain reference

data. As reference data we take random noise signals from di�erent distributions. We will

demonstrate that with this formulation, the e�ective scale concept for continuous signals will be

equivalent to the logarithmic transformation induced by the scaling argument. We will also show

that with increasing scale, the e�ective scale concept for discrete signals approaches the e�ective

scale concept for continuous signals. As a tool for the analysis we will derive estimates of how

the number of local extrema in a signal can be expected to vary with scale for random noise data

of di�erent normal distributions. Special attention will be given to the transition phenomena at

�ne scales due to the �nite sampling density of discrete signals.

2In a pyramid representation, which is one type of multi-scale representation with a discrete scale parameter,
scale-space lifetime can obviously be measured as the number of resolution layers during which a structure exists.
(However, the quantization in the set of possible scale values will be quite coarse).

3



Although it would be of interest to relate this subject to notions such as \signi�cant" indicated

above, we will not make any claims about how the unit system suggested here relates to biological

perception. The treatment given will be strictly mathematical, aimed at addressing a technical

problem with a formal treatment. We have, however, demonstrated with experiments on di�erent

types of real imagery that the e�ective scale concept developed here gives intuitively reasonable

results when used in conjunction with the measurements of signi�cance of blob-like structures

performed in the scale-space primal sketch, see [9, 10, 13].

2 Transformation of the Scale Parameter: E�ective Scale

At �rst glance the problem of transforming the scale parameter may seem somewhat ad hoc.

What properties do we want from an \e�ective scale parameter"? Intuitively, we would like

structures at di�erent scales to be treated in a way as uniform as possible so that neither the

lifetime of �ne scale structures is overestimated compared to the lifetime of coarse scale structures

nor the opposite. How should this property be formalized? The approach we will take here is

to assume that the expected remaining lifetime of a local extremum should not vary with scale.

More precisely, we will assume that the probability that a certain local extremum disappears3

after a small amount of smoothing �� , expressed in e�ective scale, should remain constant over

scale, i.e., the relative decay rate of local extrema should be constant over scales.

3For one-dimensional signals the number of local extrema in a signal is guaranteed to decrease monotonically
with scale. In two and higher dimensions the situation is more complicated, since the number of local extrema
can in fact increase (locally) with scale-space smoothing due to creations of saddle-extremum pairs [11]. However,
the expected number of local extrema, as an average over many signals, can always be expected to decrease.
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2.1 De�nition and Derivation

Assume that we know how the expected number of extremum points per unit length varies with

scale. In other words, assume that we know4 how

p(t) = fthe expected density of extremum points at scale tg (2)

varies with t. What we want to de�ne is a transformation function h such that the e�ective scale

can be written � = h(t). The decay rate requirement can be stated as:

Requirement 1. (Uniform relative decay rate for local extrema)

The probability that a certain extremum point (or equivalently a certain blob) disappears after a

small increment d� in e�ective scale should be independent of both the e�ective scale � and the

current number of local extrema in the signal. That is

dp
d�

p
=

d(log p)

d�
= C1 = constant (3)

Integration of (3) gives:

log p = C1� + C2 (4)

for some arbitrary C2. By introducing new arbitrary constants A and B, we can conclude

Proposition 1. (E�ective scale)

Assume that we know how the expected density of local extrema p behaves as a function of scale

t and let � be the e�ective scale parameter given by Req. 1. Then, for some arbitrary constants

A and B > 0, the e�ective scale as function of the ordinary scale parameter is given by

� = h(t) = A +B log p(t) (5)

4In the discrete case the entity p(t) can also be interpreted as the probability that a certain spatial point x is
a local extremum in the smoothed grey-level image at scale t.
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The actual values of A and B are, of course, unimportant. Without loss of generality A can be

set to zero. Its interpretation is just as an arbitrary o�set coordinate and does not a�ect the

scale-space lifetime. Similarly, B just corresponds to an arbitrary but unessential linear rescaling

of the e�ective scale parameter.

So far no assumptions have been made about the dimensionality of the signal or whether it is

continuous or discrete. What is left to determine is how the density of extrema can be expected

to behave with scale. Both theoretical and experimental results will be given below. However,

�rst we will illustrate some immediate consequences of the stated de�nition.

2.2 Examples and Experimental Results

For continuous signals it is known that the number of local extrema in a signal decreases approx-

imately as t� with scale. This relation has been discussed by e.g. M�ussigmann [15] and can also

be motivated theoretically (see Sec. 3). Hence, we have p(t) = constant=t� which means that

�(t) = A+B log p(t) = A+ B log constant� �B log t (6)

and a graph showing the number of local extrema as a function of scale will be a straight line in

a log-log-diagram. This indicates that this de�nition of e�ective scale given by Requirement 1

is qualitatively similar to a de�nition of e�ective scale based on the scaling argument.

For discrete signals the number of extrema will also show the same qualitative behaviour at

coarse levels of scale, where the grid e�ects are negligible. However, at �ne levels of scale the

t��-behaviour cannot hold, since it is based on the assumption that the original signal contains

equal amount of structure over all levels of scale. The discrete signal is limited by its �nite

sampling density.

These ideas are illustrated in Fig. 1, where we show the logarithm of the number of extrema

as a function of the logarithm of the scale parameter. The left diagram shows simulated results

for a large number of point noise images generated from three di�erent distributions; normal
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Figure 1: Experimental results showing the number of local extrema as function of the scale parameter t
in log-log scale (a) measured values (b) accumulated mean values. Note that a straight-line approximation
is valid only in the interior part of the scale interval. At the lower end point of the interval we have
interference with the inner scale, given by the sampling density of the image, and the higher end point
there is interference with the outer scale, given by the size of the image.

distribution, rectangle distribution and exponential distribution. The right curve shows the

average of these results. Note that the straight line approximation is valid only in an interior

scale interval. At �ne scales we have interference with the inner scale, given by the sampling

density of the image, and at coarse scales there is interference with the outer scale [7], given by

the size of the image.

The idea behind the notion of e�ective scale is to take the inner scale into account and

guarantee a precise de�nition of scale-space lifetime also at �ne levels of scale. Combined with the

notion of a scale-space for discrete signals [8], which takes the discrete nature of implementation

into account, it gives us the necessary tool to investigate the �ne scale structures.

In this presentation we have chosen not to treat the behaviour of �nite images at very coarse

levels of scale, since in such situations the treatment of the image boundaries will substantially

a�ect the scale-space behaviour. Instead, we argue that if one really wants to study objects at

such a coarse scale that the boundary e�ects become important, then the problem is to a large

extent unde�ned and one should rather try to acquire additional image data in a region around

the current image, so that the scale-space smoothing becomes well-de�ned up to the prescribed

accuracy. This can be easily accomplished in an active vision situation.
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3 Density of Local Extrema as Function of Scale

Of course, the question concerning how the density of local extrema can be expected to vary with

scale seems to be very di�cult or even impossible to answer to generally, since such a quantity

can be expected to vary substantially from one image to another. How should we then be able

to talk about \expected behaviour"? Should we consider all possible (realistic) signals/images,

study how this measure evolves with scale and then form some kind of average?

In this section we will perform a simple one-dimensional study. We will consider random

noise data with normal distribution. Under these assumptions it is possible to derive a compact

closed form expression for this quantity. We will base the analysis on a treatment by Rice [17]

about the expected density of local maxima of stationary normal processes (see also Papoulis

[16] or Cramer and Leadbetter [4]).

3.1 Continuous Analysis

The density of local maxima � for a stationary normal process can be expressed in terms of the

second and fourth order derivatives of the autocorrelation function R or equivalently in terms of

the second and fourth order moments of the spectral density S (the Fourier transform of R):

� =
1

2�

s
�R

(4)(0)

R00(0)
=

1

2�

vuutR1�1 !4S(!)d!R1
�1 !2S(!)d!

(7)

Since the scale-space representation L is generated from the input signal f by a linear transfor-

mation, the spectral density of L, denoted SL, is given by

SL(!) = jH(!)j2Sf(!) (8)

where Sf is the spectral density of f and H(!) the Fourier transform of the impulse response h

H(!) =

Z 1

�1
h(t)e�i!tdt (9)
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In our scale-space case, h is of course the Gaussian kernel g with the Fourier transform G

g(�; t) =
1p
2�t

e��
2=2t; G(!; t) =

1

2
e�!

2t=2 (10)

Assuming that f is generated by white noise with Sf (w) = 1 this gives

SL(!) =
1

4
e�!

2t (11)

Using the formula (see e.g. Spiegel [18] 15.77)

Z 1

0
xme�ax

2

dx =
�(m+1

2 )

2a
m+1

2

(12)

we obtain a closed form expression for the density of local maxima of a continuous signal, pc(t):

pc(t) =
1

2�

vuutR1�1 !4 1
4e
�!2td!R1

�1 !2 1
4e
�!2td!

=
1

2�

vuuuut2
�( 5

2
)

2t
5
2

2
�( 3

2
)

2t
3
2

=
1

2�

r
3

2

1p
t

(13)

Of course, an identical result applies5 to local minima. To summarize,

Proposition 2. (Density of local extrema in scale-space (white noise, 1D))

In the scale-space representation of a one-dimensional continuous signal generated by a white

noise stationary normal process, the expected density of local maxima (minima) in a smoothed

signal at a certain scale decreases with scale as t�
1

2 .

5Observe that the same type of qualitative behaviour (pc(t) � t�
1

2 ) applies also to the local extrema in the
spatial derivatives of the scale-space representation (just replace H = G by H = (i!)nG in the previous analysis).
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This scale dependence implies that a graph showing the density of local maxima (minima) as

function of scale can be expected6 to be a straight line in a log-log diagram.

log(pc(t)) =
1

2
log(

3

2
)� log(2�)� 1

2
log(t) = constant � 1

2
log(t) (14)

By combining Proposition 2 with Proposition 1 we get

Corollary 3. (E�ective scale for continuous signals (1D))

For continuous one-dimensional signals the e�ective scale parameter �c as function of the or-

dinary scale parameter t is (up to an arbitrary a�ne transformation, i.e., for some arbitrary

constants A0 and B0 > 0) given by a logarithmic transformation

�c(t) = A0 + B0 log(t) (15)

An interesting question concerns what will happen if the uncorrelated white noise model for

the input signal is changed. A spectral density that has been applied to e.g. fractals (see

e.g. Barnsley et.al. [2] or G�arding [6]) is given by Sf(w) = w�� . For one-dimensional signals,

reasonable values of � are obtained between 1 and 3 [2]. Of course, such a distribution is

somewhat non-physical, since Sf(w) will tend to in�nity as t tends to zero and neither one of the

spectral moments is convergent. However, when multiplied by a Gaussian function the second

and fourth order moments in (7) will converge provided that � < 3. We obtain,

pc;�(t) =
1

2�

vuutR1�1 !4 1
4e
�!2t!��d!R1

�1 !2 1
4e
�!2t!��d!

= ::: =
1

2�

s
3� �

2

1p
t

(� < 3) (16)

Proposition 4. (Density of local extrema in scale-space (fractal noise, 1D))

In the scale-space representation of a one-dimensional continuous signal generated by a stationary

6Of course, we cannot expect that a graph showing this curve for a particular signal to be a straight line, since
this would require some type of ergodicity assumption that in general will not be satis�ed. However, the average
behaviour over many di�erent types of imagery can be expected to be close to this situation.
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normal process with spectral density !��, the expected density of local maxima (minima) in a

smoothed signal at a certain scale decreases with scale as t�
1

2 .

Note that also this graph will be a straight line in a log-log diagram.

3.2 Discrete Analysis

From the previous continuous analysis we have that the density of local extrema may tend to

in�nity as the scale parameter tends to zero. As earlier indicated, this result is not applicable

to discrete signals, since in this case the density of local extrema will have an upper bound

because of the �nite sampling. Hence, in order to to capture what happens in the discrete case,

a genuinely discrete treatment is necessary. We will base the analysis on the discrete scale-space

concept developed in [8]. Given a discrete signal f : Z ! R the scale-space representation

L : Z � R+ ! R is de�ned by

L(x; t) =
1X

n=�1

T (n; t)f(x� n) (17)

where T (n; t) = e�tIn(t) is the discrete analogue of the Gaussian kernel and In are the modi�ed

Bessel functions of integer order [1]. Equivalently, this scale-space family can be de�ned in terms

of a semi-discretized version of the di�usion equation [8].

Consider the scale-space representation of a signal generated by a random noise signal. The

probability that a point at a certain scale is say a local maximum point is equal to the probability

that its value is greater than (or possibly equal to)7 the values of its nearest neighbours:

P (xi is a local maximum at scale t) =

P ((L(xi; t) � L(xi�1; t)) ^ (L(xi; t) � L(xi+1; t))) (18)

7Although there are several possible ways to de�ne a local extremum of a discrete signal using di�erent com-
binations of \>" and \�", these de�nitions will yield the same result with respect to this application.
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If we assume that the input signal f is generated by a stationary normal process then also L

will be a stationary normal process and the distribution of any triple (Li�1; Li; Li+1)
T , from now

on denoted by � = (�1; �2; �3)T , will be jointly normal, which means that its statistics will be

completely determined by the mean vector and the autocovariance matrix. Trivially, we have

that the mean of � is zero provided that the mean of f is zero. Since the transformation from f

to L is linear, the autocovariance CL for the smoothed signal L will be given by

CL(�; t) = T (�; t) � T (�; t) � Cf(�) = T (�; 2t) � Cf(�) (19)

where Cf denotes the autocovariance of f . In the last equality we have made use of the semigroup

property T (�; s) � T (�; t) = T (�; s + t) for the family of convolution kernels. If the input signal

consists of white noise then Cf will be the discrete delta function and CL(�; t) = T (�; 2t). Taking

the symmetry property T (�n; t) = T (n; t) into account, the distribution of � will be jointly

normal with mean vector m3D and covariance matrix C3D given by:

m3D =

0
BBBBBBB@

0

0

0

1
CCCCCCCA
; C3D =

0
BBBBBBB@

T (0; 2t) T (1; 2t) T (2; 2t)

T (1; 2t) T (0; 2t) T (1; 2t)

T (2; 2t) T (1; 2t) T (0; 2t)

1
CCCCCCCA

(20)

By introducing new variables �1 = �2 � �1 and �2 = �2 � �3 we have that � = (�1; �2)
T will be

jointly normal and its statistics completely determined by

m2D =

0
BBB@

0

0

1
CCCA ; C2D =

0
BBB@

a0(t) a1(t)

a1(t) a0(t)

1
CCCA (21)

From well-known rules for the covariance C(�; �) of a linear combination it follows that

a0(t) = C(�1; �1) = C(�2; �2) = 2(T (0; 2t)� T (1; 2t)) (22)
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a1(t) = C(�1; �2) = C(�2; �1) = T (0; 2t)� 2T (1; 2t) + T (2; 2t) (23)

From a0(t) � a1(t) = T (0; t) � T (2; t) and the unimodality property of T (T (i; t) � T (j; t) if

jij > jjj) it follows that a0(t) > a1(t) and trivially a0(t) > 0 for all t. Now pd(t) can be expressed

in terms of a two-dimensional integral

pd(t) =
Z Z

f�=(�1;�2):(�1�0)^(�2�0)g

1p
(2�)2jC2Dj

e�
1

2
�TC�1

2D�d�1d�2 (24)

After some calculations (see [9] App. A.5.4) it follows that

pd(t) =
1

4
+

1

2�
arctan

0
@ a1(t)q

a20(t)� a21(t)

1
A (25)

Observe that for any a0(t) and a1(t) this value is guaranteed to never be outside the interval

[0; 12 ]. With our expressions for a0(t) and a1(t), given by smoothing with the discrete analogue

of the Gaussian kernel, the maximum value over variations in t is obtained for t = 0:

pd(0) =
1

3
(26)

Proposition 5. (Density of local extrema in discrete scale-space (1D))

In the scale-space representation (17) of a one-dimensional discrete signal generated by a white

noise stationary normal process, the expected density of local maxima (minima) in a smoothed

signal at a certain scale t is given by (25) with a0(t) and a1(t) according to (22) and (23).

It is interesting to compare the discrete expression (25) with the earlier continuous result (13).

The scale value where the continuous estimate gives a density equal to the discrete density at

t = 0 is given by the equation pc(t) = pd(0), that is by

1

2�

r
3

2

1p
t
=

1

3
(27)
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which has the solution

tc�d =
27

8�2
� 0:3420 (28)

This corresponds to a �-value of about 0:5848. Below this scale value the continuous analysis

is, from that point of view, de�nitely not a valid approximation of what will happen to discrete

signals. By combining Proposition 5 with Proposition 1 we get

Corollary 6. (E�ective scale for discrete signals (1D))

For discrete one-dimensional signals the e�ective scale parameter �d as function of the ordinary

scale parameter t is given by

�d(t) = A00 +B00 log

0
BB@ 4�

3� + 6arctan

�
a1(t)p

a2
0
(t)�a2

1
(t)

�
1
CCA (29)

for some arbitrary constants A00 and B00 > 0 with a0(t) and a1(t) are given by (22) and (23).

When de�ning the e�ective scale �d for discrete signals it is natural to let t = 0 correspond to

�d = 0. In that case A00 will be zero. WLOG we will from now on set A00 = 0 and B = 1.

3.3 Asymptotic Behaviour at Fine and Coarse Scales

A second order MacLaurin expansion of pd(t) (see [9] App. A.5.5) yields

pd(t) =
1

3
� 1

2
p
3�

t +
1

6
p
3�

t2 + O(t3) (30)

This means that the e�ective scale �d(t) can be MacLaurin expanded (see [9] App. A.5.5)

�d(t) = log

�
pd(0)

pd(t)

�
=

p
3

2�
t+

�
1

2
p
3�

+
3

8�2

�
t2 +O(t3) (31)

Corollary 7. (E�ective scale at �ne scales (1D))

At �ne scales the e�ective scale � for one-dimensional discrete signals is approximately an a�ne
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function of the ordinary scale parameter t.

A Taylor expansion of pd(t) at coarse scales (see [9] App. A.5.6) gives

pd(t) =
1

2�

r
3

2

1p
t

�
1 +

1

8t
+O(

1

t2
)

�
(32)

which asymptotically agrees with the continuous result in (13). By inserting this expression into

the expression for e�ective scale and using pd(0) =
1
3 we get

�d(t) = log

�
pd(0)

pd(t)

�
= log

 
2�

3

r
2

3

!
+

1

2
log(t) + log

�
1� 1

8t
+ O(

1

t2
)

�
(33)

Corollary 8. (E�ective scale at coarse scales (1D))

At coarse scales the e�ective scale � for one-dimensional discrete signals is approximately (up to

an arbitrary a�ne transformation) a logarithmic function of the ordinary scale parameter t.

The term log(1� 1
8t + O( 1

t2
)) expresses how much the e�ective scale derived for discrete signals

di�ers from the e�ective scale derived for continuous signals, provided that the same values of

the (arbitrary) constants A and B are selected in both cases.

3.4 Comparisons Between the Continuous and Discrete Results

To illustrate the di�erence between the density of local maxima in the scale-space representation

of a continuous and a discrete signal we show the graphs of pc and pd in Fig. 2 (linear scale) and

Fig. 3 (log-log scale). As expected, the curves di�er signi�cantly for small t and approach each

other as t increases.

Numerical values quantifying this di�erence for a few values of t are given in Table 1. We

have tabulated the ratio

�diff (t) =
�d(t)� �c(t)

�c(2t)� �c(t)
=

�d(t)� �c(t)
log(2)

2

(34)
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Figure 2: The density of local maxima of a discrete signal as function of the ordinary scale parameter
t in linear scale. (a) Graph for t 2 [0; 100]. (b) Enlargement of the interval t 2 [0; 10]. For comparison
the graphs showing the density of local extrema for a continuous signal pc(t) and the second order Taylor
expansion of pd(t) around t = 0 have also been drawn. As expected, the continuous and discrete results
di�er signi�cantly for small values of t but approach each other as t increases. The MacLaurin expansion
is a valid approximation only in a very short interval around t = 0.

-2. -1. 1. 2. 3. 4. log t

-4.

-3.

-2.

-1.

log p(t)

Figure 3: The density of local maxima of a continuous and a discrete signal as function of the ordinary
scale parameter t in log-log scale (t 2 [0; 100]). The straight line shows pc(t) and the other curve pd(t).
We observe that pc and pd approach each other as the scale parameter increases. When t tends to zero,
pc(t) tends to in�nity while pd(t) tends to a constant (

1

3
).

which is a natural measure for how much the e�ective scale obtained from a continuous analysis

di�ers from a discretely determined e�ective scale. The quantity is normalized so that one unit

in �diff corresponds to the increase in �c induced by an increase in t with a factor of two.

4 Summary and Discussion

We have developed how a concept called e�ective scale, can be de�ned in a formal way for both

continuous and discrete signals. The treatment is based on the assumption that local extrema

at di�erent scales should be treated similarly over scales in the sense that the probability that
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t �diff (t)
0 1

0.0625 250.30 %
0.25 67.46 %
1.0 -41.82 %
4.0 -10.47 %
16.0 -2.32 %
64.0 -0.56 %
256.0 -0.14 %
1 0

Table 1: Indications about how the e�ective scale obtained from a discrete analysis di�ers from the
e�ective scale given by the continuous scale-space theory. The quantity �diff (t) expresses the di�erence
between �d(t) and �c(t) normalized such that one unit (100 % ) in �diff (t) corresponds to the increase in
�c induced by an increase in t with a factor of two.

a certain local extremum existing at a certain scale should disappear after a small amount of

smoothing �� , expressed in e�ective scale, should not depend on scale. From this postulate

we have in the one-dimensional case derived closed form expressions for the e�ective scale as

function of the ordinary scale parameter, related this e�ective scale concept to the one obtained

from a scaling argument and made comparisons between the continuous and discrete treatments.

The same type of analysis can, in principle, be carried out also for two-dimensional discrete

signals. The probability that a speci�c point at a certain scale is a local maximum point is again

equal to the probability that its value is greater than the values of its neighbours. Depending on

the connectivity concept (four-connectivity or eight-connectivity on a square grid) we then obtain

either a four-dimensional or an eight-dimensional integral to solve. However, because of the

dimensionality of the integrals we have not made any attempts to calculate explicit expressions

for the variation of the density as function of scale. Instead, for implementational purpose,

the behaviour over scale has been simulated for various uncorrelated random noise signals (see

Sec. 2.2). From those experiments it has been empirically demonstrated that the t�� dependence

(with8 � � 1:0) of the density of local extrema as function of scale constitutes a reasonable

8The reason why the exponent � changes from 0:5 to 1:0 when going from one to two dimensions can intuitively
be understood by a dimensional analysis: Assume (as in Appendix A.2) that the standard deviation of the Gaussian
kernel, � =

p
t, can be linearly related to a characteristic length, x, in the scale-space representation of an N -

dimensional signal at scale t. Moreover, assume that a characteristic distance d between the local extrema in that
signal is linearly related to x. Then, the density of local extrema will be proportional to d�N � x�N � ��N , that
is to t�N=2.
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approximation at coarse levels of scale.
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A Appendix

A.1 On Scale-Space Lifetime of Structures and Signi�cance Measurements

To exemplify what we mean by the scale-space lifetime of a structure, let us mention that one type of

structures that we have considered in earlier work [9, 10, 13] are objects called scale-space blobs, which

in general only exist over certain intervals in scale. More precisely, a scale-space blob consists of a set of

objects called grey-level blobs linked across scales. Every such grey-level blob exists at a single level of

scale and is associated with one local extremum and one saddle point in the smoothed grey-level image

at that level of scale. The linking across scales proceeds as long as neither the extremum nor the saddle
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point is involved in any bifurcations [11]. In this way, the extent of the scale-space blob will be delimited

by two scale values (at which bifurcations take place), from which the scale-space lifetime can be de�ned.

More generally, we could also imagine measuring the lifetime any type of structure that can be de�ned

from a signal at any level of scale and be linked across scales in a well-de�ned manner. Witkin [19]

considered the trajectories of the zero-crossings of the Laplacian and called them \�ngerprints". Another

example could be edges for which the connectivity remains the same across scales.

Concerning the relation between scale-space lifetime and signi�cance, let us remark that in [9, 10, 13]

we have been using the (4D) volume of these scale-space blobs as a signi�cance measure for extracting

blob-like structures from image data. Obviously, this ranking depends on the actual parametrization of

the four coordinates (one of those dimensions is scale; the other ones are the (2D) image space and grey-

level coordinates)9. Therefore, one may speculate whether there exists any \natural coordinate system"

for measuring the scale-space blob volume, so that signi�cance values of blobs at di�erent scales can be

readily compared. In our previous work we have been using the e�ective scale concept developed here

for transforming the scale parameter and combined this with a statistical treatment of the other three

coordinates. Of course, it is very hard if not impossible to give a rigorous theoretical justi�cation for this

particular way of computing the signi�cance measure. Ultimately, it is based on a number of assumptions

for which there are no proof. However, by experiments [10, 12] we have demonstrated that the approach

gives intuitively reasonable results when applied to di�erent types of real images and also that it generates

output results useful for further processing [14].

A.2 Scaling Argument in the Continuous Case

The scaling argument showing that, in the continuous case the e�ective scale parameter, � , as function of

the ordinary scale parameter, t, is given by a logarithmic transformation, can be carried out as follows:

Consider a structure existing at a certain scale and assume that the structure can be associated with

a characteristic length10 x. If a similar structure existing at a di�erent level of scale is to be treated in a

similar manner, then the relative change in characteristic length, �x, of that structure caused a by some

amount of smoothing, �� , (expressed in e�ective scale) should be independent of both the size of that

9The reason why we have included also the spatial and grey-level coordinates in the signi�cance measure is
because we have noted that small blobs with weak contrast can survive for a substantial amount of time in
scale-space if they are located in regions with slowly varying intensity.

10Similar to a coarse characteristic length descriptor as used in dimensional analysis in physics.
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structure and the current level of scale. In other words, the following relation must hold:

�x

x
= C1�� (35)

for some arbitrary (non-zero) constant C1. Assuming that the standard deviation of the Gaussian kernel,

� =
p
t, can be linearly related to a characteristic length in a grey-level image at that scale we can write:

��

�
= C1�� (36)

By taking the limit of this expression as �� and �x simultaneously tend to zero and then integrating we

obtain

� = C2 +
1

C1

log� = C2 +
1

2C1

log t (37)

for some arbitrary integration constant C2. This shows that for continuous signals the natural scale

parameter is essentially the logarithm of the ordinary scale parameter.
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