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function of the ordinary scale parameter .

A

» J4 A5G
—f(++0) 3
Pd = Va 2
3
i i =3

10 L C S

Corollary 8 (Effective scale at coarse scales (1D))

At coarse scales the effective scale  for one-dimensional discrete signals is approzimately (up to

an arbitrary affine transformation) a logarithmic function of the ordinary scale parameter .
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Corollary 6 (Effective scale for discrete signals (1D))

For discrete one-dimensional signals the effective scale parameter 4 as function of the ordinary

scale parameter is given by
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for some arbitrary constants A" and B" > with ag  and g are given by (22) and (23).
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Corollary 7 (Effective scale at fine scales (1D))
for one-dimensional discrete signals is approximately an affine

At fine scales the effective scale
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Proposition 5 (Density of local extrema in discrete scale-space (1D))
In the scale-space representation (17) of a one-dimensional discrete signal generated by a white
noise stationary normal process, the expected density of local mazima (minima) in a smoothed

signal at a certain scale is given by (25) with g~ and q according to (22) and (23).
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normal process with spectral density w P, the expected density of local maxima (minima) in a

smoothed signal at a certain scale decreases with scale as  z.
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a graph showing the density of local maxima (minima) as

function of scale can be expected® to be a straight line in a log-log diagram
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Corollary 3 (Effective scale for continuous signals (1D))
For continuous one-dimensional signals the effective scale parameter . as function of the or-
dinary scale parameter is (up to an arbitrary affine transformation, i.e., for some arbitrary

constants A" and B' > ) given by a logarithmic transformation
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Proposition 4 (Density of local extrema in scale-space (fractal noise, 1D))

In the scale-space representation of a one-dimensional continuous signal generated by a stationary

6
Y ’ X ’



986 == LGy = I
A f pA =
S w =-e w?t
1[5 77

Pe = =

Proposition 2 (Density of local extrema in scale-space (white noise, 1D))
In the scale-space representation of a one-dimensional continuous signal generated by a white
noise stationary normal process, the expected density of local mazima (minima) in a smoothed

stgnal at a certain scale decreases with scale as  z.
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Requirement 1 (Uniform relative decay rate for local extrema)

The probability that a certain extremum point (or equivalently a certain blob) disappears after a
small increment d in effective scale should be independent of both the effective scale and the
current number of local extrema in the signal. That is
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Proposition 1 (Effective scale)

Assume that we know how the expected density of local extrema p behaves as a function of scale

and let  be the effective scale parameter given by Req. 1. Then, for some arbitrary constants
A and B > |, the effective scale as function of the ordinary scale parameter is given by
1 p(t) T
X t
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the relative decay rate of local extrema should be constant over scales
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