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Abstract

It is developed how discrete derivative approximations can be de�ned so that scale-space
properties hold exactly also in the discrete domain. Starting from a set of natural require-
ments on the �rst processing stages of a visual system, the visual front end, an axiomatic
derivation is given of how a multi-scale representation of derivative approximations can
be constructed from a discrete signal, so that it possesses an algebraic structure similar

to that possessed by the derivatives of the traditional scale-space representation in the
continuous domain. A family of kernels is derived which constitute discrete analogues

to the continuous Gaussian derivatives.
The representation has theoretical advantages to other discretizations of the scale-

space theory in the sense that operators which commute before discretization commute

after discretization. Some computational implications of this are that derivative approx-
imations can be computed directly from smoothed data, and that this will give exactly
the same result as convolution with the corresponding derivative approximation kernel.
Moreover, a number of normalization conditions are automatically satis�ed.

The proposed methodology leads to a conceptually very simple scheme of computa-
tions for multi-scale low-level feature extraction, consisting of four basic steps; (i) large
support convolution smoothing, (ii) small support di�erence computations, (iii) point
operations for computing di�erential geometric entities, and (iv) nearest neighbour op-

erations for feature detection.
Applications are given demonstrating how the proposed scheme can be used for edge

detection and junction detection based on derivatives up to order three.

Keywords: scale-space, visual front end, smoothing, Gaussian �ltering, Gaussian deriva-
tive, discrete approximation, edge detection, junction detection, multi-scale representa-
tion, computer vision, digital signal processing
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1 Introduction

A common problem in computer vision concerns how to compute derivative approximations
from discrete data. This problem arises, for example, when to compute image descriptors
such as features or di�erential invariants from image data, and when to relate image proper-
ties to phenomena in the outside world. It is, however, well-known that derivative estimation
is not a well-posed problem. The property that derivative estimators are known to enhance
the noise is often taken as an argument that \some sort of smoothing is necessary".

Ultimately, the task of de�ning derivatives from real-world data boils down to a fun-
damental and inherent measurement problem, namely the well-known fact that objects in
the world and features in images, in contrast to ideal mathematical entities, like \point"
or \line", only exist as meaningful entities over certain �nite ranges of scale. This intrinsic
property is the basic reason to why a multi-scale representation is of crucial importance
when describing the structure of an image. A methodology proposed by Witkin [34] and
Koenderink [15] to obtain such a multi-scale representation is by embedding the signal into
a one-parameter family of derived signals, the scale-space, where the parameter t, called
scale parameter1, describes the current level of scale.

Let us briey review some aspects of this procedure as it is formulated for two-dimensional
continuous signals: Given a signal f : R2 ! R the scale-space representation L : R2�R+ ! R

is de�ned2 by L(�; �; 0) = f(�; �) and for t > 0 by convolution with the Gaussian kernel
g : R2 � R+nf0g ! R

L(x; y; t) = (g(�; �; t) � f(�; �))(x; y; t); (1)

where

g(x; y; t) =
1

2�t
e�

x2+y2

2t : (2)

Equivalently, this family can be generated by the solution to the di�usion equation

@tL =
1

2
r2L =

1

2
(@xx + @yy)L (3)

with initial condition L(�; �; 0) = f(�; �). From this representation spatial derivatives of the
smoothed intensity function L can be de�ned at di�erent levels of scale

Lxiyj (x; y; t) = (@xiyjL)(x; y; t): (4)

Since for Gaussian smoothing the derivative operator commutes with the smoothing opera-
tor, the \smoothed derivatives" obtained in this way satisfy

@xiyj (g � f) = (@xiyjg) � f = g � (@xiyjf); (5)

implying that there in principle are three equivalent3 ways to compute them; (i) by di�eren-
tiating the smoothed signal, (ii) by convolving the signal with the di�erentiated smoothing
kernel, or (iii) by smoothing the di�erentiated signal. Moreover, the spatial derivatives
satisfy the di�usion equation

@tLxiyj =
1

2
r2Lxiyj (6)

1The scale parameter t used in this presentation corresponds to �2, where � is the standard deviation of
the Gaussian kernel.

2
R+ denotes the set of real non-negative numbers.

3It is well-known that under rather weak requirements on the input signal f the solution to the di�usion
equation will be in�nitely di�erentiable (C1) for t > 0. However, stronger regularity requirements must be
posed on f in order to the last equality to be valid.
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and inherit the cascade smoothing property of Gaussian smoothing

Lxiyj (�; �; t2) = g(�; �; t2 � t1) � Lxiyj (�; �; t1) (t2 > t1 � 0) (7)

associated with the semi-group property of the Gaussian kernel

g(�; �; t2) = g(�; �; t2 � t1) � g(�; �; t1) (t2 > t1 � 0): (8)

This type of multi-scale representation based on smoothed derivatives, or Gaussian deriva-
tives , has been proposed by Koenderink and van Doorn (1987) as a possible model for the
local processing in the receptive �elds in a visual system.

By combining the output from these operators at any speci�c scale, smoothed di�erential
geometric descriptors can be de�ned at that scale. If such descriptors are de�ned at all
scales, the result is multi-scale di�erential geometric representation of the signal. This type
of framework is useful for a variety early vision tasks.

A problem that arises in this context concerns how these operations should be discretized
when to be implemented in a machine vision system. The above theory is expressed for
continuous signals, while realistic signals obtained from standard cameras are discrete. Al-
though a standard discretization of the continuous equations could be expected to give a
behaviour, which in some sense is \relatively close" to the behaviour in the continuous case,
especially at coarse scales where the grid e�ects can be expected to be smaller, it is not
guaranteed that the original scale-space conditions, however formulated, will be preserved
after the discretization. Another important question concerns how sensitive these operations
will be to noise, in particular when derivatives of high order are to be computed from noisy
measured data4.

In this presentation we will develop a discrete analogue of the multi-scale Gaussian
derivative representation. We will treat the case with discrete signals de�ned on an in�nite
and uniformly sampled square grid, and propose a set of discrete operators, which in a certain
sense represents the canonical way to discretize the above stated continuous expressions. By
replacing (i) the above continuous signal by a discrete signal, (ii) the convolution with the
continuous Gaussian kernel g by discrete convolution with a kernel T called the discrete
analogue of the Gaussian kernel, and (iii) the derivative operators @xiyj with a certain
set of di�erence operators �xiyj , we will show how a multi-scale representation of discrete
derivative approximations can be de�ned, so that discrete analogues of (1)-(8) hold exactly
after discretization.

The representation to be proposed has theoretical advantages compared to traditional
discretizations based on di�erent versions of the sampled or integrated Gaussian kernel,
and discretizations carried out in the frequency domain, in the sense that operators that
commute before the discretization, commute also after the discretization. An important
computational implication of this is that the derivative approximations can be computed
directly from the smoothed grey-level values at di�erent scales, without any need for re-doing
the smoothing part of the operation, which is usually the computationally most expansive
part when computing smoothed derivative approximations. Another positive side e�ect is
that a large number of normalization conditions concerning the sums of the �lter coe�cients
are transferred to the discrete domain.

As a further support for the presented methodology, experimental results are presented
of using these operations for a few di�erent visual tasks. A straightforward edge detection
scheme is described, which is similar to Canny's [6] method, but does not need any direct

4A rule of thumb sometimes used in this context is that when derivatives of order two and higher are
computed from raw image data, then the amplitude of the ampli�ed noise will often be of (at least) the same
order of magnitude as the derivative of the signal.
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estimates of the gradient direction. Instead zero-crossings are detected in a certain polyno-
mial expression in terms of derivatives up to order two, and tests are made on the sign of
another polynomial expression in terms of derivatives up to order three (in order to elimi-
nate \false edges"). Qualitively the results obtained are similar those of Canny, although the
proposed scheme is given by a conceptually much simpler framework, and in addition has
the advantage that sub-pixel accuracy is obtained automatically. It is also illustrated how a
junction detector can be straightforwardly implemented by detecting extremum regions in
another polynomial expression in terms of derivatives up to order two.

The presentation is organized as follows: Section 2 reviews the existing scale-space the-
ory for continuous and discrete signals. This constitutes the background material for the
theoretical analysis scale-space properties of di�erent multi-scale derivative approximations
carried out in Section 3. Section 4 describes some straightforward computational implica-
tions of the presented discrete theory, with comparisons made to other possible discretiza-
tions of the continuous scale-space theory. Graphical illustrations of the resulting derivative
approximation kernels are given in Section 5, while Section 6 gives experimental results of
using the proposed representation for low-level feature extraction. Finally, Section 7 gives
a brief summary of the main results.

2 Background: Axiomatic Scale-Space Formulations

For a reader not familiar with the scale-space literature, the task of designing a multi-scale
signal representation may at �rst glance be regarded as somewhat arbitrary. Would it su�ce
to carry out just any type of \smoothing operation"? This is, however, not the case. Of
crucial importance when constructing a scale-space representation is that the transformation
from a �ne scale to a coarse scale really can be regarded as a simpli�cation, so that �ne
scale features disappear monotonically with increasing scale. If new arti�cial structures
could be created at coarser scales, not corresponding to important regions in the �ner scale
representations of the signal, then it would be impossible to determine whether a feature
at a coarse scale corresponded to a simpli�cation of some coarse scale structure from the
original image, or if it were just an accidental phenomenon, say an ampli�cation of the noise,
created by the smoothing method | not the data. Therefore, it is of out-most importance
that artifacts are not introduced by the smoothing transformation when going from a �ner
to a coarser scale.

This property has been formalized in di�erent ways by di�erent authors, all of them
leading to a similar result, and there are now several theoretical results indicating that within
the class of linear transformations, the scale-space formulation in terms of the di�usion
equation describes the canonical way to construct a multi-scale image representation.

2.1 Continuous Signals

Koenderink [15] introduced the notion of causality, which basically means that new level
curves must not be created when the scale parameter is increased. In other words, it should
always be possible to trace a grey-level value existing at a certain level of scale to a similar
grey-level at any �ner level of scale. Combined with homogeneity and isotropy constraints,
which essentially mean that all spatial points and all scale levels should be handled in
a similar manner, they showed that these criteria by necessity and su�ciency lead to a
formulation in terms of the di�usion equation, both in one and two dimensions. A similar
result, although based on slightly di�erent assumptions, was given by Yuille and Poggio [35]
regarding the zero-crossings of the Laplacian.

Babaud et al [2] gave a particular proof in the one-dimensional case and showed that
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natural constraints on a smoothing kernel necessarily implied that the smoothing kernel
had to be a Gaussian. Lindeberg [20] showed that a variation-diminishing property of not
introducing new local extrema (or equivalently of not introducing new zero-crossings) in the
smoothed signal with increasing scale, combined with a semi-group structure on the family of
convolution kernels and natural symmetry and normalization constraints also, by necessity,
lead to the Gaussian kernel. Recently, Florack et al [11] have shown that the uniqueness of
the Gaussian kernel for scale-space representation can be derived under weaker conditions,
by combining the semi-group structure of a convolution operation with a uniform scaling
property over scales.

In this context it should be remarked that, since the spatial derivatives computed from
the scale-space representation satisfy the di�usion equation, it follows that they will exhibit
the same scale-space properties over scales as the smoothed grey-level signal; see also Koen-
derink and van Doorn [18], who showed that scale invariance applied to operators derived
from the scale-space representation leads to the derivatives of the Gaussian kernels.

2.2 Discrete Signals

Concerning the discretization of this operation, it has shown by Lindeberg [20, 21] that
the natural way to construct a scale-space for discrete signals is by convolution with a
kernel termed the discrete analogue of the Gaussian kernel , or equivalently by solving a
certain semi-discretized version of the di�usion equation. In the one-dimensional case the
smoothing transformation is uniquely determined, if it is assumed that the number of local
extrema in the smoothed signal should not increase with scale, and that the scale-space
is to be generated by convolution with a semi-group of normalized and symmetric kernels
having a continuous scale parameter. Given a discrete signal f : Z ! R the scale-space
representation L : Z� R+ ! R is de�ned by

L(x; t) = (T (�; t) � f(�))(x; t); (9)

where T : Z� R+ ! R denotes the discrete analogue of the Gaussian kernel

T (n; t) = e�tIn(t); (10)

and In are the modi�ed Bessel functions of integer order, see e.g. Abramowitz and Stegun [1].
This scale-space family can equivalently be de�ned from the solution of the semi-discretized
version of the di�usion equation

(@tL)(x; t) =
1

2
(r2

3L)(x; t) =
1

2
(L(x� 1; t)� L(x; t) + L(x+ 1; t)) (11)

with initial condition L(�; 0) = f(�). Unfortunately, however, this formulation cannot be
directly extended to higher dimensions, since in two (and higher) dimensions there are no
non-trivial kernels never increasing the number of local extrema. Neither can the scale
invariance argument by Florack et al [11] be applied in the discrete case; a perfectly scale
invariant operator cannot be de�ned on a discrete grid, which has a certain preferred scale
given by the distance between adjacent grid points.

For discrete signals of higher dimension a fruitful requirement turns out to be as follows;
if at some level a point is a local maximum (minimum), then its value must not increase
(decrease) when the scale parameter increases, see [20, 24]. In the continuous case, this
condition, which is similar to the maximum principle for parabolic di�erential equations, is
equivalent to the causality requirement used by Koenderink [15] for deriving the necessity
of the continuous scale-space.
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Assuming that the scale-space is generated by convolution with a semi-group of sym-
metric convolution kernels, which are continuous with respect to their continuous scale
parameter, it can be shown that the above non-enhancement requirement of local extrema
heavily restricts the class of smoothing transformations. Given a two-dimensional signal
f : Z2 ! R the scale-space representation L : Z2 � R+ ! R must for some �xed  2 [0; 1]
satisfy the semi-discretized version of the di�usion equation

@tL =
1

2
r2

L =
1

2

�
(1� )r2

5L+ r2
�L
�

(12)

with initial condition L(�; �; 0) = f . Here r2
5 and r2

� denote two common discrete approx-
imations to the Laplacian operator, the �ve-point operator and cross operator, de�ned by
(below the (temporary) notation f�1;1 stands for f(x� 1; y + 1) etc):

(r2
5f)0;0 = f�1;0 + f+1;0 + f0;�1 + f0;+1 � 4f0;0; (13)

(r2
�2f)0;0 =

1

2
(f�1;�1 + f�1;+1 + f+1;�1 + f+1;+1 � 4f0;0): (14)

The parameter  is undetermined by this theory. In [20, 24] indications are given that it
should not exceed the value max =

1
2 . Setting  = symm = 1

3 gives a smoothing kernel with
\the highest rotational invariance", or rather \the least degree of rotational asymmetry"
in the Fourier domain. The corresponding smoothing kernel is separable if and only if
 = sep = 0. Then, the scale-space family is obtained by applying the one-dimensional
discrete analogue of the Gaussian kernel (10) along each dimension,

L(x; y; t) =
1X

m=�1

1X
n=�1

T (m; t)T (n; t) f(x�m; y � n): (15)

Let T : Z2�R+ ! R denote convolution kernel describing the solution of (12) for any given
value of . Then, T obeys the cascade smoothing and semi-group properties

L(�; �; t2) = T(�; �; t2 � t1) � L(�; �; t1); (16)

T(�; �; t2) = T(�; �; t2 � t1) � T(�; �; t1): (17)

where t2 > t1 � 0. Similar results hold in one as well as higher dimensions [24].

3 Derivative Approximations with Scale-Space Properties

3.1 Preliminaries

If we are to construct discrete analogues of derivatives at multiple scales, which are to
possess scale-space properties in a discrete sense, what properties are then desirable? Let
us start with the following very simple but anyway quite useful observation5, whose proof
follows directly from the commutative property of convolution transformations:

Observation 1. (Discrete convolution commutes with discrete scale-space smooth-
ing)

Given a discrete signal f : Z2 ! R in l1 and a �xed value of  2 [0; 1], let L : Z2 � R+ ! R

be the discrete scale-space representation of f generated from (12), and let D be a linear
and shift-invariant operator from l1 to l1 corresponding to discrete convolution with a kernel
with �nite support. Then, D commutes with the scale-space smoothing operator.

5The conditions concerning �nite support convolution kernel and f 2 l1 can in fact be weakened. However,
the generality of this statement is su�cient for our purpose.
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Concerning multi-scale derivative approximations this result has the following implications:

Proposition 2. (Discrete derivative approximations: Su�ciency (I)

Given a discrete signal f : Z2 ! R in l1 and a �xed value of  in [0; 1], let L : Z2� R+ ! R

be the discrete scale-space representation of f generated from

@tL =
1

2

�
(1� )r2

5L+ r2
�L
�
=

1

2
r2

L (18)

with initial condition L(�; �; 0) = f(�; �). If a smoothed derivative Lxiyj is de�ned as the
result of applying a linear and shift-invariant operator Dxiyj to the smoothed signal L, i.e.,

Lxiyj = DxiyjL; (19)

where Dxiyj corresponds to discrete convolution with a kernel of �nite support, then the
derivative approximation operator Dxiyj commutes with the scale-space smoothing operator

DxiyjL = Dxiyj (T � f) = (DxiyjT ) � f = T � (Dxiyjf): (20)

Moreover, the discrete derivative approximation obeys the cascade smoothing property

(DxiyjL)(�; �; t2) = T (�; �; t2 � t1) � (DxiyjL)(�; �; t1) (t2 > t1 � 0) (21)

and satis�es the semi-discretized version of the di�usion equation

@t(DxiyjL) =
1

2
r2

(DxiyjL): (22)

In particular, the discrete derivative approximation ful�lls the following non-enhancement
property of local extrema; if (x0; y0) 2 Z2 is a local extremum point for the mapping (x; y) 7!
Lxiyj (x; y; t0), then the derivative of Lxiyj with respect to t in this point satis�es

@tLxiyj (x0; t0) � 0 if (x0; y0) is a local maximum point, (23)

@tLxiyj (x0; t0) � 0 if (x0; y0) is a local minimum point; (24)

i.e., the scale-space conditions in the discrete case.

Proof: The validity of (20) follows directly from Observation 1 as does (21) if the lemma is
combined with the cascade smoothing property (16) of the discrete scale-space. The validity
of (22) can be derived by using DxiyjL = T � (Dxiyjf) from (20). Finally, (23) and (24)
are direct consequences of the fact that due to (22) it holds that DxiyjL is a scale-space
representation of Dxiyjf ; see [20] or [24] for direct proofs. �

In other words, if a discrete derivative approximation is de�ned as the result of applying a
convolution operator to the smoothed signal, then it will possess all the scale-space properties
listed in the introduction, i.e., Equations (1)-(8). Obviously, the derivative approximation
should also be selected such that it in a numerical sense approximates the continuous deriva-
tive. A natural minimum requirement to pose is that the discrete operator Dxiyj should
constitute a consistent6 approximation of the continuous derivative operator.

6A discrete derivative approximation, �(h)
xiyj

depending on a step length h, is said to be consistent if (under

reasonable assumptions on the signal L : R2 ! R) the truncation error tends to zero as the step length tends

to zero, i.e., if limh#0(�
(h)

xiyj
L)(x0; y0) = (@xiyjL)(x0; y0). In our considerations h is omitted from the notation,

since the grid spacing is throughout assumed to be equal to one.
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3.2 Stating an Axiomatic Formulation

Given that the task is to state an axiomatic formulation of the �rst stages of visual process-
ing, the visual front end , a list of desired properties can be made long; linearity, translational
invariance, mirror symmetry, semi-group, causality, continuity, di�erentiability, normaliza-
tion to one, nice scaling behaviour, locality, rapidly decreasing for large x and t, existence of
an in�nitesimal generator , and invariance with respect to certain grey-level transformations
etc. Such a list, however, will be redundant, as is this one.

In this treatment a (minimal) subset of these properties will be taken as axioms. It will
be assumed that the derivative approximation scheme should be generated by convolution
with a one-parameter family of kernels possessing a cascade smoothing property, and that
the scale-space family should satisfy a non-enhancement property of local extrema. When
formulating these scale-space conditions, it turns out to be natural to express the non-
enhancement property in terms of a sign condition on the derivative of the scale-space
representation with respect to the scale parameter. In order to ensure di�erentiability in
this step, a series of successive de�nitions and propositions will be stated, which will lead
to the desired result.

By necessity the details will be somewhat technical. The hasty reader may without loss
of continuity proceed directly to Corollary 11, where a summary is given.

3.3 Necessity

The scale-space for discrete derivative approximations can be derived by postulating the
following structure on the derivative approximation operators, which is similar to, but not
equal to, the structure postulated on the smoothing operation in the derivation of the
traditional (zero-order) discrete scale-space representation in [20]; see also Appendix A.1.

De�nition 3. (Pre-scale-space family of derivative approximation kernels)

A one-parameter family of kernels Dxiyj : Z
2�R+ ! R is said to be a pre-scale-space family

of (i; j)-derivative approximation kernels if

� Dxiyj (�; �; 0) is a �nite support kernel corresponding to a consistent discrete approxi-
mation of the derivative operator @xiyj , and

� Dxiyj satis�es the cascade smoothing property

Dxiyj (�; �; t2) = T (�; �; t2 � t1) �Dxiyj (�; �; t1) (t2 � t1 � 0) (25)

for some family of kernels T : Z2 � R+ ! R in l1, which in turn obeys

{ the symmetry properties T (�x; y; t) = T (x; y; t) and T (y; x; t) = T (x; y; t) for
all (x; y) 2 Z2, and

{ the continuity requirement k T (�; �; t)� �(�; �) k1! 0 when t # 0.

De�nition 4. (Pre-scale-space representation of derivative approximations)
Let f : Z2 ! R be a discrete signal in l1 and let Dxiyj : Z

2 � R+ ! R be a pre-scale-space
family of (i; j)-derivative approximation kernels. Then, the one-parameter family of signals
Lxiyj : Z

2 � R+ ! R given by

Lxiyj (x; y; t) =
1X

m=�1

1X
n=�1

Dxiyj (m;n; t)f(x�m; y � n) (26)

is said to be the pre-scale-space representation of (i; j)-derivative approximations of f gen-
erated by Dxiyj .
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The linear type of smoothing is a consequence of the principle that the �rst stages of visual
processing, the visual front end, should be as uncommitted as possible and make no actual
\irreversible decisions". More technically, the linearity can also be motivated by requiring
the discrete derivative approximations to obey similar linearity properties as the continuous
derivatives.

The convolution type of smoothing and the symmetry requirements on T correspond
to the assumption that in the absence of any information about what the image can be
expected to contain, all spatial points should be treated in the same way, i.e., the smoothing
should be spatially shift invariant and spatially isotropic.

The cascade form of smoothing and the continuity with respect to the continuous scale
parameter reect the properties that any coarse scale representation should be computable
from any �ne scale representation, and that all scale levels should be treated in a similar
manner. In other words, there should be no preferred scale. It can be shown that these
requirements imply that Lxiyj is di�erentiable with respect to the scale parameter.

Lemma 5. (Di�erentiability of derivative approximations)

Let Lxiyj : Z
2 � R+ ! R be a pre-scale-space representation of (i; j)-derivative approxima-

tions to a signal f : Z2 ! R in l1. Then, Lxiyj satis�es the di�erential equation

@tLxiyj = ALxiyj (27)

for some linear and shift-invariant operator A.
Proof: Due to the cascade smoothing property of Dxiyj we have that

T (�; �; t2) �Dxiyj (�; �; 0) � f 0 = T (�; �; t2 � t1) � T (�; �; t1) �Dxiyj (�; �; 0) � f 0 (28)

and
(f 0 �Dxiyj (�; �; 0)) � (T (�; �; t2)� T (�; �; t2 � t1) � T (�; �; t1)) = 0 (29)

hold for any f 0 : Z2 ! R and any t2 � t1 � 0. Hence, T (�; �; t2) � T (�; �; t2 � t1) �
T (�; �; t1) will always be in the null space of Dxiyj (�; �; 0), and we can with respect to
the e�ect on Lxiyj of Dxiyj without loss of generality assume that T obeys the semi-group
property T (�; �; t2) = T (�; �; t2 � t1) � T (�; �; t1). This means that Lxiyj is a pre-scale-
space representation of Dxiyj (�; �; 0) � f (see De�nition 13 in Appendix A.1). According to
Lemma 14 in Appendix A.1 it follows that Lxiyj satis�es (27). �

This property makes it possible to formulate the non-enhancement property for local extrema
in terms of derivatives of the scale-space representation with respect to the scale parameter.
In every local maximum point the grey-level value is required not to increase, and in every
local minimum point the value is required not to decrease.

De�nition 6. (Pre-scale-space properties)
A di�erentiable one-parameter family of signals Lxiyj : Z2 � R+ ! R is said to possess
pre-scale-space properties, or equivalently not to enhance local extrema, if for every value of
the scale parameter t0 2 R+ it holds that if (x0; y0) 2 Z

2 is a local extremum7 point for the
mapping (x; y) 7! Lxiyj (x; y; t0) then the derivative of Lxiyj with respect to t in this point
satis�es

(@tLxiyj )(x0; y0; t0) � 0 if (x0; y0) is a (weak) local maximum point; (30)

(@tLxiyj )(x0; y0; t0) � 0 if (x0; y0) is a (weak) local minimum point: (31)

7Here, a weak notion of local extremum is used; a dimensional point (x0; y0) 2 Z
2 is said to be a local

maximum if its grey-level value is greater than or equal to the grey-level values in all its (eight-)neighbours.
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Given these properties, a pre-scale-space family of derivative approximation kernels is re-
garded as a scale-space family of derivative approximation kernels if it satis�es the above
pre-scale-space properties for any input signal.

De�nition 7. (Scale-space family of derivative approximation kernels)

A one-parameter family of pre-scale-space (i; j)-derivative approximation kernels Dxiyj :
Z
2 � R+ ! R is said to be a scale-space family of (i; j)-derivative approximation kernels if

for any signal f : Z2 ! R 2 l1 the pre-scale-space representation of (i; j)-derivative approxi-
mations to f generated by Dxiyj obeys the non-enhancement property stated in De�nition 6,
i.e., if for any signal f 2 l1 local extrema in Lxiyj are never enhanced.

De�nition 8. (Scale-space representation of derivative approximations)
Let f : Z2 ! R be a discrete signal in l1 and let Dxiyj : Z

2�R+ ! R be a family of scale-space
(i; j)-derivative approximations kernels. Then, the pre-scale-space representation of (i; j)-
derivative approximations Lxiyj : Z

2�R+ ! R of f is said to be a scale-space representation
of (i; j)-derivative approximations to f .

From these de�nitions it can be shown that the structure of the scale-space representation
is determined up to two arbitrary constants, and that Lxiyj must satisfy a semi-discretized
version of the di�usion equation.

Theorem 9. (Discrete derivative approximations: Necessity)

A scale-space representation of (i; j)-derivative approximations Lxiyj : Z2 � R+ ! R to a
signal f : Z2 ! R satis�es the di�erential equation

@tLxiyj = �r2
5Lxiyj + �r2

�Lxiyj (32)

with initial condition Lxiyj (�; �; 0) = Dxiyj (�; �; 0) � f(�; �) for some constants � � 0 and
� � 0 and some �nite support kernel Dxiyj .

Proof: See Appendix A.2. �

Theorem 10. (Discrete derivative approximations: Su�ciency (II))
Let f : Z2 ! R be a discrete signal in l1, and let Lxiyj : Z

2 � R+ ! R be the representation
generated by the solution to di�erential equation

@tLxiyj = �r2
5Lxiyj + �r2

�Lxiyj (33)

with initial condition Lxiyj (�; �; 0) = Dxiyj (�; �; 0) � f(�; �) for some �xed � � 0 and � � 0
and some �nite support kernel Dxiyj (�; �; 0), corresponding to a consistent approximation to
the derivative operator @xiyj . Then, Lxiyj is a scale-space representation of (i; j)-derivative
approximations to f .

Proof: See Appendix A.3. �

By reparametrizing � = C (1� ) and � = C  (where  2 [0; 1]), and by without loss of
generality (linearly) transforming the scale parameter t such that C = 1=2, it follows that
the necessity and su�ciency results can be summarized in the following way:

Corollary 11. (Derivative approximations preserving scale-space properties)
Within the class of linear transformations of convolution type that obey the cascade smooth-
ing property, a multi-scale representation of discrete derivative approximations Lxiyj of a
signal f , satisfying

Lxiyj (�; �; 0) = Dxiyj � f (34)
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for some �nite support convolution operator Dxiyj , possesses scale-space properties in the
discrete sense if and only if it is de�ned as the result of applying Dxiyj to the scale-space
representation of f at any scale, i.e., if an only if Lxiyj is de�ned as

Lxiyj = DxiyjL = Dxiyj(T � f) (35)

where T denotes the discrete analogue of the Gaussian kernel de�ned as the kernel describ-
ing the solution to (12) for a �xed  2 [0; 1]. Equivalently, the derivative approximation
possesses discrete scale-space properties if and only if it, for some �xed  2 [0; 1] and for
some linear transformation of the scale parameter (t = �0t0 where �0 > 0), satis�es the
semi-discretized version of the di�usion equation

@tLxiyj =
1

2
r2

Lxiyj (36)

with initial condition Lxiyj (�; �; 0) = Dxiyj (�; �; 0) � f .
The result has been expressed in a general form as to indicate that similar results hold in the
one-dimensional case as well as in higher dimensions. (For example, in the one-dimensional
case the operator r2

 is replaced by r2
3L). Now, what remains, is to de�ne8: how such

derivative approximations are to be computed within the given class of operations.

3.4 One-Dimensional Signals

In the one-dimensional case it is natural to de�ne the discrete correspondence to the deriva-
tive operator @x as the �rst order di�erence operator �x. This gives

(DxL)(x; t) = (�xL)(x; t) =
1

2
(L(x+ 1; t) � L(x� 1; t)) (37)

and the striking similarity between the discrete and continuous relations,

(�xT )(x; t) = �x
t
T (x; t); (@xG)(x; t) = �x

t
G(x; t): (38)

Similarly, it is natural to de�ne the discrete correspondence of the second order derivative
operator @xx as the second order di�erence operator �xx given by

(DxxL)(x; t) = (�xxL)(x; t) = L(x+ 1; t)� 2L(x; t) + L(x� 1; t) (39)

From the di�usion equation it follows that the following relations are satis�ed,

(�xxT )(x; t) = 2(@tT )(x; t); (@xxg)(x; t) = 2(@tg)(x; t) (40)

Note, however, the clear problem in this discrete case9

�x�x 6= �xx: (41)

Di�erence operators of higher order can be de�ned in an analogous manner

Dx2n = �x2n = (�xx)
n; Dx2n+1 = �x2n+1 = �x�x2n ; (42)

which means that the derivative approximations of di�erent order are related by

Lxn+2 = �xxLxn ; Lx2n+1 = �xLx2n : (43)

8Note that it has nowhere in the proofs been made use of the fact that Dxiyj is a derivative approximation
operator. Corresponding results hold if Dxiyj is replaced by an arbitrary linear operator.

9The second di�erence operator can, of course, also be de�ned as Dxx = �x�x. Then, however, Dxx 6= r
2
3.

Another possibility, is to use both the forward di�erence operator, (�x+L)(x; t) = L(x + 1; t) � L(x; t),
and the backward di�erence operator, (�x�L)(x; t) = L(x; t)� L(x� 1; t), and, e.g, de�ne ~Dx = �x+ and
~Dxx = �x��x+ . By this, ~Dxx will correspond to (a translate of) ~D2

x. Then, however, the odd order derivatives
are no longer estimated at the grid points, and (38) no longer holds. Nevertheless, the commutative algebraic
structure with respect to smoothing and derivative approximations is preserved independent of this choice.
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3.5 Two-Dimensional Signals

For two-dimensional signals it is natural to let the de�nitions of the derivative approxima-
tions depend on the value of .

3.5.1 Separable Case

In the separable case sep = 0, it is natural to inherit the de�nitions from the one-dimensional
case

Dxiyj = �xiyj = �xi�yj ; (44)

where the operator �yj should be interpreted as a similar di�erence operator in the y-
direction as �xi is in the x-direction. This gives

r2
 = r2

5 = �xx + �yy : (45)

If Tx; T y : Z2 � R+ ! R are de�ned as the two-dimensional kernels corresponding to
convolution with the one-dimensional discrete analogue of the Gaussian kernel T : Z�R+ !
R along the x- and y-directions respectively, then the e�ect of the derivative approximation
method can be written

Lxiyj = �xiyj (T=0 � f) = �xi�yj (T
x � T y � f) = (�xiT

x) � (�yjT y) � f; (46)

which implies that a (two-dimensional) derivative approximation Lxiyj of order i+ j exactly
corresponds to the result of applying a (one-dimensional) derivative approximation kernel
�xiT

x of order i along the x-direction and a (one-dimensional) derivative approximation
kernel �yjT

y of order j along the y-direction.

3.5.2 Rotationally Symmetric Case

The case symm = 1
3 corresponds to approximating the continuous Laplacian with the dis-

crete nine-point operator10 r2
9 having the computational molecule

r2
9 =

0
B@ 1=6 2=3 1=6

2=3 �10=3 2=3
1=6 2=3 1=6

1
CA : (47)

Assuming that the second derivative approximation operators should be symmetric and
satisfy11 ~�xx + ~�yy = r2

9, it is natural to assume that for some values of a and b ~�xx and ~�yy
can be represented by 3� 3 computational molecules of the form

~�xx =

0
B@ a �2a a

b �2b b

a �2a a

1
CA ; ~�yy =

0
B@ a b a
�2a �2b �2a
a b a

1
CA : (48)

The condition ~�xx + ~�yy = r2
9 then gives

~�xx =

0
B@ 1=12 �1=6 1=12

5=6 �5=3 5=6
1=12 �1=6 1=12

1
CA ; ~�yy =

0
B@ 1=12 5=6 1=12
�1=6 �5=3 �1=6
1=12 5=6 1=12

1
CA : (49)

We leave the question open about how to de�ne the other operators Dx, Dy and Dxy .

10In numerical analysis this operator is known as the rotationally most symmetric 3� 3 discrete approxi-
mation to the Laplacian operator [8]; see also the result concerning the Fourier transform in Section 2.2.

11This condition is a necessary requirement for @tL = 1
2 (

~�xx + ~�yy)L to hold.
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3.6 Other Possible Choices

Concerning the choice of these operators, it should be remarked that these (in principle,
arbitrary) selections12 were based on the relations to standard discrete operators used in
numerical analysis; see, e.g., Dahlquist et al [8]. Other design criteria may lead to other
operators, see, e.g., Haralick [13], Meer and Weiss [29], and Vieville, Faugeras [33]. Nev-
ertheless, the algebraic scale-space properties are preserved whatever linear operators are
used.

4 Computational Implications

4.1 Derivative Approximations Directly from Smoothed Grey-Level Data

An immediate consequence of the proposed scale-space representation of discrete derivative
approximations, is that the derivative approximations can be computed directly from the
smoothed grey-level values at di�erent scales, and that this will (up to numerical truncation
and rounding errors) give exactly the same result as convolving the signal with the discrete
analogue to the Gaussian derivative kernel. This has a clear advantage in terms of com-
putational e�ciency, since the derivative approximations operators, Dxiyj , usually have a
small support region and contain a small number of non-zero �lter coe�cients. Hence, there
is absolutely no need for re-doing the smoothing part of the transformation, as is the case
if several derivative approximations are computed by convolution with smoothed derivative
�lters, e.g., some discrete approximations to the Gaussian derivatives13. This issue is of
particular importance when computing multi-scale di�erential geometric descriptors of high
derivation order; see Figure 1.

Di�erential geometric descriptors

"
Point operations

j
Discrete derivative approximations: Lxiyj

"
Small support di�erence operators: Dxiyj

j
Smoothed signal: L

"
Large support smoothing operator: T�

j
Discrete input signal: f

Figure 1: Schematic overview of the di�erent types of computations required for computing multi-
scale derivative approximations and discrete approximations to di�erential geometric descriptors
using the proposed framework.

12Similar operators have also been used in pyramid representations; see, e.g., Burt [5], and Crowley [7].
13The same problem arises also if the computations are performed in the Fourier domain, since at least

one inverse FFT transformation will be needed for each derivative approximation.
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4.2 Normalization of the Filter Coe�cients

Below are listed a number of continuous relations and their discrete correspondences. When
the scale parameter tends to zero, the continuous and discrete Gaussian kernels tend to the
continuous and discrete delta functions respectively, �cont and �disc;

lim
t#0

T (x; t) = �disc(x); lim
t#0

g(x; t) = �cont(x): (50)

Concerning the normalization of the �lter coe�cients, it holds that

1X
n=�1

T (n; t) = 1;

Z 1

�=�1
g(�; t)d� = 1; (51)

which means that in the discrete case the sum of the smoothing coe�cients is exactly one.
Similarly, the sum of the �lter coe�cients in a derivative approximation kernel is exactly
zero,

1X
n=�1

(�xnT )(n; t) = 0; ;

Z 1

�=�1
(@xng)(�; t) d� = 0: (52)

for any integer n � 1. A trivial consequence of this is that the sum of the �lter coe�cients
in the discrete Laplacian of the Gaussian is exactly zero, and there is no need for \modifying
the �lter coe�cients" as has been the case in previous implementations of this operator.

In some situations it is useful to normalize the kernels used for derivative computations so
that the integral of positive parts remains constant over scales. Such kernels have been used
in edge detection, by for example Korn [19] and Zhang and Bergholm [36], for automatic
scale selection in feature detection by Lindeberg [26], and in shape from texture by Lindeberg
and G�arding [27]. Then, the following relations are useful;

Z 1

�=0
(@xg)(�; t) d� = �g(0; t) = 1p

2�t
;

1X
n=0

(�xT )(n; t) = �T (0; t): (53)

In practice, to give the equivalent e�ect of normalizing the kernels such that the sum of
the positive values is always equal to one, it is, of course, su�cient to divide �xL and �yL
by T (0; t). Note that with increasing t, this correction factor asymptotically approaches
the corresponding normalization factor in the continuous case 1=g(0; t) =

p
2�t, while at

t = 0 the discrete normalization factor it is exactly one | in contrast to the continuous
normalization factor which is then zero; see also Section 4.4.

4.3 Comparisons with Other Discretizations

As a comparison with other possible approaches, observe that if continuously equivalent
expressions are discretized in a straightforward way, say by approximating the convolution
integral using the rectangle rule of integration, and by approximating the derivative operator
@xiyj with the di�erence operator �xiyj , then the discretized results will depend upon which
actual expression in selected. Consider, for example, the three equivalent expressions in (5),
where,

(i) the discretization of the left expression corresponds to discrete convolution with the
sampled Gaussian kernel followed by the application of a di�erence operator,

(ii) the discretization of the central expression corresponds to discrete convolution with
the sampled derivative of the Gaussian kernel, and

13



(iii) the discretization of the right expression corresponds to the application of the central
di�erence operator to the signal followed by discrete convolution with the sampled
Gaussian kernel.

It is clear that the equivalence is violated; (i) and (iii) describe equivalent operations, while
(i) and (ii) do not. Considering the particular case of the Laplacian of the Gaussian,r2(g�f),
it is well-known that this kernel is not separable. When performing the computations in
the spatial domain, the fact that g satis�es the di�usion equation, r2(g � f) = 2 @t(g � f),
is sometimes used for reducing the computational work; by computing g � f at two adjacent
scales, forming the di�erence, and then dividing by the scale di�erence. In the literature, this
method is usually referred to as the di�erence of Gaussians (DOG) approach; see, e.g., Marr
and Hildreth [28]. Note, however, that when the scale di�erence tends to zero, the result
of this operation is not guaranteed to converge to the actual result, of say convolving the
original signal with the sampled Laplacian of the Gaussian; not even if the calculations (of
the spatially sampled data) are represented with in�nite precision in the grey-level domain.

For the proposed discrete framework on the other hand, the discrete analogues of these
entities are exactly equivalent; see (21) and (22). The main reason to why the \discrete scale-
space representations" generated from di�erent versions of the sampled Gaussian kernel does
not possess discrete scale-space properties, is because when using this discretization method,
the discrete correspondences to operators, which commute before the discretization, do not
commute after the discretization.

4.4 Discrete Modelling of Feature Detectors

The proposed discrete kernels are also suitable for discrete modelling of feature detectors. As
an example of this, consider the di�use step edges studied by Zhang and Bergholm [36]. In
the continuous case, the intensity pro�le perpendicular to such a (straight and unit height)
edge may be modelled by

Et0(x) =

Z x

�=�1
g(�; t0) d�; (54)

where t0 describes the degree of di�useness. In a scale-space representation, Lt0 , of Et0 , the
variation over scales of the gradient magnitude, computed at the origin and normalized as
described in Section 4.2, is given by

(@xLt0)(0; t) �
g(0; t0 + t)

g(0; t)
: (55)

If a corresponding discrete di�use step edge is de�ned by

Et0(x) =
xX

n=�1

T (n; t0); (56)

and if the gradient is approximated by the backward di�erence operator �x� , then the
analytic expression for the corresponding discrete analogue of the gradient magnitude will
be algebraically similar to that in the continuous case,

(�x�Lt0)(0; t) �
T (0; t0 + t)

T (0; t)
: (57)

Moreover, it is easy to show that when t and t0 increase, (�x�Lt0)(0; t) approaches
p
t=
p
t0 + t,

which agrees with the continuous expression for (@xLt0)(0; t) obtained from (55); see also
[36].
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Discrete Gauss Sampled Gauss Discrete Gauss Sampled Gauss

            

            

            

            

            

Figure 2: Comparisons between the discrete analogue of the Gaussian kernel and the sampled
Gaussian kernel at scale levels t = 1:0 and t = 16:0. The columns show from left to right; the
discrete Gaussian t = 1:0, the sampled Gaussian t = 1:0, the discrete Gaussian t = 16:0, and
the sampled Gaussian t = 16:0. The derivative/di�erence order increases from top to bottom; the
upper row shows the raw smoothing kernel; then follow the �rst, second, third and fourth order
derivative/di�erence kernels. The block diagrams indicate the discrete kernels and the smooth curve
the continuous Gaussian.
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Figure 3: Grey-level illustrations of the equivalent two-dimensional discrete derivative approxima-
tion kernels up to order three (in the separable case corresponding to  = 0). (row 1) (a) Zero-order
smoothing kernel, T , (inverted). (row 2) (b-c) First order derivative approximation kernels, �xT
and �yT . (row 3) (d-f) Second order derivative approximation kernels �xxT , �xyT , �yyT . (row 4)
(g-j) Third order derivative approximation kernels �xxxT , �xxyT , �xyyT , �yyyT . (row 5) (k-l) First
and second order directional derivative approximation kernels in the direction 22:5� computed from
(59). (Scale level t = 64:0, image size 127� 127 pixels).
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5 Kernel Graphs

Figure 2 illustrates the di�erences and similarities between the proposed discrete kernels
and the derivatives of the continuous Gaussian kernel. Shown are the graphs of

Txn = �xnT and gxn = @xng (58)

for a few order of derivatives/di�erences and at two di�erent scales. These kernels describe
the equivalent e�ect of computing smoothed derivatives in the one-dimensional case as well
as the separable two-dimensional case; see (46). For comparison, the equivalent discrete
kernels corresponding to sampling the derivatives of the Gaussian kernel are displayed. It
can be seen that the di�erence is largest at �ne scales, and that it decreases as the kernels
approach each other at coarser scales.

Figure 3 shows the corresponding two-dimensional kernels represented by grey-level val-
ues, together with examples of equivalent directional derivatives corresponding to pointwise
linear combinations of the components of Lxiyj using the well-known expression for the nth
order directional derivative @n�� of a function L in any direction �,

@n�� L = (cos� @x + sin �@y)
n L: (59)

In the terminology of Freeman and Adelson [12], and Perona [32], these kernels are trivially
\steerable" (as is the directional derivative of any continuously di�erentiable function).

Figure 4 gives an illustration of what might happen if the sampling problems at �ne scales
are not properly treated. It shows a situation where the slope at the origin of the sampled
(�fth order) derivative of the Gaussian kernel is reversed. If this kernel is used for derivative
estimation, then even the sign of the derivative can be wrong. For the corresponding discrete
kernel, however, the qualitative behaviour is correct.

         

Figure 4: Di�erent discrete approximations of the �fth order derivative of the Gaussian at a �ne
scale (t = 0.46); (a) �fth order di�erence of the discrete analogue of the Gaussian kernel, (b) sampled
�fth order derivative of the Gaussian kernel, and (c) �fth order di�erence of the sampled Gaussian
kernel. Observe that the slope at the origin of the kernel in (b) di�ers from the slopes of the other
ones. This means that if this �lter is used for derivative approximations, then, in general, even the
sign of the derivative estimate may be wrong.

6 Experimental Results: Low-Level Feature Extraction

To demonstrate how the proposed framework can be used in low-level feature extraction,
it will in this section be briey described how a subpixel edge detector can be easily for-
mulated in terms of zero-crossings of a certain polynomial expression in these derivative
approximations, and how a junction detector can be expressed in terms of maxima of an-
other such expression. (In a related work, [27], it is developed how these discrete derivative
approximations can be used as a basis for shape from texture).
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6.1 Edge Detection Based on Local Directional Derivatives

A natural way to de�ne edges from a continuous grey-level image L : R2 ! R is as the set
of points for which the gradient magnitude assumes a maximum in the gradient direction.
This method is usually referred to as \non-maximum suppression"; see e.g. Canny [6], or
Korn [19].

6.1.1 Di�erential Geometric De�nition of Edges in the Continuous Case

To give a di�erential de�nition of this concept, introduce a curvilinear coordinate system
(u; v), such that at every point the v-direction is parallel to the gradient direction of L, and
at every point the u-direction is perpendicular. Moreover, at any point P = (x; y) 2 R

2,
let @�v denote the directional derivative operator in the gradient direction of L at P and
@�u the directional derivative in the perpendicular direction. Then, at any P 2 R

2 the
gradient magnitude is equal to @�vL, denoted L�v, at that point. Assuming that the second
and third order directional derivatives of L in the v-direction are not simultaneously zero,
the condition for P0 to be a gradient maximum in the gradient direction may be stated as;(

L�v�v = 0;
L�v�v�v < 0:

(60)

By expressing the directional derivatives in terms of derivatives with respect to the Cartesian
coordinates (x; y), @�u = sin �@x � cos�@y , @�v = cos�@x + sin�@y , where (cos�; sin�) is the
normalized gradient direction of L at P0, and by taking the numerators of the resulting
expressions, this condition can be expressed as

~L�v�v = L2
�vL�v�v = L2

xLxx + 2LxLyLxy + L2
yLyy = 0; (61)

~L�v�v�v = L3
�vL�v�v�v = L3

xLxxx + 3L2
xLyLxxy + 3LxL

2
yLxyy + L3

yLyyy < 0; (62)

where L�v = (L2
x+L

2
y)

1=2. By reinterpreting L as the scale-space representation of a signal f ,
it follows that the edges in f at any scale t can be de�ned as the points on the zero-crossing
curves of the numerator of ~L�v�v for which ~L�v�v�v is strictly negative. Note that with this
formulation there is no need for any explicit estimate of the gradient direction. Moreover,
there are no speci�c assumptions about the shape of the intensity pro�le perpendicular to
the edge.

6.1.2 Discrete Approximation and Interpolation Scheme

Given discrete data, we propose that the derivatives Lxiyj can be estimated by using the
above discrete derivative approximations. From these in turn, discrete approximations to
~L�v�v and ~L�v�v�v can be computed as pointwise polynomials.

+ −

− −(a)

+ −

− −
0

0

(b)

+ −

− −
0

0

(c)

Figure 5: The subpixel edge interpolation procedure in a simple situation; a four-point cell in which
~L
�v�v is positive in one point and negative in all the other ones, while ~L

�v�v�v is negative in all points.
(a) Sign pattern for ~L

�v�v. (b) Estimated locations of zero-crossings from linear interpolation. (c)
Zero-crossings connected by a straight line segment. ('+' denotes a pixel for which ~L

�v�v > 0 and '-'
a pixel for which ~L

�v�v < 0).
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Of course, there do not exist any exact discrete correspondences to zero-crossing curves
in the discrete case. Nevertheless, a sub-pixel edge detector can be de�ned by interpolating
for zero-crossings in the discrete data. A natural way of implementing this, is by for every
four-cell in the image, f(x; y); (x+ 1; y); (x; y + 1); (x + 1; y + 1)g, performing a two-step
linear interpolation. The idea is basically as follows. For any pair of (four-)adjacent points
having opposite sign of ~L�v�v , introduce a zero-crossing point on the line between, with the
location set by linear interpolation. Then connect any pair of such points within the same
four-cell by a line segment, see Figure 5(a). Performing this operation on all four-cells in
an image, gives edge segments that can be easily linked14 into polygons by an edge tracker,
and, by de�nition, will be continuous in space.

6.1.3 Experimental Results

Figure 6 displays an example of applying this edge detection scheme to an image of a table
scene at a number of di�erent scales, while Figure 7 shows a simple comparison with a
traditional implementation of the Canny-Deriche edge detector [9]. Of course, it is not easy
to make a fair comparison between the two methods, since the Canny-Deriche method is
pixel oriented and uses a di�erent smoothing �lter. Moreover, the usefulness of the output
is ultimately determined by the algorithms that use the output from this operation as input
and can hardly be measured in isolation.

Finally, it should be remarked that the main intention with experiment is not to argue
that this edge detection method is entirely new; rather it is to demonstrate, �rstly, that
useful results can be obtained by using the proposed derivative approximations15 up to order
three, and, secondly, that by using the scheme in Figure 1, results qualitatively comparable
to a state-of-the art detector can be obtained by very simple means.

6.2 Junction Detection

An entity commonly used for junction detection is the curvature of level curves in intensity
data; see, e.g., Kitchen and Rosenfeld [14], or Koenderink and Richards [17]. In terms
of derivatives of the intensity function with respect to the (x; y)-, and (u; v)-coordinates
respectively, it can be expressed as

� =
L2
yLxx � 2LxLyLxy + L2

xLyy

(L2
x + L2

y)
3=2

=
L�u�u

L�v
: (63)

As to give a stronger response near edges, this entity is usually multiplied by the gradient
magnitude raised to some power, n. A natural choice is n = 3. This leads to a polynomial
expression. Moreover, the resulting operator becomes skew invariant; see Blom [3].

~� = L3
�v � = L2

�v L�u�u = L2
yLxx � 2LxLyLxy + L2

xLyy : (64)

Figure 6 displays the result of computing this rescaled level curve curvature at a number of
di�erent scales, and then taking the absolute value in every point. In order to enhance the
maxima in the output, a certain type of blob detection, grey-level blob detection [22, 21], has
been applied to the curvature data. Basically, each grey-level blob corresponds to one local
extremum and vice versa. Observe that at �ne scales mainly blobs due to noise are detected,
while at coarser scales the operator gives a stronger response in regions that correspond to
meaningful junctions in the scene.

14Some care must, however, be taken with respect to the sign pattern of ~L�v�v�v and ambiguous situations;
for example, when all adjacent points in a four-cell have opposite sign in ~L�v�v).

15Which were derived solely from theoretical scale-space considerations.
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Figure 6: Edges and junctions detected by applying the presented sub-pixel edge detection scheme,
and by computing (the absolute value of) the rescaled level curve curvature at scales t = 1, 4, 16, and
64 respectively (from top to bottom). The columns show from (left to right); the smoothed grey-level
values, detected edges, the rescaled level curve curvature, and the grey-level blobs extracted from
the curvature data. (No thresholding has been performed).
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Figure 7: A comparison between the sub-pixel edge detection scheme based on discrete derivative
approximations (middle row) and Canny-Deriche edge detection (bottom row). The scale values
used for smoothing in the left column were t=4.0 (middle left) and �=0.7 (bottom left), while the
corresponding values in the right column were t=1.4 (middle right) and �=1.2 (bottom right). (In
the left column no thresholding was performed on the gradient magnitude or the length of the
edge segments was performed, while in the right column hysteresis thresholds used on the gradient
magnitude (low = 3.0, high = 5.0) and a threshold on the length of the edge segments (5.0) were
selected manually). (Image size: left 256� 256 pixels, right 512� 512 pixels).
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6.3 Feature Detection from Singularities in Scale-Space

The two applications above exemplify how low-level feature detectors can be formulated
in terms of singularities of di�erential entities. By this, one more step has been added
to the ow of computations illustrated in Figure 1, namely singularity detection, which in
these cases is equivalent to the detection of zero-crossings and/or local extrema; operations
corresponding to nearest-neighbour processing; see Figure 8.

Singularities (features)

"
Nearest-neighbour comparisons

j
Di�erential geometric descriptors

Figure 8: The low-level feature extractors have been expressed in terms of singularities of di�erent
di�erential geometric entities. This corresponds to the addition of one more processing step to the
ow of computations illustrated in Figure 1, namely singularity detection. This operation can (at
least in these cases) be equivalently expressed in terms of detection of zero-crossings (and/or local
extrema) corresponding to comparisons between nearest-neighbour pixels.

A main reason to why this formulation in terms of singularities is important, is because
these singularities do not depend on the actual numerical values of the di�erential geometric
entities, but on their relative relations. Therefore, they will be less sensitive to the e�ect
of scale-space smoothing, which is well-known to decrease the amplitude of the variations
in a signal and its derivatives. In fact, the di�erential entities used above will be invariant
to a number of primitive transformations of either the original or the smoothed grey-level
signal; translations, rotations and uniform rescalings in space as well as a�ne intensity
transformations16.

To give a precise formulation of this, let L�um�vn = L�u� denote a mixed directional deriva-
tive of order j�j = m+n, where � = (m;n), and letD be a (possibly non-linear) homogeneous
di�erential expression of the form

DL =
IX

i=1

ci

JY
j=1

L�u�ij ; (65)

where j�ij j > 0 for all i = [1::I ] and j = [1::J ], and
PJ

j=1 j�ij j = N for all i 2 [1::I ]. More-
over, let SDL denote the singularity set of this operator, i.e., SDL = f(x; t) : DL(x; t) = 0g,
and let G be the Gaussian smoothing operator, i.e., L = Gf . Under these transformations of
the spatial domain (represented by x 2 R2) and the intensity domain (represented by either
the unsmoothed f or the smoothed L) the singularity sets transform as follows:

Transformation De�nition Invariance
translation (T L)(x; t) = L(x+�x; t) SD G T f = SD T G f = T SD G f

rotation (RL)(x; t) = L(Rx; t) SD GR f = SDRG f = RSD G f

uniform scaling (UL)(x; t) = L(sx; t) SD G U f = SD U G f = U SD G f

a�ne intensity (AL)(x; t) = aL(x; t) + b SD G A f = SD AG f = SD G f

In other words, feature detectors formulated in terms of di�erential singularities by de�nition
commute with a number of elementary transformations of the spatial and intensity domains,

16See also Florack et al [10] concerning necessity results regarding a similar (but not identical) set of
transformations.
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and it does not matter whether the transformation is performed before or after the smoothing
step.

Above, R is a rotation matrix, �x is a vector (2 R2), while a, b and s are scalar constants.
The de�nitions of the transformed singularity sets are as follows;

T SDL = f(x; t) : DL(x+ �x; t) = 0g;
RSDL = f(x; t) : DL(Rx; t) = 0g;
USDL = f(x; t) : DL(sx; s2t) = 0g:

Moreover, such singularities can be easily related (and linked) across scales in a well-de�ned
manner; the implicit function theorem can be used for de�ning paths across scales and
deriving closed form expressions for the drift velocity of feature points with respect to scale-
space smoothing; see [23] and [25] for details. For example, for a curved edge given by
non-maximum suppression, i.e., L�v�v = 0, the drift velocity in the normal direction of the
curve, (��u; ��v) = (L2

�vL�u�v�v + 2L�vL�u�vL�u�u; L
2
�vL�v�v�v + 2L�vL

2
�u�v), is

(@tu; @tv) = � L�v(L�u�u�v�v + L�v�v�v�v) + 2L�u�v(L�u�u�u + L�u�v�v)

2((L�vL�u�v�v + 2L�u�vL�u�u)2 + (L�vL�v�v�v + 2L2
�u�v)

2)
(
��u

L�v
;
��v

L�v
); (66)

which reects the non-trivial e�ect of smoothing in the general case. For a straight edge,
where all partial derivatives in the u-direction are zero, this expression reduces to

(@tu; @tv) = �1

2

L�v�v�v�v

L�v�v�v
(0; 1): (67)

6.4 Selective Mechanisms

In the treatment so far, the major aim has been to demonstrate what information can be
obtained from the computed data without introducing any commitments in the processing.
Therefore no attempts have been made to suppress \irrelevant" edges or junction candidates
by thresholding or by other means. Nevertheless, when to use the output from these process-
ing modules as input to other ones, there is an obvious need for some selective mechanisms
for deciding what structures in the image should be regarded as signi�cant and what scales
are appropriate for treating those.

The �rst row in Figure 9 shows the e�ect of hysteresis thresholding on gradient magnitude
in the edge detection step. The second row in this �gure illustrates a more re�ned way of
automatically selecting a sparse subset of junction candidates for further processing; it
shows the result of applying a multi-scale blob detection method, the scale-space primal
sketch [21, 22], to the absolute value of the curvature data computed from (64). Obviously,
the output from this second stage multi-scale analysis, performed after the (non-linear)
computation of the di�erential descriptor, generates output results much more useful for
further processing than the single scale extraction of grey-level blobs illustrated in Figure 6;
see also [4] and [27]. A more general method for scale selection is decribed in [26].

7 Summary and Discussion

The main subject of this paper has been to describe a canonical way to discretize the primary
components in scale-space theory; the convolution smoothing, the di�usion equation and
the smoothed derivatives, such that the scale-space properties hold exactly in the discrete
domain.
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Figure 9: (row 1) Edges detected from the table scene image using a low (manually selected)
hysteresis thresholds on gradient magnitude; (a) grey-level image, (b) edges detected at scale t=2 (low
= 1.0, high = 3.0), and (c) edges detected at scale t=4 (low = 1.0, high = 2.0). (row 2) Suppression
of junction candidates without thresholding on the operator response; (d) image smoothed to scale
t=8, (e) absolute value of the rescaled level curve curvature computed at that scale, (f) boundaries of
the 40 most signi�cant curvature blobs extracted by applying a multi-scale blob detection method,
the scale-space primal sketch [21, 22], to the curvature data.

A theoretical advantage of the proposed discrete theory is that several algebraic scale-
space properties in the continuous case transfer directly to the discrete domain, and op-
erators that commute in the continuous case, commute (exactly) also after the discretiza-
tion. Examples of this are the non-enhancement property of local extrema, and the semi-
group/cascade smoothing property of the smoothing operator.

A computational advantage with the proposed discrete analogues of the Gaussian deriva-
tive kernels is that there is no need for re-doing the smoothing part of the transformation
when computing several derivative approximations. Exactly the same results are obtained
by smoothing the signal with the (large support) discrete analogue of the Gaussian ker-
nel (once), and then computing the derivative approximations by applying di�erent (small
support) di�erence operators to the output from the smoothing operation.

The speci�c di�erence operators, �xiyj , used in this presentation have been selected so
that they in a numerical sense constitute consistent discrete approximations to the contin-
uous derivative operators. This means that the discrete approximations will approach the
continuous results when the grid e�ects get smaller, i.e., when the grid spacing becomes
small compared to a characteristic length in the data. Hence, with increasing scale, the
output from the proposed discrete operators can be expected to approach the correspond-
ing continuous theory results. Any speci�c convergence result, however, depend upon what
assumptions are posed on the continuous signal and the sampling method.

The proposed framework has been derived from a set of theoretical properties postu-
lated on the �rst stages of visual processing. In practice, it leads to a conceptually very
simple scheme for computing low level features from raw (discrete) image data; which lends
itself to direct implementation in terms of natural operations in a visual front end; (i) large
support linear smoothing, (ii) small support linear derivative approximations, (iii) pointwise
non-linear computations of di�erential geometric descriptors, and (iv) nearest neighbour
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comparisons . Experiments demonstrate that this scheme gives useful results in edge detec-
tion and junction detection using derivatives of order up to three. At the end of Section 6.4
it was also indicated how useful results in junction detection and shape from texture can be
obtained, by adding a second-stage scale-space smoothing step to the output from step (iii)
above.

Finally, it should be emphasized that although the treatment here, because of simplicity
of presentation, has been concerned with one-dimensional and two-dimensional signals, the
methodology is general, and can be applied in arbitrary dimensions; see Appendix A.5 for
a condensed review of the main result that holds in higher dimensions.

7.1 Further Work

Concerning possible generalizations of this work, it should be pointed out that there is one
main subject that has not been considered here, namely scale dependent spatial sampling.
This issue is certainly of importance in order to improve the computational e�ciency, both
when computing the representation and for algorithms working on the output data. The
scale-space concept outlined here uses the same spatial resolution at all levels of scale, and
has the advantage of having a continuous scale parameter. The pyramid representations
(see, e.g., Burt [5], or Crowley [7]) on the other hand imply a �xed relation between scale
and resolution beyond which re�nements are not possible.

Since the smoothed images at coarser scales become progressively more redundant, it
seems plausible that some kind of subsampling can be done at the coarser scales without
too much loss of information. It would be interesting to analyse how much information is
lost by such an operation, and to which extent a subsampling operator can be introduced
in this representation, while still maintaining the theoretical properties associated with
having a continuous scale parameter, and without introducing any severe discontinuities
along the scale direction, which would be a potential source to numerical di�culties for
algorithms working on the output from the representation. For example, it is much harder
algorithmic problem to relate structures across scales in a pyramid than in a scale-space
having a continuous scale parameter; see. e.g., [21, 22].

Another important problem concerns how di�erent types of a priori knowledge can be
incorporated into the analysis. The work presented here concerns linear and spatially shift
invariant isotropic smoothing, based on the argument that in situations where no information
is available, the visual front-end processing should be as uncommitted as possible. On the
other, once any (initial) knowledge is available, there is a variety of di�erent possibilities
opening up. A natural generalization to consider is non-linear di�usion, although further
work may be needed in order to develop the notion of anisotropic smoothing as introduced
into computer vision by Perona and Malik [31] and Nordstrom [30].

A Appendix

A.1 Summary of Main Results from 2D Discrete Scale-Space Theory

Below are stated for reference purpose some basic de�nitions and key results from the (zero-
order) scale-space theory for two-dimensional discrete signals, which are used in several of
the proofs presented in this paper. An early description of this material can be found in
[20], while a more rigorous treatment is given in [21] and [24].

De�nition 12. (Pre-scale-space family of kernels)

A one-parameter family of kernels T : Z2 � R+ ! R is said to be a pre-scale-space family
of kernels if it satis�es
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� T (�; �; 0) = �(�; �),
� the semi-group property T (�; �; s) � T (�; �; t) = T (�; �; s + t),

� the symmetry properties17 T (�x; y; t) = T (x; y; t) and T (y; x; t) = T (x; y; t) for all
(x; y) 2 Z2, and

� the continuity requirement k T (�; �; t)� �(�; �) k1! 0 when t # 0.
De�nition 13. (Pre-scale-space representation)
Let f : Z2 ! R be a discrete signal, and let T : Z2 �R+ ! R be a pre-scale-space family of
kernels. Then, the one-parameter family of signals L : Z2 �R+ ! R given by

L(x; y; t) =
1X

m=�1

1X
n=�1

T (m;n; t)f(x�m; y � n) (68)

is said to be the pre-scale-space representation of f generated by T .

Lemma 14. (A pre-scale-space representation is di�erentiable)
Let L : Z2 � R+ ! R be the pre-scale-space representation of a signal f : Z2 ! R in l1.
Then, L satis�es the di�erential equation

@tL = AL (69)

for some linear and shift-invariant operator A.
Proof: See Lemma 3.1 in [21] (or Part I of the proof of Theorem 7 in [20]). �

De�nition 15. (Scale-space family of kernels)

A one-parameter family of pre-scale-space kernels T : Z2 � R+ ! R is said to be a scale-
space family of kernels if for any signal f : Z2 ! R 2 l1 the pre-scale-space representation
of f generated by T obeys the non-enhancement property stated in De�nition 6, i.e., if for
any signal f local extrema in L are never enhanced.

De�nition 16. (Scale-space representation)
A pre-scale-space representation L : Z2 � R+ ! R of a signal f : Z2 ! R generated by a
family of kernels T : Z2�R+ ! R, which are scale-space kernels, is said to be a scale-space
representation of f .

Theorem 17. (Scale-space for 2D discrete signals: Necessity)
A scale-space representation L : Z2�R+ ! R of a signal f : Z2 ! R satis�es the di�erential
equation

@tL = �r2
5L+ �r2

�L (70)

with initial condition L(�; �; 0) = f(�; �) for some constants � � 0 and � � 0.

Proof: See Theorem 3.2 in [21] (or Part II of the proof of Theorem 7 in [20]). �

Theorem 18. (Scale-space for 2D discrete signals: Su�ciency)

Let f : Z2 ! R be a discrete signal in l1 and let L : Z2 � R+ ! R be the representation
generated by the solution to di�erential equation

@tL = �r2
5L+ �r2

�L (71)

with initial condition L(�; �; 0) = f(�; �) for some �xed � � 0 and � � 0. Then L is a
scale-space representation of f .

Proof: See Theorem 3.3 in [21] (or Theorem 8 in [20]). �

17T (x;�y; t) = T (x; y; t) is implied from the two other properties.
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A.2 Proof of Theorem 9

The proof will be similar to the proof of Theorem 17, which was based on a number di�er-
ent test signals that were used for successively restricting the class of possible smoothing
transformations. Since, however, it cannot be guaranteed that those signals will be in the
range of Dxiyj , the proof has to be slightly modi�ed.

To start with, observe that due to Lemma 5 it holds that Lxiyj obeys a linear di�erential
equation. Because of the shift invariance, ALxiyj can be written

(ALxiyj )(x; y; t) =
1X

m=�1

1X
n=�1

am;nLxiyj (x�m; y � n; t) (72)

for some set of �lter coe�cients am;n. Also observe that since the null space of Dxiyj cannot
be expected to consist of the zero element only, A cannot be completely determined, but
only modulus the null space of Dxiyj . Therefore, (for this proof) introduce a notion of
equivalence, so that two operators A and A0 are treated as equivalent if A = A0 + AN for
some element AN in the null space of Dxiyj . In the �rst step of the proof it will be shown
that A must be equivalent to an operator having �nite support.

Let f0 be a �nite support signal such that Dxiyj � f0 is not identically zero. Then,
Dxiyj �f0 has �nite support. For some real constant b, consider a signal f1 given by f1(x; y) =
f0(x; y)+bf0(x�x0; y�y0), where (x0; y0) is selected su�ciently far away from the origin so
that the support regions of (Dxiyj � f0)(x; y) and (Dxiyj � f0)(x� x0; y� y0) do not overlap,
and are separated by a set of (four-connected) zeros. Then, there must exist at least one
extremum point (x1; y1) in the support region of (Dxiyj � f0)(x; y). At that point it holds
that

(@tLxiyj )(x1; y1; 0) =
P1

m=�1

P1
n=�1 am;n(Dxiyj � f0)(x1 �m; y1 � n) +

b
P1

m=�1

P1
n=�1 am;n(Dxiyj � f0)(x1 � x0 �m; y1 � y0 � n) =

A+ bB: (73)

If the latter sum, B, is non-zero, then since the �rst sum, A, is bounded, it is always possible
to select a value of b so that this expression assumes an arbitrary sign. This means that
if (x1; y1) is a local maximum, then a value of b can be selected so that (@tLxiyj )(x1; y1)
is strictly positive, and if (x1; y1) is a local minimum. Then, there exist a value of b so
that (@tLxiyj )(x1; y1) is strictly negative. In other words, if B is non-zero, then a value
of b can always be found which leads to a violation of the non-enhancement property of
local extrema. Now, since B must be zero for any selection of f0 and any (x1; y1) such that
the support regions of (Dxiyj � f0)(x; y) and (Dxiyj � f0)(x � x1; y � y1) are separated, it
follows that A must be equivalent to an operator, A0 corresponding to convolution with
a �nite support kernel. In other words, without loss of generality it can be assumed that
there exists some M such that a0m;n = 0 if jmj > M or jnj > M . Let RA be the region
RA = f(x; y) 2 Z2 : (jxj �M) ^ (jyj �M)g.

Now, the extremum point conditions (23) and (24) will be combined with De�nitions 7-8
to show that A0 must be equivalent to a local operator, i.e., an operator for which am;n = 0
if jmj > 1 or jnj > 1. This is easily understood by studying the following counterexample:
Given some constant c and any point (x2; y2) 2 Z2 with max(jx2j; jy2j) > 1, let f2 : R2 ! R

be an input signal so that Lxiyj (x; y; 0) satis�es:

Lxiyj (x; y; 0) =

8><
>:

1 if (x; y) = (0; 0),
c if (x; y) = (�x2;�y2),
0 for any other (x; y) 2 RA.

(74)
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Such a signal can always be constructed if Dxiyj (x; y; 0) has at least one non-zero coe�cient
(see Appendix A.4). Obviously, (0; 0) is local maximum, which gives

(@tLxiyj )(0; 0; 0) = a0;0 + bax2;y2 : (75)

If ax2;y2 is non-zero then we can always select a value of b so that (@tLxiyj )(0; 0; 0) > 0
and the non-enhancement property of local extrema is violated. Hence, for any (x2; y2)
with max(jx2j; jy2j) > 1, ax2;y2 must be zero, i.e., A must be equivalent to a local operator.
Denote that operator by A00.

Since Lxiyj is assumed to be a scale-space family of derivative approximations, there
exists some family of kernels T : Z2 � R+ ! R, such that Lxiyj (�; �; t) = T (�; �; t) �
Lxiyj (�; �; 0) � f(�; �). Due to the symmetry requirements on T ; T (�x; y; t) = T (x; y; t)
and T (y; x; t) = T (x; y; t), it follows that it can be assumed that A00 possesses the same
symmetry properties, i.e., that A00Lxiyj can be written

@tLxiyj =

0
B@ a b a

b c b
a b a

1
CALxiyj (76)

for some (other) constants a, b and c. Finally, let f3 be a signal such that

Lxiyj (x; y; t) =

(
1 for all (x; y) with jxj � 1 and jyj � 1,
0 for any other (x; y) 2 RA.

(77)

(Such a signal can always be constructed in the way described in Appendix A.4). Since
(0; 0) is both a maximum point and a minimum point, it follows in analogy with the proof
of Theorem 9 that the sum of the coe�cients must be zero in (@tLxiyj )(0; 0; 0) = 4a+4b+ c
due to the non-enhancement property of local extrema. Trivially, c must be non-positive,
and A00 can be written

A00Lxiyj = �r2
5Lxiyj + �r2

�Lxiyj (78)

for some non-negative constants � and �.

A.3 Proof of Theorem 10

From Theorem 18 we have that Lxiyj is a scale-space representation of Dxiyj (�; �; 0) � f(�; �).
Hence, Lxiyj satis�es the non-enhancement property of local extrema for any f .

Since (71) is a linear di�erential equation with constant coe�cients, its solution can
be written L(�; �; t) = T (�; �; t) � f(�; �) for some family of kernels T : Z2 � R+ ! R.
By considering the solution of (71) at time t2 computed from the original signal f , and
by considering the solution at time t2 � t1 using as input signal the solution at time t1
computed from the original signal, it follows that T must obey the semi-group property.
Moreover, since the operators r2

5 and r2
� are symmetric with respect to coordinate sign

changes and reversals of x and y, the family T must satisfy the symmetry constraints
T (�x; y; t) = T (x; y; t) and T (y; x; t) = T (x; y; t) for all (x; y) 2 Z2. Furthermore, the
di�erentiability implies continuity at the origin. By replacing f by Dxiyj (�; �; 0) � f(�; �) it
follows that the solution to (33) can be written

Lxiyj (�; �; 0) = T (�; �; t) �Dxiyj (�; �; 0) � f(�; �) (79)

Then, Dxiyj : Z
2�R+ ! R de�ned by Dxiyj(�; �; t) = T (�; �; t) �Dxiyj (�; �; 0) is a pre-scale-

space family of derivative kernels. Since, Lxiyj satis�es the non-enhancement property for
any input signal, it follows that Dxiyj is a scale-space family of derivative kernels, and thus
that Lxiyj is a scale-space family of derivative approximations.
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A.4 Generating Input Signals

In this appendix the validity of a trivial statement will be ver�ed, namely that given an
arbitrary kernel K of �nite support having at least one non-zero �lter coe�cient, an arbitrary
signal fout, and an arbitrary square region R, it is always possible to construct an input
signal fin such that fout = K � fin on R. (Remark: Of course, since K cannot be expected
to be invertible, it can never be guaranteed that fout will be in the range of K. What the
result states is that it is always possible to �nd a �nite interval so that on that interval ,
K � fin is equal to some function in the range of K.)

In the one-dimensional case this is trivial, since fin will be given by a triangular linear
system of equations. In the two-dimensional case just a little more care needs be taken: In
the �lter mask corresponding to K, denote by a the left-most non-zero �lter coe�cient in
the upper-most row containing non-zero �lter coe�cients, i.e., let a = Kij where i is the
minimum value of � such that K�� 6= 0 for some �, and j in turn is the maximum value
of � such that Ki� 6= 0. Then, the values of fin can be determined one by one, simply by
traversing each row in R, starting from the left in the upper-most row. If the desired value
of fout in this point is b, then let fin be equal to b=a in the point corresponding to the center
of the �lter mask. If the desired value in the next point is c and Ki;j�1 = d, let fin in the
next point be equal to c � bd=a etc. Obviously, this procedure also leads to a triangular
system of equations.

A.5 Discrete Derivatives Approximations to N-Dimensional Signals

Concerning discrete signals f : ZN ! R of arbitrary dimension, it holds that the represen-
tation L : ZN � R+ ! R given by separable convolution with the one-dimensional discrete
analogue of the Gaussian kernel T : Z� R+ ! R along each coordinate direction, possesses
all the scale-space properties listed in Section 1. More generally, it is shown in [24] that a
one-parameter family L : ZN � R+ ! R of N -dimensional discrete signals is a scale-space
representation18 if and only if it satis�es the di�erential equation

(AL)(x; t) =
X
�2ZN

a�L(x� �; t); (80)

for some set of �lter coe�cients a� 2 R satisfying

(i) the locality condition a� = 0 if jj�jj > 1,

(ii) the positivity constraint a� � 0 if � 6= 0,

(iii) the zero sum condition
P

�2ZN a� = 0, as well as

(iv) the symmetry requirements a(��1;�2;:::;�N) = a(�1;�2;:::;�N) and aPN
k
(�1;�2;:::;�N)

= a(�1;�2;:::;�N)

for all � = (�1; �2; :::; �N) 2 ZN and all possible permutations PN
k of N elements.

In analogy with Proposition 2, the scale-space properties transfer to any discrete derivative
approximation de�ned by linear �ltering. This framework provides a complete catalogue of
the discrete derivative approximations with scale-space properties in arbitrary dimensions.
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