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Abstract

We address the formulation of a scale-space theory for discrete signals. In one

dimension it is possible to characterize the smoothing transformations completely

and an exhaustive treatment is given, answering the following two main questions:

1. Which linear transformations remove structure in the sense that the number of

local extrema (or zero-crossings) in the output signal does not exceed the number

of local extrema (or zero-crossings) in the original signal? 2. How should one create

a multi-resolution family of representations with the property that a signal at a
coarser level of scale never contains more structure than a signal at a �ner level of

scale?

We propose that there is only one reasonable way to de�ne a scale-space for

1D discrete signals comprising a continuous scale parameter, namely by (discrete)

convolution with the family of kernels T (n; t) = e
�t
In(t), where In are the modi�ed

Bessel functions of integer order. Similar arguments applied in the continuous case

uniquely lead to the Gaussian kernel.

Some obvious discretizations of the continuous scale-space theory are discussed

in view of the results presented. We show that the kernel T (n; t) arises naturally

in the solution of a discretized version of the di�usion equation. The commonly

adapted technique with a sampled Gaussian can lead to undesirable e�ects since
scale-space violations might occur in the corresponding representation. The result

exempli�es the fact that properties derived in the continuous case might be violated

after discretization.

A two-dimensional theory, showing how the scale-space should be constructed

for images, is given based on the requirement that local extrema must not be en-

hanced, when the scale parameter is increased continuously. In the separable case

the resulting scale-space representation can be calculated by separated convolution

with the kernel T (n; t).

The presented discrete theory has computational advantages compared to a scale-

space implementation based on the sampled Gaussian, for instance concerning the

Laplacian of the Gaussian. The main reason is that the discrete nature of the
implementation has been taken into account already in the theoretical formulation

of the scale-space representation.

1 Introduction

It is well-known that objects in the world and details in an image exist only over a
limited range of resolution. A classical example is the concept of a branch of a tree which
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makes sense only on the scale say from a few centimeters to at most a few meters. It is
meaningless to discuss the tree concept at the nanometer or the kilometer level. At those
levels of scale it is more relevant to talk about the molecules, which form the leaves of
the tree, or the forest, in which the tree grows. If one aims at describing the structure of
an image, a multiresolution representation is of crucial importance. Then a mechanism,
which systematically removes �ner details or high-frequency information from an image,
is required. This smoothing must be available at any level of scale.

A method proposed by Witkin [23] and Koenderink, van Doorn [11] is to embed the
original image in a one-parameter family of derived images, the scale-space, where the
parameter t describes the current level of scale resolution. Let us brie
y develop the
procedure as it is formulated for one-dimensional continuous signals: Given a signal f :
R ! R a function1 L : R � R+ ! R is de�ned by L(x; 0) = f(x) and convolution with
the Gaussian kernel g : R�R+nf0g ! R

L(x; t) =
Z 1
�=�1

1p
2�t

e��
2=2tf(x� �)d� (1)

if t > 0. Equivalently the family can be regarded as de�ned by the di�usion equation

@L

@t
=

1

2

@2L

@x2
(2)

with initial condition L(x; 0) = f(x). This family possesses some attractive properties.

� As the scale parameter t is increased additional local extrema or additional zero
crossings cannot appear.

� Causality in the sense that L(x; t2) depends exclusively on L(x; t1) if t2 > t1
(t1; t2 � 0).

� The blurring is shift invariant and does not depend upon the image values.

It has been shown by Babaud et.al. [3] that the Gaussian function is the only kernel
in a broad class of functions which satis�es adequate scale-space conditions.

The scale-space theory has been developed and well-established for continuous signals
and images. However, it does not tell us at all about how the implementation should be
performed computationally for real-life i.e. discrete signals and images. In principle, we
feel that there are two approaches possible.

� Apply the results obtained from the continuous scale-space theory by discretizing
the occurring equations. For instance the convolution integral (1) can be approxi-
mated by a sum using customary numerical methods. Or, the di�usion equation (2)
can be discretized in space with the ordinary �ve-point Laplace operator forming
a set of coupled ordinary di�erential equations, which can be further discretized in
scale. If the numerical methods are chosen with care we will certainly get reasonable
approximations to the continuous numerical values. But we are not guaranteed that
the original scale-space conditions, however formulated, will be preserved.

� De�ne a genuine discrete theory by postulating suitable axioms.

1R+ denotes the set of real non-negative numbers.
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The goal in this paper is to develop the second item and to address the formulation of
a scale-space theory for discrete images. We will start with a one-dimensional signal
analysis. In this case it is possible to characterize exactly which kernels can be regarded
as smoothing kernels and a complete and exhaustive treatment will be given. One among
many questions which are answered is the following: If one performs repeated averaging,
does one then get scale-space behaviour? We will also present a family of kernels, which
are the discrete analog of the Gaussian family of kernels. The set of arguments, which in
the discrete case uniquely leads to this family of kernels do in the continuous case uniquely
lead to the Gaussian family of kernels.

The structure of the two-dimensional problem is more complex, since it is diÆcult
to formulate what should be meant by preservation of structure in this case. However,
arguing that local extrema must not be enhanced when the scale parameter is increased
continuously, we will give an answer to how the scale-space for two-dimensional discrete
images should be calculated. In the separable case it reduces to separated convolution with
the presented one-dimensional discrete analog of the Gaussian kernel. The representation
obtained in this way has computational advantages compared to the commonly adapted
approach, where the scale-space is based on di�erent versions of the sampled Gaussian
kernel. One of many spin-o� products which come up naturally is a well-conditioned
and eÆcient method to calculate (a discrete analog of) the Laplacian of the Gaussian.
It is well-known that the implementation of the Laplacian of the Gaussian has lead to
computational problems [8].

The theory developed in this paper does also have the attractive property that it is
linked to the continuous theory through a discretized version of the di�usion equation.
This means that continuous results may be transferred to the discrete implementation
provided that the discretization is done correctly. However, the important point with the
scale-space concept outlined here is that the properties we want from a scale-space hold
not only in the ideal theory but also in the discretization2, since the discrete nature of
the problem has been taken into account already in the theoretical formulation of the
scale-space representation. Therefore, we believe that the suggested way to implement
the scale-space theory really describes the proper way to do it.

The presentation is organized as follows: In Section 2 we de�ne what we mean by a
scale-space representation and a one-dimensional discrete scale-space kernel. Then in a
straightforward and constructive manner Section 3 illustrates some qualitative properties
that must be possessed by scale-space kernels. A complete characterization as well as an
explicit expression for the generating function of all discrete scale-space kernels are given in
Section 4. Section 5 develops the concept of a discrete scale-space with a continuous scale
parameter. The formulation is equivalent to the previous scale-space formulation, which
in the continuous case leads to the Gaussian kernel. The numerical implementation of
this scale-space is treated in Section 6. Section 7 discusses discrete scale-space properties
of some obvious discretizations of the convolution integral and the di�usion equation.
Section 8 describes some problems which occur due to the more complicated topology
in two dimensions. In Section 9 we develop the scale-space for two-dimensional discrete

2In a practical implementation we are of course faced with rounding and truncation errors due to �nite
precision. But the idea with this approach is that we hope to improve our algorithms by including at least
the discretization e�ects already in the theory. In ordinary numerical analysis for simulation of physical
phenomena it is almost always possible reduce these e�ects by increasing the density of mesh points, if
the current grid is not �ne enough to give a prescribed accuracy in the result. However, in computer
vision we are often locked to some �xed maximal resolution, beyond which additional image data are not
available.
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Figure 1: A scale-space is an ordered set of derived signals/images intended to represent
the original signal/image at various levels of scale.

images. Here we also compare the discrete scale-space representation with the commonly
used approach, where the scale-space implementation is based on various versions of the
sampled Gaussian kernel. Finally, Section 10 gives a brief summary of the main results.

The results presented should have implications for image analysis as well as other
disciplines of digital signal processing.

2 Scale-Space Axioms

With a scale-space we mean a family of derived signals meant to represent the original
signal at various levels of scale. Each member of the family should be associated with a
value of a scale parameter intended to somehow describe the current level of scale. This
scale parameter, here denoted by t, may be either discrete (t 2 Z+) or continuous (t 2 R+)
and we obtain two di�erent types of discrete scale-spaces - discrete signals with a discrete
scale parameter and discrete signals with a continuous scale parameter. However, in both
cases we start from the following basic assumptions:

� All representations should be generated by (linear) convolution of the original image
with a shift-invariant kernel.

� An increasing value of the scale parameter t should correspond to coarser levels of
scale and signals with less structure. Particularly, t = 0 should represent to the
original signal.

� All signals should be real-valued functions : Z ! R de�ned on the same in�nite
grid; in other words no pyramid representations will be used.

The essential requirement is that a signal at a coarser level of scale should contain less
structure than a signal at a �ner level of scale. If one regards the number of local extrema
as one measure of smoothness it is thus necessary that the number of local extrema in space
does not increase as we go from a �ner to a coarser level of scale. It can be shown that
the family of functions generated by convolution with the Gaussian kernel possesses this
property in the continuous case. We state it as the basic axiom for our one-dimensional
analysis and de�ne:

4



Figure 2: (a) Input signal. (b) Convolved with (1
3
; 1

3
; 1

3
). (c) Convolved with (1

2
; 1

2
). (d)

Convolved with (1
4
; 1

2
; 1

4
).

De�nition 1 A one-dimensional discrete kernel K : Z ! R is denoted a scale-space
kernel if for all signals fin : Z ! R the number of local extrema in the convolved signal
fout = K � fin does not exceed the number of local extrema in the original signal.

An important observation to note is that this de�nition equivalently can be expressed in
terms of zero-crossings just by replacing the string \local extrema" with \zero-crossings".
The result follows from the facts that a local extremum in a discrete function f is equivalent
to a zero-crossing in its �rst di�erence �f , de�ned by (�f)(x) = f(x + 1) � f(x), and
that the di�erence operator commutes with the convolution operator.

However, the stated de�nition has further consequences. It means that the number of
local extrema (zero-crossings) in any n:th order di�erence of the convolved image cannot
be larger than the number of local extrema (zero-crossings) in the n:th order di�erence of
the original image. Actually, the result can be generalized to arbitrary linear operators.

Proposition 1 Let K : Z ! R be a discrete scale-space kernel and L a linear operator
(from the space of real-valued discrete functions to itself), which commutes with K. Then
for any f : Z ! R (such that the involved quantities exist) the number of local extrema in
L(K � f) cannot exceed the number of local extrema in L(f).
Proof: Let g = L(f). As K is a scale-space kernel the number of local extrema in
K � g cannot be larger than the number of local extrema in g. Since, K and L commute
K � g = K � L(f) = L(K � f) and the result follows. }

This shows that not only the function, but also all its \derivatives" will become
smoother. Accordingly, convolution with a discrete scale-space kernel can really be re-
garded as a smoothing operation.

To realize that the number of local extrema or zero-crossings can increase even in a
rather uncomplicated situation consider the input signal

fin(x) =

8><
>:
�3 if n = 0
2 if n = �1
0 otherwise

(3)

an convolve it with the kernels (1
3
; 1

3
; 1

3
), (1

2
; 1

2
) and (1

4
; 1

2
; 1

4
). The results are shown

in Fig. 2 (b), (c) and (d) respectively. As we see, both the number of local extrema and
the number of zero-crossings have increased for the �rst kernel, but not for the two latter
ones. Thus, an operator which naively can be apprehended as a smoothing operator,
might actually give a less smooth result. Further, it can really matter if one averages over
three instead of two points and how the averaging is performed.
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In order to get familiar with the consequences of the de�nition we will illustrate what
this scale-space property means. We start by pointing out a few general qualitative re-
quirements of a scale-space kernel that are necessarily induced by the given axiom. We
will also show that the two latter kernels indeed are discrete scale-space kernels.

3 Scale-Space Kernels

3.1 Positivity and Unimodality in the Spatial Domain

By considering the impulse response it is possible to draw some qualitative conclusions
about the properties of a discrete scale-space kernel. Let

fin(x) = Æ(x) =

(
1 if x = 0
0 otherwise

(4)

Then
fout(x) = (K � Æ)(x) = K(x) (5)

Æ(x) has exactly one local maximum and no zero-crossings. Therefore in order to be a
scale-space kernel K must not have more than one extremum and no zero-crossings. Thus,

Proposition 2 All coeÆcients of a scale-space kernel must have the same sign.

Proposition 3 The coeÆcient sequence of a scale-space kernel fK(n)g1n=�1 must be
unimodal3.

Without loss of generality we can therefore restrict the rest of the treatment to positive
sequences where all K(n) � 0.

It seems reasonable to require4 that K 2 l1, i.e. that
P1

n=�1 jK(n)j is �nite. If fin is
bounded and K 2 l1 then the convolution is well-de�ned and the Fourier transform of the
�lter coeÆcient sequence exists. It also allows us to normalize the coeÆcients such thatP1

n=�1K(n) = 1. Particularly, the �lter coeÆcients K(n) must then tend to zero as n
goes to in�nity.

3.2 Generalized Binomial Kernels

Consider a two-kernel with only two non-zero �lter coeÆcients:

K(2)(n) =

8><
>:
p if n = 0
q if n = �1
0 otherwise

(6)

Assume that p � 0, q � 0 and p+ q = 1.
It is easy to verify that the number of zero-crossings (local extrema) in fout = K(2)�fin

cannot exceed the number of zero crossings (local extrema) in fin. This result follows
from the fact that convolution of fin with K(2) is equivalent to the formation a weighted
average of the sequence ffin(x)g1x=�1, see Fig. 3. The values of the output signal can be

3A real sequence is called unimodal if it is �rst ascending (descending) and then descending (ascending).
4Some regularity requirement must be imposed on the input signal as well. Throughout our following

considerations we will stick to one general convention. If nothing else is explicitly mentioned we assume
that fin is suÆciently regular such that the involved quantities exist and are well-de�ned.
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constructed geometrically and will fall on straight lines connecting the values of the input
signal. The o�set along the x-axis is determined by the ratio q=(p+ q). One realizes that
no additional zero-crossings can be introduced by this transformation. Thus, a kernel on
the form (6) is a discrete scale-space kernel.

Figure 3: To convolve a signal fin with a two-kernel K(2)(n) is equivalent to to form a
weighted average of the sequence ffin(x)g1x=�1.

Directly from the de�nition of a scale-space kernels it follows that if two kernels Ka and
Kb are scale-space kernels then also Ka �Kb is a scale-space kernel. Repeated application
of this result yields:

Proposition 4 All kernels K on the form �ni=1K
(2)
i , with K

(2)
i according to (6), are dis-

crete scale-space kernels.

The �lter coeÆcients generated in this way can be regarded as a kind of generalized
binomial coeÆcients. The ordinary binomial coeÆcients are obtained, except for a scaling-
factor, as a special case if all pi and qi are equal. Another formulation of Proposition 4 in
terms of generating functions is also possible.

Proposition 5 All kernels with the generating function 'K(z) =
P1

n=�1K(n)zn on the
form

'K(z) = C zk
NY
i=1

(pi + qiz) (7)

where pi > 0 and qi > 0 are discrete scale-space kernels.

Proof: The generating function of a kernel on the form (6) is '
K

(2)
i

(x) = pi + qiz. As

convolution in the spatial domain corresponds to multiplication of generating functions
Proposition 4 gives that

'K(z) = '
K

(2)
1
(z) '

K
(2)
2
(z) ::: '

K
(2)
N

(z) (8)

is the generating function of a scale-space kernel. A constant scaling-factor C or a trans-
lation 'transl(z) = zk cannot a�ect the number of local extrema. Therefore these factors
can be multiplied onto 'K(z) without changing the scale-space properties. }
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3.3 No Real Negative Eigenvalues of the Convolution Matrix

If the convolution transformation fout = K � fin is represented on matrix form fout = Cfin
a matrix with constant values along the diagonals Ci;j = K(i� j) appears. Such a matrix
is called a Toeplitz matrix.

Proposition 6 Let K : Z ! R be a discrete kernel with �nite support and �lter coeÆ-
cients cn = K(n). If for some dimension N the N �N convolution matrix

C(N) =

0
BBBBBBB@

c0 c�1 � � � c2�N c1�N
c1 c0 c�1 � � � c2�N
...

. . . . . . . . .
...

cN�2 � � � c1 c0 c�1
cN�1 cN�2 � � � c1 c0

1
CCCCCCCA

(9)

has a negative eigenvalue with a corresponding real eigenvector then K cannot be a scale-
space kernel.

Proof: See Appendix A.1. }

3.4 Positivity in the Frequency Domain

The eigenvalues of a Toeplitz matrix are closely related to the the Fourier transform of
the corresponding sequence of coeÆcients [7][6]. This property allows us to derive an
interesting Corollary from Proposition 6.

Proposition 7 The Fourier transform  K(�) =
P1

n=�1K(n)e�in� of a symmetric dis-
crete scale-space kernel K with �nite support is non-negative.

Proof: Let �
(N)
1 denote the smallest eigenvalue of the convolution matrix of dimension

N and let m denote the minimum value5 the Fourier transform  K assumes on [��; �].
As a consequence of a theorem by Grenander [7] Section 5.2 p65 about the asymptotic
distribution of eigenvalues of a �nite Toeplitz matrix it follows that

lim
N!1

�
(N)
1 = m �

(N)
1 � m (10)

If m is strictly negative then as limN!1 �
(N)
1 = m it follows that �

(N)
1 will be negative for

some suÆciently large N . According to Proposition 6 the kernel cannot be a scale-space
kernel. }

3.5 Unimodality in the Frequency Domain

If a linear transformation is to be regarded as a smoothing transformation it turns out to
be necessary that the low frequency components are not suppressed more than the high
frequency components. This means that the Fourier transform must not increase when the
absolute value of the frequency increases. The occurring unimodality property is easiest to
establish for circular convolution. In this case the convolution matrix becomes circulant6,
which means that its eigenvalues and eigenvectors can be determined analytically.

5Due to symmetry of the kernel  K(�) assumes only real values. The minimum value does certainly
exist since  (�) is a continuous function and the interval [��; �] is compact.

6In a circulant matrix each row is a circular shift of the previous row except for the �rst row which is
a circular shift of the last row.

8



Proposition 8 Let fcng1n=�1 be the �lter coeÆcients of a symmetric discrete kernel with
cn = 0 if jnj > N . For all integers M � N it is required that the transformation given

by multiplication with the (2M + 1) � (2M + 1) symmetric circulant matrix C
(M)
C (11),

de�ned by (C
(M)
C )i;j = ci�j (i; j = 0::M) and circulant extension, should be a scale-space

transformation. Then, necessarily the Fourier transform  (�) =
P1

n=�1 cne
�in� must be

unimodal on [��; �].

C
(M)
C =

0
BBBBBBBBBBBBBBBBBBBB@

c0 c1 � � � cN cN � � � c1

c1 c0 c1 cN
. . .

...
...

. . . . . . cN

cN � . . .

cN � cN
. . . � cN

cN
. . . . . .

...
...

. . . cN c0 c1
c1 � � � cN cN � � � c1 c0

1
CCCCCCCCCCCCCCCCCCCCA

(11)

Proof: See Appendix A.2. }
The result can be extended to comprise non-circular convolution as well. The idea

behind the proof is to construct an input signal consisting of several periods of the signal
leading to a scale-space violation in the proof of Proposition 8. Then, the convolution e�ect
on the \interior" periods will be identical to e�ect on one period by circular convolution. If
the signal consists of a suÆcient number of periods the boundary e�ects will be negligible
compared to the large number of scale-space violations occurring in the inner parts. The
formal details are somewhat technical and can be found in [15] Section 2.6.

Proposition 9 The Fourier transform  K(�) =
P1

n=�1K(n)e�in� of a symmetric dis-
crete scale-space kernel K with �nite support is unimodal on the interval [��; �] (with the
maximum value at � = 0).

3.6 Kernels with Three Non-Zero Elements

For a three-kernel K(3) with exactly three non-zero consecutive elements c�1 > 0, c0 > 0
and c1 > 0 it is possible to determine the eigenvalues of the convolution matrix and the
roots of the characteristic equation analytically. It is easy to verify that the eigenvalues
�� of the convolution matrix

C(N)((c�1; c0; c1)) =

0
BBBBBBBBBBB@

c0 c�1
c1 c0 c�1

c1 c0 c�1
� � �

� � �
c1 c0 c�1

c1 c0

1
CCCCCCCCCCCA

(12)

are all real and equal to

�� = c0 � 2
p
c�1c1 cos(

��

N + 1
) (� = 1::N) (13)
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and that the roots of generating function 'K(3)(z) = c�1z
�1 + c0 + c1z are

z1;2 =
�c0 �

q
c20 � 4c�1c1

2c1
(14)

From (13) we deduce that if c0 < 2
p
c�1c1 then for some suÆciently large N at least one

eigenvalue of C(N) will be negative. Thus, according to Proposition 6 the kernel cannot
be a scale-space kernel. However, if c20 � 4c�1c1 then both the roots of 'K(3) will be real
and negative. This means that the generating function can be written on the form (7)
and the kernel is a scale-space kernel. Consequently, we obtain a complete classi�cation
for all possible values of c�1, c0 and c1. We conclude that:

Proposition 10 A three-kernel with positive elements c�1, c0 and c1 is a scale-space
kernel if and only if c20 � 4c�1c1 i.e. if and only if it can be written as the convolution of
two two-kernels with positive elements.

At this moment one could ask one-self if the result can be generalized to hold for kernels
with arbitrary numbers of non-zero �lter coeÆcients. I.e. if all discrete scale-space kernels
with �nite support have a generating function on the form (7). This question will be
answered in the next section.

4 Kernel Classi�cation

Until now we have postulated an axiom in terms of local extrema or equivalently zero-
crossings and investigated some of its consequences for signal transformations expressed
as linear convolution with a shift-invariant kernel. We have seen that the sequence of �lter
coeÆcients must be positive and unimodal and that its sum should be convergent. For
symmetric kernels the Fourier spectrum must be positive and unimodal on [��; �].

In this section we will perform a complete characterization of the scale-space kernels.
We have studied the literature and seen that several interesting results can be derived
from the theory of total positivity. The proofs of the important theorems are sometimes
of a rather complicated nature for a reader with an engineering background. We will not
burden the presentation with them but give a summarizing result without proof. The
reader interested in further details is referred to [15] or the other references mentioned.

The pioneer in the subject of variation-diminishing transforms was I.J. Schoenberg.
He studied the subject in a series of papers from 1930 to 1953 [20][21][22]. Later the
theory of total positivity has been covered in a monumental monograph by Karlin [13]. A
recent paper by Ando [2] reviews the �eld using skew-symmetric vector products and Schur
complements of matrices as major tools. The questions issued in this paper constitute a
new application of these not too well-known but very powerful results.

Theorem 1 A discrete kernel K : Z ! R is a scale-space kernel if and only if the
corresponding sequence of �lter coeÆcients fK(n)g1n=�1 is a normalized P�olya frequency
sequence, i.e. if all minors of the in�nite matrix0

BBBBBBBBBBB@

� � � � � � �
� � � � � � �
� � K(0) K(�1) K(�2) � �
� � K(1) K(0) K(�1) � �
� � K(2) K(1) K(0) � �
� � � � � � �
� � � � � � �

1
CCCCCCCCCCCA

(15)
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are non-negative.

There exists a remarkably explicit characterization theorem for the generating function
of a normalized P�olya frequency sequence. It has been proved in several steps by Edrei
and Schoenberg, see [22] or [13].

Theorem 2 An in�nite sequence fK(n)g1n=�1 is a normalized P�olya frequency sequence
if and only if its generating function 'K(z) =

P1
n=�1K(n)zn is of the form

'K(z) = c zk e(q�1z
�1+q1z)

1Y
i=1

(1 + �iz)(1 + Æiz
�1)

(1� �iz)(1� 
iz�1)
(16)

c > 0; k;2 Z; q�1; q1; �i; �i; 
i; Æi � 0

�i; 
i < 1;
1X
i=1

(�i + �i + 
i + Æi) <1

The product structure of this expression corresponds to the previously mentioned property
that if Ka and Kb are scale-space kernels then also Ka �Kb is a scale-space kernel. The
meanings of the leading factors C and zk are just rescaling and translation. In (1 +
�iz) and (1 + Æiz

�1) we recognize rewritten versions of the generating functions of two-
kernels. The factors in the denominator are Taylor expansions of geometric series, which
correspond to moving average processes of the forms fout(x) = fin(x) + �ifout(x� 1) and
fout(x) = fin(x)+ 
ifout(x+1). The exponential factor describes in�nitesimal smoothing.
Its interpretation will become clearer in the next section, when we derive the discrete
scale-space with a continuous scale parameter.

For kernels with �nite support the generating function will be reduced to 'K(z) =
c zk

Q1
i=1(1+�iz)(1 + Æiz

�1), which except for rescaling and translation is the generating
function of the class of generalized binomial kernels in Proposition 4 and 5. Hence,

Theorem 3 The kernels on the form �ni=1K
(2)
i , with K(2)

i according to (6), are (except for
rescaling and translation) the only discrete scale-space kernels with �nite support.

An immediate consequence of this result is that convolution with a �nite scale-space kernel
can be decomposed into convolution with kernels having two strictly positive consecutive
�lter coeÆcients.

The representation (16), which gives a catalogue of all one-dimensional discrete smooth-
ing kernels, can sometimes be very convenient for further analysis. For example, starting
from (16) it is almost trivial to show that the Fourier transform of a symmetric discrete
scale-space kernel is unimodal and non-negative on the interval [��; �]. Due to the sym-
metry we have q�1 = q1, �� = Æ� and �� = 
�. As a �rst step one replaces z with e�i�

(which gives the Fourier transform) and shows that each one of the factors e(q�1z
�1+q1z),

(1+��z)(1+ Æ�z
�1) and ((1���z)(1�
�z�1))�1 is a non-negative and unimodal function

of � on [��; �]. The remaining details are left to the reader.

5 Axiomatic Scale-Space Construction

5.1 Discrete Scale-Space with Discrete Scale Parameter

With the classi�cation result from the previous section in mind an apparent way to get a
multi-resolution representation of a discrete signal f is to de�ne a set of discrete functions
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Li (i = 0::n) where L0 = f and each coarser level is calculated by convolution from the
previous one Li = Ki i�1 � Li�1 (i = 1::n). The kernels Ki i�1 should be appropriately
selected scale-space kernels corresponding to suitable amounts of blurring. The scale-space
condition for each kernel guarantees that signals at coarser levels of scale (larger value of
i) do not contain more structure than signals at �ner levels of scale. This leads to a so-
called sampled scale-space with a discrete scale parameter. Combined with a sub-sampling
operator it provides a theoretical basis for the pyramid representations. However, one
problem arises. How should one select the kernels/scale-levels a priori in order to achieve
a suÆciently dense sampling in scale?

5.2 Discrete Scale-Space with Continuous Scale Parameter

The goal in this section is to tie together scale-space kernels corresponding to di�erent
degrees of smoothing in a systematic manner such that a continuous resolution parameter
can be introduced. The concept of a continuous scale parameter is of considerable impor-
tance, since we will no longer be locked to �xed pre-determined discrete levels of scale.
It allows us to defocus signals with an arbitrary amount of blurring, which will certainly
make it easier to locate and trace events in scale-space. Of course, it is impracticable to
generate the representations at all levels of scale in a real implementation. However, the
important idea is that, in contrast to the pyramid representations where the scale levels
are �xed, with a continuous scale parameter the scale-space representation at any level of
scale can be calculated if desired.

We will not consider the question about how to choose a suitable set of scale levels in
a practical case. Imagine for instance that we want to trace events, like local extrema,
zero-crossings, edges [4] or convex and concave regions, as the blurring proceeds in scale-
space. In order to analyze the behaviour in scale-space, the continuum of multiresolution
representations must be sampled at some levels of scale. It is certainly a non-trivial
problem to make an appropriate selection of these levels. The point with a scale-space
with a continuous scale parameter is that it provides a theoretical framework in which the
scale steps can be varied arbitrarily. We do not need to select any set of scale levels in
advance, but can leave the decision open to the actual situation.

We start from the axioms given in Section 2 and postulate that the scale-space should
be generated by convolution with a one-parameter family of kernels, i.e. L(x; 0) = f(x)
and

L(x; t) =
1X

n=�1

T (n; t)f(x� n) (t > 0) (17)

This form on the smoothing formula re
ects the requirements about linear shift-invariant
smoothing and a continuous scale parameter. The amount of structure in a signal must
not increase with scale. This means that for any t2 > t1 the number of local extrema in
L(x; t2) must not exceed the number of local extrema in L(x; t1). Particularly, by setting
t1 to zero we realize that each T (�; t) must be a scale-space kernel.

In order to simplify the analysis a semi-group requirement T (�; s)�T (�; t) = T (�; s+t)
is imposed on the family of kernels. This property makes it possible to calculate the
representation L(�; t2) at a coarser level t2 from the representation L(�; t1) at a �ner level
t1 (t2 > t1) by convolution with a kernel from the one-parameter family. In summary,

L(�; t2) = fde�nitiong = T (�; t2) � f = fsemi-groupg = (18)

= (T (�; t2 � t1) � T (�; t1)) � f = fassociativityg =

12



= T (�; t2 � t1) � (T (�; t1) � f) = fde�nitiong = T (�; t2 � t1) � L(�; t1)
As each T (�; t) is a scale-space kernel the semi-group property ensures that the scale-space
property holds between any two levels of scale. It also means that all scale levels will be
treated in a similar manner.

We will show below that the conditions mentioned, combined with a normalization
criterion

P1
n=�1 T (n; t) = 1 and a symmetry constraint T (�n; t) = T (n; t), determine

the family of kernels up to a positive scaling parameter7 �. One obtains,

T (n; t) = e��tIn(�t) (19)

where In are the modi�ed Bessel functions of integer order. These functions with real ar-
guments are except for an alternating sign sequence equal to the ordinary Bessel functions
Jn of integer order with purely imaginary arguments.

In(t) = I�n(t) = (�1)nJn(it) (n � 0; t > 0) (20)

Theorem 4 Given any one-dimensional signal f : Z ! R let L : Z � R+ ! R be a
one-parameter family of functions de�ned by L(x; 0) = f(x) (x 2 Z) and L(x; t) =P1

n=�1 T (n; t)f(x�n) (x 2 Z, t > 0), where T : Z�R+ ! R is a one-parameter family
of symmetric functions satisfying the semi-group property T (�; s) � T (�; t) = T (�; s + t)
and the normalization criterion

P1
n=�1 T (n; t) = 1. For all signals f it is required that if

t2 > t1 then the number of local extrema (zero-crossings) in L(x; t2) must not exceed the
number of local extrema (zero-crossings) in L(x; t1). Then necessarily (and suÆciently),
T (n; t) = e��tIn(�t) for some non-negative real �, where In are the modi�ed Bessel
functions of integer order.

Proof: As mentioned above each kernel T (n; t) must be a scale-space kernel. A theorem
by Karlin [13] p354 states that the only semi-group of normalized P�olya frequency se-
quences has a generating function on the form '(z) = et(az

�1+bz) where t > 0 and a; b � 0.
This result, which forms the basis of the proof can be easily understood from Theorem 2.
If a family h(�; t) possesses the semi-group property h(�; s) � h(�; t) = h(�; s+ t) then its
generating function must obey the relation 'h(�; s)'h(�; t) = 'h(�; s+t) for all non-negative s
and t. This excludes the factors zk, (1 + �iz), (1 + Æiz

�1), (1� �iz) and (1� 
iz
�1) from

(16). What remains are the constant and the exponential factors. The argument of the
exponential factor must also be linear in t in order to ful�ll the adding property of the
scale parameters of the kernels under convolution.

Due to the symmetry the generating function must satisfy 'h(z
�1) = 'h(z), which in

our case leads to a = b. For simplicity, let a = b = �
2
, and we get the generating function

for the modi�ed Bessel functions of integer order, see [1] (9.6.33).

't(z) = e
�t
2
(z�1+z) =

1X
n=�1

In(�t)z
n (21)

We obtain a normalized kernel if we let T : Z � R+ ! R be de�ned by T (n; t) =
e��tIn(�t). Set z to 1 in the generating function e

�t
2
(z�1+z) =

P1
n=�1 In(�t)z

n. Then it
follows that

P1
n=�1 In(�t) = e�t, which means that

P1
n=�1 T (n; t) = 1. The semi-group

property is trivially preserved after normalization. }.
7For simplicity, the parameter �, which only a�ects the scaling of the scale parameter, will be set to

1 after the end of this section.
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Consequently, this result provides us with an explicit controlled method to preserve
structure in the spatial domain as we let the original signals erode by blurring it to coarser
level of scales.

If the relation (21) is multiplied with the factor e�t and z is replaced with e�i� one
gets the analytical expression for the Fourier transform of T (n; t).

Proposition 11 The Fourier transform of the kernel T (n; t) = e��tIn(�t) is

 T (�) =
1X

n=�1

T (n; t)e�in� = e�t(cos ��1) (22)

For completeness, it should be mentioned that the variance of the kernel T (n; t) isP1
n=�1 n

2T (n; t) = t. This can be shown easily from a recurrence relation (26) for
modi�ed Bessel functions and the normalization condition.

5.3 Equivalent Formulation for Continuous Signals

If similar arguments are applied in the continuous case we obtain the Gaussian kernel. In
summary,

Theorem 5 Given any one-dimensional continuous signal f : R! R let L : R�R+ ! R
be a one-parameter family of functions de�ned by L(x; 0) = f(x) (x 2 R) and L(x; t) =R1
�=�1 g(�; t)f(x��)d� (x 2 R, t > 0), where g : R�R+ ! R is a one-parameter family of
symmetric functions satisfying the semi-group property g(�; s)�g(�; t) = g(�; s+t) and the
normalization criterion

R1
�=�1 g(�; t)d� = 1. For all signals f it is required that if t2 > t1

then the number of local extrema (zero-crossings) in L(x; t2) must not exceed the number
of local extrema (zero-crossings) in L(x; t1). Suppose also that g(�; t) is Borel-measurable
as a function of t. Then necessarily (and suÆciently), g(�; t) = (2��t)�1=2exp(��2=2�t)
for some non-negative real �.

This result, which is proved in [15] Section 4.1, gives further support for the �rm belief
that Theorem 4 states the canonical way to de�ne a scale-space for discrete signals. The
assumption of Borel-measurability means no important restriction. It is well-known that
all continuous functions are Borel-measurable.

6 Numerical Implementation

According to the de�nition of the scale-space for discrete signals the representation of a
signal f at a scale-level t is given by,

L(x; t) =
1X

n=�1

T (n; t)f(x� n) (x 2 Z; t > 0) (23)

where T (n; t) = e�tIn(t). When this transformation is to be implemented computationally
a few numerical problems must be considered:

� The in�nite convolution sum must be replaced with a �nite one.

� Normally, the modi�ed Bessel functions are not available as standard library rou-
tines. Therefore, we must design an algorithm to generate the required �lter coeÆ-
cients T (n; t) for a given value of t.

14



� A realistic signal is �nite, but a �nite approximation of (23) might need additional
values.

In this section we will discuss the �rst two items. We will not go into the complications,
which arise from �nite signals. Instead we assume that f is de�ned for all those integers,
where signal values are required for our algorithms.

6.1 Truncation and Filter CoeÆcient Generation

A reasonable approach to approximate (23) is to truncate the in�nite sum for some suÆ-
ciently large value of N ,

L(x; t) �
NX

n=�N

T (n; t)f(x� n) (x 2 Z; t > 0) (24)

chosen such that the absolute error in L due to truncation does not exceed a given error
limit "trunc. If we assume that f is bounded (jf(x)j �M) we get the suÆcient condition

2M
1X

n=N+1

T (n; t) � "trunc (25)

An easy way to generate the �lter coeÆcients is to use the recurrence relation, see [1]
(9.6.26),

In�1(t)� In+1(t) =
2n

t
In(t) (26)

which is always stable for backward iteration. One can use Miller's algorithm [19] p142 and
start the recurrence with an arbitrary seed INstart = 1 and INstart+1 = 0 for a suÆciently
large start index Nstart. As n decreases the iterates obtained from (26) will successively
approach the correct solution. The sequence of iterates can be normalized if I0(t) is cal-
culated by a separate routine. Once a suÆcient number of �lter coeÆcients has been
calculated, it is easy to determine how many that are actually needed from the condi-
tion

PN
n=�N T (n; t) � 1 � "trunc

M
. A more detailed investigation as well as an algorithm

generating the �lter coeÆcients T (n; t) can be found in [15] Section 5 and Section A.3.
Another possibility is of course to start from (22) and perform the convolutions in the

frequency domain instead.

7 Numerical Approximations

7.1 Sampled Gaussian Kernel

A commonly adapted technique to implement the scale-space theory for discrete signals
has been to discretize the convolution integral (1) using the rectangle rule of integration.
This leads to the approximation formula

~L(x; t) =
1X

n=�1

1p
2�t

e�n
2=2tfin(x� n) (27)

i.e. discrete convolution with the sampled Gaussian kernel. However, this representation
might lead to undesirable e�ects. One can show, see [15] Section B.1, that the trans-
formation from the zero level L(x; 0) to a higher level always preserves the number of
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local extrema (zero-crossings), but that the transformation from an arbitrary low level
~L(x; t1) to an arbitrary higher level ~L(x; t2) is in general not a scale-space transforma-
tion. Thus, we are not guaranteed that the amount of structure will decrease with scale.
More precisely,

Proposition 12 The transformation from a low level t1 � 0 to an arbitrary higher level
t2 > t1 in the representation (27) generated by discrete convolution with the sampled
Gaussian kernel is a scale-space transformation if and only if t1 is zero or the ratio t2=t1
is an odd integer.

The result constitutes an example of the fact that properties derived in the continuous
case might be violated after discretization. The main reason why the scale-space property
fails to hold between arbitrary levels is because the semi-group property of the Gaussian
kernel is not preserved after discretization.

7.2 Discretized Di�usion Equation

The scale-space family generated by (17) and (19) can be interpreted in terms of a dis-
cretized version of the di�usion equation. It is not diÆcult to verify the following (see
below). A more constructive proof is given in [15] Section 6.4.

Theorem 6 Given a discrete signal f : Z ! R in l1 the discrete scale-space representa-
tion L(x; t) =

P1
n=�1 T (n; t)f(x�n) is the solution of the system of ordinary di�erential

equations

@L(x; t)

@t
=

1

2
(L(x + 1; t)� 2L(x; t) + L(x� 1; t)) (x 2 Z) (28)

with initial conditions L(x; 0) = f(x), i.e. the system of di�erential equations obtained if
the di�usion equation (2) is discretized in space but solved analytically in time.

Proof: From the relation 2I 0n(t) = In�1(t) + In+1(t) for modi�ed Bessel functions [1]
(9.6.26) one easily shows that the T (n; t) = e�tIn(t) satis�es:

@T (n; t)

@t
=

1

2
(T (n� 1; t)� 2T (n; t) + T (n+ 1; t)) (29)

The rest follow from straightforward calculations. The regularity condition on f justi�es
a change of order between di�erentiation and in�nite summation. }

This provides another motivation for the selection of T as the canonical discrete scale-
space kernel. If (28) is further discretized in scale using Eulers method we obtain the
iteration formula:

Li;k+1 =
�t

2
Li+1;k + (1��t)Li;k +

�t

2
Li�1;k (30)

Proposition 10 states that the corresponding kernel is a scale-space kernel if and only if

�t � 1

2
(31)

From Theorem 3 one can easily show that all symmetric scale-space kernels with �nite
support can be derived from kernels of this latter form. Hence, they provide a possible
set of primitive kernels for the scale-space with a discrete scale parameter mentioned in
Section 5.1.
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Proposition 13 All symmetric discrete scale-space kernels with �nite support arise from
repeated application of the discretization of the di�usion equation (30), using if necessary
di�erent �tk 2 [0; 1

2
].

These results all seem to point in the same direction. The natural way to apply the scale-
space theory to discrete signals is apparently by discretization of the di�usion equation,
not the convolution integral.

8 From One to Two Dimensions

We have discussed discrete aspects of the one-dimensional scale-space theory. Positivity
and unimodality properties have been shown to hold for scale-space kernels as well as their
Fourier transforms. We saw that the interesting kernels could be completely character-
ized in terms of P�olya frequency sequences, which possess an explicit expression for their
generating functions.

Then we introduced a continuous scale parameter and showed that the only reasonable
way to de�ne a scale-space for discrete signals is by convolution with the one-parameter
family of kernels T (n; t) = e�tIn(t), where In are the modi�ed Bessel functions of integer
order. Similar arguments applied in the continuous case uniquely lead to the Gaussian
kernel. The kernel T does also have the attractive property that it is equivalent to the
analytical solution of a certain discretization of the di�usion equation. The idea of a
continuous scale parameter even for discrete signals is of considerable importance, since
it permits arbitrary degrees of smoothing, i.e. we are no longer restricted to speci�c
predetermined levels of scale. We saw that scale-space violations might occur in the
family of representations generated by discrete convolution with the sampled Gaussian
kernel.

The extension to two dimensions is not obvious, since it is possible to show that there
does not exist any non-trivial kernel on R2 or Z2 with the property that it never introduces
new local extrema. Lifshitz and Pizer [14] present an illuminating counter-example:

Imagine a two-dimensional image function consisting of two hills, one of them some-
what higher than the other one, see Fig. 4. Assume that they are smooth wide rather
bell-shaped surfaces situated some distance apart clearly separated by a deep valley run-
ning between them. Connect the two tops by a narrow sloping ridge without any local
extrema. Then the top of the lower hill is no longer a local maximum. Let this con�gura-
tion be the input image. When the di�usion equation is applied to the geometry the ridge
will erode much faster than the hills. After a while it has eroded so much that the lower
hill appears as a local maximum again. Thus, a new local extremum has been created.

The same argument can be carried out in the discrete case. Of course, we have to
consider connectivity when we de�ne what we mean by local extrema. But this question
is only of formal nature. Given an arbitrary non-trivial convolution kernel it is always
possible to create a counter-example. Therefore, it is not clear what we should mean with
a scale-space property in two space dimensions. We cannot generalize the formulation in
terms of zero-crossings either. From the counter-example it is apparent that a level curve
might split into two during erosion. Consequently, we cannot expect to �nd a non-trivial
kernel never increasing the number of zero-crossing curves either.

Anyway, we should not be too disappointed. In some sense the decomposition of the
scene is not intuitively preposterous despite its consequences. The narrow ridge is a �ne-
scale phenomenon and should subsequently disappear before the coarse-scale peaks. In
this case it is rather the measure on structure than the smoothing method which is wrong.
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Figure 4: New local extrema can be created by the di�usion equation in the two-
dimensional case

Therefore, when extending the theory to higher dimensions, we should not be too
locked to the previously given de�nition of a discrete scale-space kernel. In one dimension
the number of local extrema is a good measure of structure on which a theory can be
founded - in two dimensions obviously not. Instead the previously given treatment should
be understood in a wider sense as a characterization of which one-dimensional convolution
transformations can be regarded as smoothing transformations.

Is it true that the discrete analog of the Gaussian kernel used as a separated kernel is
the natural discrete kernel in two dimensions? If one, due to computational considerations,
wants to use separable discrete kernels, one could, of course, heuristically argue that the
kernel should at least have a good performance in one dimension. Another indication
in that direction is obtained if one studies a discretized version of the two-dimensional
di�usion equation. In [15] Section B.3 it is shown that separated convolution with the
one-dimensional discrete analog of the Gaussian kernel describes the solution of the system
of ordinary di�erential equations, which appears if the di�usion equation is discretized in
space but not in time (scale).

In the next section we will develop a two-dimensional theory based on somewhat
modi�ed axioms, which however in one dimension turns out to give the same result as
the previous formulation. In a special case the resulting scale-space representation will be
reduced to separated convolution with the discrete analog of the Gaussian kernel.
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9 2D Discrete Scale-Space Formulation

From the discussion in the previous section it is clear that the one-dimensional treatment
cannot be generalized directly to higher dimensions. However, an important point with
the study we have performed, is that we have acquired a deep understanding about which
one-dimensional linear transformations can be regarded as smoothing transformations.
We have also shown that the only reasonable way to convert the one-dimensional scale-
space theory from continuous images to discrete images is by discretization of the di�usion
equation.

Koenderink, van Doorn [11] derive the two-dimensional scale-space for continuous im-
ages from three assumptions - causality, homogeneity and isotropy. The leading idea is
that every gray-level at a coarse level of scale should be possible to trace from the same
gray-level at a �ner level of scale. In other words, no new gray-level surfaces8 should be
created in the scale-space representation when the scale parameter increases, see Fig. 5.
Using di�erential geometry they show that these requirements uniquely lead to the di�u-
sion equation, or equivalently to convolution with the Gaussian kernel.

Figure 5: Gray-level surfaces L(x; y; t) = z0. (a) Causal (and generic) gray-level surface.
(b) Non-causal (and impossible) gray-level surface. (c) Gray-level surface corresponding
to the example in Fig. 4 where one gray-level curve splits into two.

It is of course impossible to apply these ideas directly, since there does not exist
any direct correspondences to level curves and di�erential geometry in the discrete case.
However, an alternative way to express the previous ideas is to require that if for some
scale level t0 a point (x0; y0) is a local maximum for the scale-space representation at that
level (regarded as a function of the space coordinates only) then its value must not increase
when the scale parameter increases. Analogously, if a point is a local minimum then its
value must not decrease when the scale parameter increases.

It is clear that this formulation is equivalent to the formulation in terms of gray-levels
for continuous images, since if the gray-level value at a local maximum (minimum) would
increase (decrease) a new gray-level would be created. Inversely, if a new gray-level is
created then some local maximum must have increased or some local minimum must have
decreased.

An intuitive description of this requirement is that it prevents local extrema from being
enhanced and from \popping up from nowhere" when the scale parameter increases. As
we have seen earlier, we cannot prevent the number of local extrema from ever being
increased. However the idea is that those creation events should be \few".

Below we will show that this condition combined with a continuous scale parameter
means a strong restriction on the smoothing method also in the discrete case, and we

8With a gray-level surface we mean an isosurface in scale-space i.e. a connected set of points (x; y; t) 2
R2
�R such that L(x; y; t) = z0 for some gray-level value z0.
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will again obtain a discretized version of the di�usion equation. In a special case the
resulting scale-space representation will be reduced to the family of functions generated
by separated convolution with the discrete analog of the Gaussian kernel, T (n; t).

9.1 De�nitions

Before getting into the detailed scale-space formulation we will need to make a few de�ni-
tions. The eight-neighbours of a point (x; y) 2 Z2 will be denoted N8(x; y). If the central
point is included as well we will use the notation N+

8 (x; y). The notion of extremum points
will be as follows:

De�nition 2 A point (x; y) is said to be a local maximum point for a function g : Z2 ! R
if g(x; y) � g(�; �) for all (�; �) 2 N8(x; y).

De�nition 3 A point (x; y) is said to be a local minimum point for a function g : Z2 ! R
if g(x; y) � g(�; �) for all (�; �) 2 N8(x; y).

The �nal result will be expressed in terms of two common discrete operators approxi-
mating the two-dimensional Laplace operator @2

@x2
+ @2

@y2
namely the �ve-point operator r2

5

and the cross operator r2
�, de�ned by9:

(r2
5f)(x; y) = (f(x� 1; y) + f(x+ 1; y) + f(x; y � 1) + f(x; y + 1)� 4f(x; y)) (32)

(r2
�f)(x; y) =

1

2
(f(x�1; y�1)+f(x�1; y+1)+f(x+1; y�1)+f(x+1; y+1)�4f(x; y))

(33)

9.2 Axiomatic 2D Discrete Scale-Space Construction

When we construct the scale-space for two-dimensional discrete images we follow the ideas
from the one-dimensional case, see Section 5.2. We start by postulating that the scale-
space should be generated by convolution with a one-parameter of kernels, i.e. L(x; y; 0) =
f(x; y) and L(x; y; t) =

P1
m=�1

P1
n=�1 T (m;n; t)f(x�m; y� n) if t > 0. As mentioned

earlier, this form on the smoothing formula corresponds to the requirements about linear
shift-invariant smoothing and a continuous scale parameter. We want both coordinate
directions to be processed identically. Therefore all kernels should be symmetric. We will
also impose a semi-group condition on the family T . This means that all scale levels will
be treated similarly and that the transformation from a lower scale level to a higher scale
level will always be given by convolution with a kernel from the family, compare with (18).

The smoothing criterion will be the requirement about local extrema given in the
previous section. It is convenient to express it as a condition on the derivative of the
scale-space family with respect to the scale parameter. (In the proof below it will be
shown that the requirements on T , combined with a continuity condition, mean that L is
di�erentiable.)

Theorem 7 (Necessity) Given any two-dimensional image f : Z2 ! R let L : Z2�R+ !
R be a one-parameter family of functions de�ned by L(x; y; 0) = f(x; y) and

L(x; y; t) =
1X

m=�1

1X
n=�1

T (m;n; t)f(x�m; y � n) (t > 0) (34)

where T : Z2 � R+ ! R is a one-parameter family of kernels in l1 satisfying
9In our considerations the step length h is set to 1.
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� the semi-group property T (�; �; s) � T (�; �; t) = T (�; �; s+ t)

� the symmetry constraints T (�x; y; t) = T (x; y; t), T (y; x; t) = T (x; y; t)

� the continuity10 requirement k T (�; �; t)� Æ(�; �) k1! 0 when t # 0
For all images f it is required that if for some scale level t0 a point (x0; y0) is a local
extremum point for the mapping (x; y) 7! L(x; y; t0) then the derivative of L with respect
to t must satisfy

@L

@t
(x0; y0; t0) � 0 if (x0; y0) is a local maximum point (35)

@L

@t
(x0; y0; t0) � 0 if (x0; y0) is a local minimum point (36)

Then necessarily, the scale-space family L must obey the di�erential equation

@L

@t
= �r2

5L+ �r2
�L (37)

for some � � 0 and � � 0.

Proof: See Appendix A.3. }
From the proof it is apparent that if similar arguments are applied in the one-dimensional

case, we are uniquely lead to the one-dimensional scale-space concept developed earlier
in Theorem 4 and Theorem 6. This shows that, combined with the requirements about a
continuous scale parameter and semi-group structure, the condition about suppression of
local extrema is in one dimension equivalent to the condition about decreasing number of
local extrema.

Consequently, also this formulation in terms of local extrema has lead to a discretized
version of the di�usion equation. But here in the two-dimensional case there is apparently
another degree of freedom in the class of possible smoothing operators, since a linear com-
bination of the two discrete Laplacian operators r2

5 and r2
� is admitted on the right hand

side of the the di�erential equation. The e�ects of these parameters will be illuminated
later in Section 9.3. However, �rst we will show the suÆciency, which is much easier to
establish.

Theorem 8 (SuÆciency) Given a discrete image f : Z2 ! R let L : Z2 � R+ ! R be
the representation generated by L(x; y; t) = f(x; y) and

@L

@t
= �r2

5L+ �r2
�L (38)

where � � 0 and � � 0. If for some scale level t0 a point (x0; y0) is a local extremum point
for the mapping (x; y) 7! L(x; y; t0) then the derivative of L with respect to t satis�es

@L

@t
(x0; y0; t0) � 0 if (x0; y0) is a local maximum point (39)

@L

@t
(x0; y0; t0) � 0 if (x0; y0) is a local minimum point (40)

10Æ denotes the two-dimensional discrete delta function, which assumes the value 1 at (0; 0) and is zero
elsewhere. In fact, this condition about continuity in norm can be weakened, see [16].
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Proof: The result follows almost trivially if we rewrite the di�erential equation on the
form

@L

@t
(x; y; t) =

�[L(x; y � 1; t)� L(x; y; t)]+
�[L(x; y + 1; t)� L(x; y; t)]+
�[L(x� 1; y; t)� L(x; y; t)]+
�[L(x + 1; y; t)� L(x; y; t)]+

1
2
�[L(x� 1; y � 1; t)� L(x; y; t)]+

1
2
�[L(x+ 1; y � 1; t)� L(x; y; t)]+

1
2
�[L(x� 1; y + 1; t)� L(x; y; t)]+
1
2
�[L(x + 1; y + 1; t)� L(x; y; t)]

(41)

If for some scale level t a point (x; y) is a local maximum point then all di�erences (within
brackets) become non-positive, which means that @L

@t
(x; y; t) � 0 provided that � � 0 and

� � 0. Similarly, if a point is a local minimum point the di�erences are all non-negative
and @L

@t
(x; y; t) � 0. }

9.3 Parameter Determination

If (37) is rewritten on the form

@L

@t
= C

�
(1� 
)r2

5L+ 
r2
�L
�

(42)

one realizes that the interpretation of the parameter C is just a trivial rescaling of the
scale parameter. Thus, without loss of generality11 we may set C to 1

2
in order to get the

same scaling constant as in the one-dimensional case (28). What is left to investigate is
how the remaining degree of freedom in the parameter 
 2 [0; 1] a�ects the scale-space
representation.

If 
 = 1 then a undesired situation appears. Since the cross-operator only links
diagonal points, the system of ordinary di�erential equations given by (42) can be split
into two uncoupled systems, one operating on the points with even coordinate sum x + y
and the other operating on the points with odd coordinate sum. It is clear that this is
really an unwanted behaviour, since even after a substantial amount of \blurring" the
gray-level landscape may still have a rather saw-toothed shape.

Further arguments showing that 
 must not be too large can be obtained if one studies
the kernel, which describes the transformation from a �ne level to a coarse level in the scale-
space representation (42). It is not diÆcult to show, see [16], that its Fourier transform
is

 T (u; v) =
1X

m=�1

1X
n=�1

T (m;n; t)e�i(mu+nv) = e�(2�
)t + (1�
)(cos(u)+cos(v))t + 
 cos(u) cos(u)t

(43)
It is an easy exercise to verify, see [16], that this function is unimodal if and only if 
 � 1

2
.

The transformation kernel is separable if and only if its Fourier transform is separable,
i.e. if and only if  T (u; v) can be written on the form UT (u)VT (v) for some functions UT

and VT . From (43) we realize that this separation is possible if and only if 
 = 0. Hence,

11The case when C = 0 is obviously not interesting since then all scale-space representations would be
equal.
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Proposition 14 The convolution kernel associated with the scale-space representation
de�ned by L(x; y; t) = f(x; y) and

@L

@t
=

1

2

�
(1� 
)r2

5L + 
r2
�L
�

(44)

is separable if and only if 
 = 0. Then L is given by

L(x; y; t) =
1X

m=�1

T (m; t)
1X

n=�1

T (n; t)f(x�m; y � n) (t > 0) (45)

where T (n; t) = e�tIn(t) and In are the modi�ed Bessel functions of integer order.

If (42) is discretized further is scale using Eulers explicit method with scale step �t, see
[16], we get an iteration kernel with the coeÆcients.

0
BB@


�t
4

(1�
)�t
2


�t
4

(1�
)�t
2

1� (2� 
)�t (1�
)�t
2


�t
4

(1�
)�t
2


�t
4

1
CCA (46)

Clearly, this kernel is unimodal if and only if 
 � 2
3
. One can show, see [16], that it is

separable if and only if 
 = �t. In that case the corresponding one-dimensional kernel is
a discrete scale-space kernel in the sense given in De�nition 1 if and only if �t � 1

2
, see

(31). This gives a further indication that 
 should not exceed 1
2
.

It is worth mentioning, that if the extremum de�nitions, De�nition 2 and De�nition 3,
would have been based on four-neighbours instead of eight-neighbours then 
 = 0 would
have appeared as a necessary condition in Theorem 7, see [16].

If 
 = 1
3
we get the nine-point operator r2

9, see [5] Section 7.7.2. It is not diÆcult to
show that, see [16], for large spatial scales, this value of 
 gives the \most" isotropic second
order approximation of the continuous Laplacian operator. It is not clear that rotational
invariance is a primary quality to be aimed at in the discrete case, since we are anyway
locked to a �xed square grid. But if we use a non-zero value of 
, the discrete scale-space
representation can always be calculated eÆciently in the Fourier domain, using (43).

We leave the question about de�nite selection of 
 open. However, from a computa-
tional point of view it seems very plausible that 
 = 0 should not be a too bad choice.
As we will see in the next section the analytical expressions for some derived quantities
will also become simple in this case. A possible disadvantage with that approach is that
it emphasizes the x- and y-directions as being special directions.

9.4 Implementational E�ects

The scale-space representation obtained from the discrete theory has some implementa-
tional advantages compared to the commonly adapted approach, where the scale-space
implementation is based on di�erent versions of the sampled Gaussian kernel. Consider
for instance the computation of the Laplacian of the Gaussian r2G of an image f . It is
well-known that r2G is not a separable kernel - a clear disadvantage in terms of compu-
tational eÆciency. It is also known that the straightforward implementation consisting of
smoothing with the sampled Gaussian kernel followed by application of a discrete Lapla-
cian gives unsatisfactory results, since the values obtained in this way deviate too much
from the sampled values of r2G. A common approach to circumvent this problem has
been by calculation of di�erence of Gaussians (DOG) instead [17]. However, this method
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only gives an approximate result, and there is a trade-o� between cancellation of digits
and accuracy. It also requires computation of two smoothed representations instead of
one.

One interpretation of the Laplacian of the Gaussian in the continuous case is as the
derivative of the scale-space representation with respect to the scale parameter12. This
connection gives us a natural way to de�ne the discrete analog of the Laplacian of the
Gaussian, namely as the derivative of the discrete scale-space family with respect to the
scale parameter, or equivalently as the result of application of the discrete Laplacian
operator �d on the scale-space representation. From the di�usion equation (42) we get

�dL =
@L

@t
=

1

2
((1� 
)r2

5L+ 
r2
�L) = �d(T � f) = T � (�df) = (�dT ) � f (47)

In this discrete case �d commutes with the smoothing kernel and we can compute the
discrete analog of the Laplacian of the Gaussian in two sweeps - a smoothing step followed
by application of the discrete Laplacian or a discrete Laplacian step followed by smoothing.
We could of course also calculate the Laplacian of the smoothing kernel as a �rst step and
then convolve the result with the image, but then we lose the separability13. However, note
that all methods give the same result since the (discrete) smoothing operator commutes
with the (discrete) Laplacian. Preferably, we should use the same value of 
 in all discrete
Laplacian operators. The computations required to calculate the discrete analog of the
Laplacian of the Gaussian of an image result are, if 
 = 0, just one separable two-
dimensional smoothing step and an eÆcient application of the discrete Laplacian.

The discrete scale-space does also provide a convenient formulation of gradient calcu-
lations if 
 = 0. Let Æx denote the central di�erence operator in the x-direction de�ned
by (Æxf)(x; y) =

1
2
(f(x+1; y)� f(x� 1; y)). Then, similarly to the previous case ÆxL can

be computed either by application of Æx on the smoothed image, the original image or on
the smoothing kernel. The e�ect of the gradient calculation is given by the e�ect Æx has
on the one-dimensional kernel applied in the x-direction. From the recurrence relation for
the modi�ed Bessel functions (26) we get an explicit analytical expression for ÆxT (x; t),
namely

ÆxT (x; t) =
1

2
e�t(Ix+1(t)� Ix�1(t)) =

1

2
e�t(�2x

t
Ix(t)) = �x

t
T (x; t) (48)

Note the similarity with the derivative of the Gaussian kernel @
@x
G(x; t) = �x

t
G(x; t). If

one instead would use the approach with a sampled Gaussian it is clear that convolution
with the sampled x-gradient of the Gaussian would not have given the same result as
application of Æx on the scale-space representation.

Another minor problem concerns the behaviour of the sampled Gaussian kernel for
small values of t. It is well-known that under these circumstances the central coeÆcient of
the sampled Gaussian can become very large and the sum of the corresponding �lter co-
eÆcients will exceed14 one, sometimes substantially. However, with the discrete approach

12With this terminology the zero-crossings of the Laplacian of the Gaussian of an image are those points
in scale-space, which are locally stationary in t.

13As mentioned earlier, the convolution kernel is separable only if 
 = 0
14It has been suggested that this e�ects should be compensated for by renormalization of the �lter

coeÆcient sequence. But this operation does not solve the major problem since the mutual relation
between the coeÆcients remains unchanged anyway. It only leads to a rescaling of the output image.
The problem with the sampled Gaussian kernel for small values of t is rather that it appears as having a
smaller t-value than it should.
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the kernels are inherently bounded for small values of t since they approach the discrete
delta function (instead of the continuous one) when t tends to zero.

The e�ects mentioned in this section are all due to the di�erence between continu-
ous theory and discrete implementation. The main reason why they arise is because the
involved operators, which commute in the continuous case, do not commute when the dis-
cretization operator is involved (compare with violated semi-group property discussed in
Section 7.1). With the discrete scale-space theory presented in this paper we feel that we
have accomplished a structured way to eliminate this kind of problems.

9.5 2D Summary and Discussion

The proper way to apply the scale-space theory to two-dimensional discrete images is
apparently by discretization of the di�usion equation. Starting from a requirement that
local extrema must not be enhanced when the continuous scale parameter is increased we
have shown that a necessary and suÆcient condition for a family of derived representations
to be a scale-space family is that it satis�es the di�erential equation

@L

@t
=

1

2

�
(1� 
)r2

5L + 
r2
�L
�

(49)

where 
 is a real constant in [0; 1]. Our recommendation is that 
 should not exceed 1
2
.


 = 0 gives a separable convolution kernel, while 
 = 1
3
leads to a spatially more isotropic

smoothing e�ect on coarse scale objects. In the separable case the scale-space represen-
tation can be calculated by separated convolution with the presented one-dimensional
discrete analog of the Gaussian kernel. T (n; t).

We have seen that the discrete scale-space representation given by discretization of
the di�usion equation has computational advantages compared to the commonly used
approach, where the scale-space implementation is based on various versions of the sam-
pled Gaussian kernel. It can be expected that the di�erence is largest for small values
of the scale parameter, when the sampled Gaussian kernel and the discrete analog of the
Gaussian kernel deviate as most. When the scale parameter increases these two kernels
approach each other, see [15] Section 5.3, and we might expect that the di�erence becomes
smaller. This e�ect can also be understood from another point of view. At coarse levels of
scale the large scale phenomena dominate in the scale-space representation, which means
that the grid e�ects become smaller, since a characteristic length in the smoothed image
will large compared to the distance between adjacent grid points. It is diÆcult to say gen-
erally how large the numerical e�ects are in an actual implementation and how seriously
they a�ect the output result, since this is very much determined by the algorithms work-
ing on the scale-space representation and the goal of the analysis in which the scale-space
part is just one of the modules. However, in Fig. 6 we have tried to visualize how some
measures on the di�erence between the sampled Gaussian kernel and the discrete analog
of the Gaussian kernel behave as a function of the scale parameter. The graphs verify
that the di�erence is largest for small values of t and show that it increases with higher
order di�erences. Do also note the large di�erence between the sampled second derivative
of the Gaussian kernel and the second di�erence of the sampled Gaussian kernel.

The scale-space concept developed here in two dimensions can be generalized to higher
dimensions as well. Then the right hand side becomes a convex combination of the possible
discrete second-order approximations of the n-dimensional Laplacian operator. In the
separable case the scale-space representation can be calculated by separated convolution
with the one-dimensional discrete analog of the Gaussian kernel.
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Figure 6: l1 norms of some di�erences between the sampled Gaussian G(n; t) and the
discrete analog of the Gaussian kernel T (n; t) in the one-dimensional case. Here, �d

denotes the second di�erence operator de�ned by (�df)(x) = f(x+1)�2f(x)+f(x�1).

Finally, it should be explicitly stressed that the discrete scale-space theory is closely
linked to the continuous scale-space theory through the discretization of the di�usion equa-
tion. This means that continuous results can be transferred to discrete implementation
provided that the discretization is performed correctly. The discussion in the previous
section is intended to exemplify the technique.

10 Conclusions

This paper gives a basic and extensive treatment of discrete aspects of the scale-space
theory. A genuinely discrete scale-space theory is developed and its connection to the con-
tinuous scale-space theory is explained. Special attention is given to discretization e�ects,
which occur when results from the continuous scale-space theory are to be implemented
computationally. The one-dimensional problem is solved completely in an axiomatic man-
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ner. The two-dimensional problem is more complex, but we answer the question about
how the two-dimensional discrete scale-space should be constructed. The main results can
be summarized as follows (References to central theorems and appropriate parts of this
paper are given within parenthesis):

� The proper way to apply the scale-space theory to discrete signals and discrete
images is by discretization of the di�usion equation, not the convolution integral
(Thm. 4, 6, 7, Prop. 12, and Sec. 9.4, 7).

� The discrete scale-space obtained in this way can be described by convolution with
the kernel T (n; t), which is the discrete analog of the Gaussian kernel (Thm. 4,
Prop. 14 and Sec. 9.3).

� A scale-space implementation based on the sampled Gaussian kernel might lead to
undesirable e�ects and computational problems, especially at �ne levels of scale
(Prop. 12 and Sec. 9.4).

� The one-dimensional discrete smoothing transformations can be characterized ex-
actly and a complete catalogue is given (Thm. 1, 2).

� All �nite support one-dimensional discrete smoothing transformations arise from
repeated averaging over two adjacent elements (Thm. 3 and Prop. 4, 5). The kernel
T (n; t) describes the limit case of such an averaging process ([15] Sec. 6.4).

� The symmetric one-dimensional discrete smoothing kernels are non-negative and
unimodal, both in the spatial and the frequency domain (Prop. 2, 3, 7, 9 and Sec.
4).

The important idea with the scale-space representation suggested in this paper is that
the discrete nature of the implementation has been taken into account already in the
theoretical formulation.
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A Appendix: Proofs

A.1 Proof of Proposition 6

Because of Proposition 2 it is suÆcient to study kernels having only non-negative �lter
coeÆcients. Assume that C(N) has a real negative eigenvalue for some dimension N and a
corresponding real eigenvector v. Let IN be the index set 1::N . Create an input signal fin,
which is equal to the components of v for x 2 IN and zero otherwise. Convolve this signal
with the kernel. Then for x 2 IN the values of K � fin will be equal to the corresponding
components of C(N)v (see Fig. 7). As v is an eigenvector with a negative eigenvalue the

Figure 7: (a) The eigenvector v. (b) The components of C(N) v having indices 1::N . (c)
The components of K � fin.

components of C(N) v and v have opposite signs. This means that v, C(N) v and K � fin
all have the same number of internal zero-crossings provided that we observe only the
components in IN .

The reversal of these components and the positivity of the �lter coeÆcients guarantee
that at least one additional zero-crossing will occur in the output signal. Let � denote the
index of the �rst non-zero component of fin. If fin(�) is positive (negative) then due to
the negative eigenvalue K � fin(�) will be negative (positive). Since the �lter coeÆcients
are non-negative the �rst non-zero component of K � fin (at position �) will have the
same sign as fin(�), i.e. positive (negative). Consequently, we have found at least one
additional zero-crossing in K � fin between these two positions (� and �). The same
argument can be carried out at other end point producing another scale-space violation.
This shows that K cannot be a scale-space kernel. }
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A.2 Proof of Proposition 8

We will introduce a temporary de�nition. If x is a vector of length L let V (x) denote the
number of zero-crossings in the sequence of components x1; x2; :::xL; x1. By veri�cation
one shows that the eigenvalues �m and eigenvectors vm of C

(M)
C are

�m =
MX

n=�M

cne
� 2�imn

2M+1 =
NX

n=�N

cne
� 2�imn

2M+1 (m = �M::0::M) (50)

(vm)k = sin

 
2�mk

2M + 1

!
(m = �M:: � 1; k = �M::0::M) (51)

(vm)k = cos

 
2�mk

2M + 1

!
(m = 0::M; k = �M::0::M)

We note that V (vm) increases as jmj increases. Further, the eigenvalues �m =  ( 2�m
2M+1

)

of C
(M)
C are uniformly sampled values of the Fourier transform and a larger value of jmj

corresponds to a larger absolute value of the argument  .
Now, assume that the Fourier spectrum is not unimodal. (Without loss of generality

we can presuppose that  is non-negative on [��; �], because otherwise, according to
Proposition 7, the kernel cannot be a scale-space kernel.) Then, as  is a continuous
function of � it is possible to �nd some suÆciently large integer ~M such that there exist
�� =

2��
2 ~M+1

and �� =
2��

2 ~M+1
satisfying  (��) >  (��) for some integers � > � in [0, ~M ].

To summarize, C
( ~M)
C has eigenvalues �� > �� and corresponding eigenvectors with

V (v�) > V (v�). We will show that this situation leads to a scale-space violation. The
scale-space properties are not a�ected by a scaling factor. Therefore, we can equivalently

study B = 1
��
C

( ~M)
C . For both eigenvectors we de�ne the smallest and largest absolute

values v(absmin) and v(absmax) by

v(absmin) = min
k=1::N

jvkj ; v(absmax) = max
k=1::N

jvkj (52)

Let x = cv� + v� where c is chosen large enough such that V (x) = V (v�). This can

always be achieved if jcj v(absmin)
� > v

(absmax)
� , since then the components of x and v� will

have pairwise same signs. (v(absmin)
� will be strictly positive as all components of v� are

non-zero.) Then consider Bx = 1
��
(c��v� + ��v�) and study

Bkx = c

 
��
��

!k

v� + v� (53)

For a �xed value of c we can always �nd a suÆciently large value of k such that V (Bkx) =

V (v�). In a similar manner to above one veri�es that the condition jcj
�����
��

���kv(absmax)
� <

v
(absmin)
� suÆces. Subsequently, V (Bkx) > V (x) which shows that the transformation
induced by Bk is not a scale-space transformation. Therefore, B cannot be a scale-
space kernel since at least one scale-space violation must have occurred in the series of k
successive transformations. }
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Figure 8: (a) Input signal consisting of a low frequency component of high amplitude and
a high frequency component of low amplitude. (b) In the output signal the low frequency
component has been suppressed while the high frequency component remains unchanged.
As we see, additional zero-crossings have been introduced.

A.3 Proof of Theorem 7

The proof consists of two parts. In the �rst step we show that the requirements on T imply
that the family L obeys a linear di�erential equation. In the second step we construct
counterexamples from various simple test functions in order to delimit the class of possible
operators.

(I): Assume that f is suÆciently regular, i.e. f 2 l1, and de�ne a family of operators
fTt; t > 0g from l1 to l1 by Ttf = T (�; �; t) � f . Due to the conditions imposed on the
kernels it will satisfy the relation

lim
t!t0

k (Tt � Tt0)f k1= lim
t!t0

k (Tt�t0 � I)(Tt0f) k1= 0 (54)

where I is the identity operator. Such a family is called a strongly continuous semigroup
of operators, see [9] p58-59.

A semi-group is often characterized by its in�nitesimal generator A de�ned by, see [9]
p307,

Af = lim
h#0

Thf � f

h
(55)

The set of elements f for which A exists is denoted D(A). (This set is not empty and
it never reduces to the zero element. Actually, it is even dense in l1, [9] p307.) If this
operator exists we obtain

lim
h#0

L(�; �; t+ h)� L(�; �; t)
h

= lim
h#0

Tt+hf � Ttf
h

= (56)

lim
h#0

Th(Ttf)� (Ttf)
h

= A(Ttf) = AL(�; �; t)

According to a Theorem by Hille, Phillips [9] p308 strong continuity implies that @
@t
(Ttf) =

ATtf = TtAf for all f 2 D(A). Hence, the scale-space family L must obey the di�erential
equation

@L

@t
= AL (57)
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where A is a linear operator. Because of the shift invariance AL can be written

(AL)(x; y; t) =
1X

m=�1

1X
n=�1

am;nL(x�m; y � n; t) (58)

(II): The extremum point conditions (35) and (36) mean that A must be local, i.e.
that am;n = 0 if jmj > 1 or jnj > 1. This is easily understood from the following
counterexample:

First, assume that a ~m;~n > 0 where either j ~mj > 1 or j~nj > 1, and de�ne a function
f1 : Z

2 ! R by

f1(x; y) =

8>>><
>>>:
" > 0 if (x; y) = (0; 0)

0 if (x; y) 2 N8(0; 0)
1 if (x; y) = ( ~m; ~n)
0 otherwise

(59)

Obviously (0; 0) is a local maximum point for f1. From (57) and (58) we get that
@L
@t
(0; 0; 0) = �a0;0 + a ~m; ~m. It is clear that this value can be positive provided that "

has been chosen small enough. Hence, L cannot satisfy (35). In a similar manner one
shows that also a ~m;~n < 0 leads (let " < 0) to a violation against the extremum point
condition (36).

Consequently, a ~m;~n must be zero if either of j ~mj or j~nj is larger than one. Thereby,
(57) will be reduced to

@L

@t
(x; y; t) =

X
(m;n)2N+

8 (0;0)

am;nL(x�m; y � n; t) (60)

Due to the symmetry conditions, opposite coeÆcients must be equal i.e. a�m;n = am;n

and an;m = am;n. Thus, (60) can be written

@L

@t
=

0
B@ a b a
b c b
a b a

1
CAL (61)

Then, consider the function

f2(x; y) =

(
1 if (x; y) 2 N+

8 (0; 0)
0 otherwise

(62)

With the given de�nitions of a extremum points it is clear that (0; 0) is both a local
maximum point and a local minimum point. Hence @L

@t
(0; 0; 0) must be zero and we obtain

the relation 4a+ 4b + c = 0. This means that (61) can be split into two components.

@L

@t
=

0
B@ a b a
b c b
a b a

1
CAL = �

0
B@ 1

1 �4 1
1

1
CAL + �

0
B@ 1=2 1=2

�2
1=2 1=2

1
CAL (63)

provided that � = b and � = 2a. The condition 4a + 4b+ c = 0 is trivially satis�ed.
Finally, by considering the test function

f3(x; y) =

8><
>:
� > 0 if (x; y) = (0; 0)

1 if (x; y) = ( ~m; ~n)
0 otherwise

(64)

for some ( ~m; ~n) in N8(0; 0) one easily realizes that am;n must be non-negative if (m;n) 2
N8(0; 0). This shows that � � 0 and � � 0. }
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