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Abstract

This paper presents a set of image operators for detecting regions in space-time
where interesting events occur. To define such spatio-temporal interest opera-
tors, we compute a second-moment matrix from a spatio-temporal scale-space
representation, and diagonalize this matrix locally, using a local Galilean trans-
formation in space-time, optionally combined with a spatial rotation and a com-
plementary diagonalization. From the Galilean-diagonalized descriptor so ob-
tained, we then formulate different types of space-time interest operators, and
illustrate their properties on various types of real and synthetic images.

Note! This report contains a number of figures that should be viewed in
colour. If you only have access to a black-and-white printout, please fetch
an on-line version of this manuscript from http://www.nada.kth.se/cvap.
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1 Introduction

For analysing the space-time structure of images from our environment, the ability to
detect regions of interest is an important pre-processing stage for subsequent recog-
nition. The presumably simplest approach for constructing such a mechanism is by
regular frame differencing, i.e. computing first-order temporal derivatives followed by
thresholding. The results of frame differencing will, however, be very sensitive to the
time interval used for computing the differences. Moreover, such an operator will be
sensitive to motions relative to the camera.

An interesting approach for defining regions of interest for motion patterns was
taken by (Davis & Bobick 1997), who computed multiple temporal differences, and
used these for constructing a motion mask, which was then represented in terms of
moment descriptors, in order to characterize the motion. This approach, however,
assumes a static background as well as a stationary camera.

A more local approach was developed by (Laptev & Lindeberg 2003), based on
an extension of the Harris operator to spatio-temporal interest points. This operator
effectively captures well localized points in space-time with strong simultaneous vari-
ations over both space and time. Due to the formulation of this operator, however,
in terms of the the eigenvalues of a second-moment matrix, it can be shown that this
operator is not invariant under constant velocity motion. For this reason, it is of
interest to develop alternative space-time interest operators.

A general problem when interpreting spatio-temporal image data originates from
the fact that motion descriptors will be affected by relative motions between the object
and the camera. It is therefore essential to aim at image operators that are invariant
to local Galilean transformations. One approach to achieve Galilean invariance is
to consider space-time receptive fields that are adapted to local motion directions
(Lindeberg 2002). A dual approach is to stabilize the space-time pattern locally,
assuming that the scene contains cues that allow for stabilization. In the spatio-
temporal recognition scheme developed by (Zelnik-Manor & Irani 2001), based on
histograms of spatio-temporal receptive fields, global stabilization was used when
computing spatio-temporal derivatives. (Laptev & Lindeberg 2004b) extended this
approach to recognition based on locally velocity adapted space-time filters.

The subject of this paper is to develop a set of space-time interest operators,
which builds upon several of the abovementioned ideas, with emphasis on locally
compensating for relative motions between the world and the observer. These opera-
tors are intended as region-of-interest operators for subsequent recognition of spatio-
temporal events, in a corresponding manner as the detection of spatial interest points
or the detection of spatial regions-of-interest can be used as pre-processing stages
for spatial recognition (Lowe 1999, Mikolajczyk & Schmid 2002). The operators to
be presented are also closely related to previously developed methods for computing
spatio-temporal energy (Adelson & Bergen 1985, Wildes & Bergen 2000) or curva-
ture descriptors (Zetzsche & Barth 1991, Niyogis 1995) in space-time, with specific
emphasis on achieving invariance to local Galilean transformations.

The paper is organized as follows: Section 2 starts with a review of spatio-temporal
scale-space, and describes how a spatio-temporal second-moment matrix transforms
under Galilean transformations. This material forms the theoretical background for
section 3, which introduces the notion of Galilean diagonalization, which in turn con-
stitutes the basis for defining Galilean invariant as well as Galilean-corrected spatio-
temporal interest operators in section 4 and section 5. Section 6 shows experimental



results of applying these operators to different types of images, and section 7 presents
extensions from grey-level to colour images as well as to local contrast normalization.
Finally, section 8 concludes with a summary and discussion.

2 Spatio-temporal scale-space

Let p = (z,y,t)T denote a point in 2+1-D space-time, and let f: R — R represent a
spatio-temporal image. Following (Lindeberg 1997, Lindeberg 2002), consider a multi-
parameter spatio-temporal scale-space L: R? x G — R of f defined by convolution
with a family h: R3 x G — R of spatio-temporal scale-space kernels

L(:; X) = h(:; X) « f() (1)

parameterized by covariance matrices X in a semi-group G. The covariance matrices
may in turn be parameterized as

Acos?a+ dosin® a4+ w2, (A2 — M) cosa sina +uvd;  ul
Y= (A2 =X)cosasina+uvd; Aisin®a+ Agcosa® +v2N v (2)
’LL)\t ’U)\t )\t

where (A1, A, @) describe the amount of spatial (possibly anisotropic) smoothing in
terms of two eigenvalues and their orientation « in space, A; gives the amount of
temporal smoothing, and (u,v) describes the orientation of the filter in space-time.
In the special case when A\ = Ay and (u,v) = (0,0), this multi-parameter scale-space
reduces to the scale-space obtained by space-time separable smoothing with a spatial
scale parameter 02 = \; = A2 and temporal scale parameter 72 = \;.

For simplicity, we shall here model the smoothing operation by a 3-D Gaussian
kernel with covariance matrix 3

1 Ty —1
h(p; ) =g(p; B) = ————F——e P ¥ 72, 3
b %) =90 2) = o0 Jaers ®)
for which the space-time separable case reduces to convolution with a 2-D Gaus-
sian gop(z,y; 02) = 1/(2m0?) exp(—(2? + y?)/20?) in space and a 1-D Gaussian
gip(t; ™) = 1/(V277) exp(—t2/272) over time.
For real-time processing, this model can be extended to time-causal smoothing

kernels based on the time-causal scale-space concepts in (Koenderink 1988, Lindeberg
& Fagerstrom 1996, Lindeberg 1997, Florack 1997, Lindeberg 2002).

Second-moment descriptor in space-time. For describing local image struc-
tures as well as for estimating local image deformations, the second moment matrix
(sometimes referred to as the structure tensor) is a highly useful descriptor (Forstner
& Giilch 1987, Bigiin et al. 1991, Lindeberg 1994, Jahne 1995). In 2+1-D space-time,
this descriptor can at any point p = (x,y,t)! be defined as

uip; ) = / (VE@)(VL()" wlo = g: D) da, (4)
qeR3

where VL = (L, Ly, L;)T denotes the spatio-temporal gradient vector-time and w is
a spatio-temporal window function, for simplicity modelled as a Gaussian function
with covariance matrix ¥ multiplied by a scaling factor 72

1 Ty —1 2
wip; L) =g(p; L) = ——————¢ P = 0/27 5
(p; X) =g(p; ¥) A (5)
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In terms of matrix elements, we have
Hex  Hry Hat L% LmLy L.L;
Hay gy Hye | = / | EeLy Ly LyLe |w(p—q; T)dg.  (6)
Mt Pyt it q€R L.Li L,L; L?

Transformation property under Galilean transformations. Given a spatio-
temporal image sequence f, consider a Galilean transformation in space-time

x 1 0 —u T
=1y |=Gp=[0 1 —v y (7)
t 0 O 1 t

and define a Galilean transformed image sequence according to f'(p’) = f(p). Then,
define scale-space representations L and L’ of f and f’, respectively, according to

L5 %) =g(; D) f(), L' %) =g ) f() (8)

Then, it can be shown that L'(-; ¥') = L(-; ) if and only if the covariance matrices
are related according to (Lindeberg 1997, Lindeberg 2002)

Y =auGt (9)
In terms of matrix elements, this corresponds to
C;;ac Cglgy glgt 1 0 —Uu Cacx Cact Cact 1 0 0
C;y Céy z/;t =0 1 —w Cry Cyy Cy 0 1 0
vt Cyp Ch 0 0 1 Cazt Cy Cy -u —v 1
(10)
Next, let us define second-moment matrices p and p’ according to
pos %) = [ (VL@)TL@) oo~ 2, (1)
q€
W' o) = / R3(VL’(Q’))(VL’(Q’))Tg(p’ —q; ¥)dq. (12)
qe

Then, from the general transformation property of second-moment matrices under
linear transformations (Lindeberg 1994, Lindeberg & Garding 1997), it can be shown
that p and ' are related according to

p=G"TuG™! (13)

provided that the covariance matrices satisfy ¥’ = GXGT. In terms of matrix ele-
ments, we have

:U'gnm :U’gnt :U’gnt 1 0 0 Mzx Mzt Hat 1 0 wu
Hoy My My | =10 1.0 Hay  Hyy  Hyt 01 v (14)
Mot Myt M u v o1 ot Pyt Pt 001
with
N;x = Hax 15
N;y = Hay 16
Hyy = Huy 17

N;t = Ulgy + Vfbgy + Mzt
Py = Whay + Vflyy + fyt
fip = U aw + 2u0ftay + V7 iy + 2ufiar + 200y + fiyr.



In other words, the purely spatial elements (ftzz, [y, fyy) Of the second moment ma-
trix are preserved by the Galilean transformation, while the purely temporal element
py as well as the mixed elements (fiy¢, ,uyt) are affected.

3 Galilean diagonalization

A specific convention we shall consider in this work is to determine the velocity com-
ponents (u,v) in a local Galilean transformation p’ = Gp such that the transformed
second-moment matrix 4’ is block diagonal with (s, 11;,,) = (0,0):

Hyw Mz O

/

po=\ Hay My O (21)
0 0y

This form of block diagonalization of a spatio-temporal second-moment matrices can
be seen as a canonical way of extracting a unique representative of the family of
second-moment matrices ;' = G~ uGT that will be obtained if we for a given spatio-
temporal pattern consider the whole group of Galilean transformations G of space-
time that represents all possible relative motions with constant velocity between the
scene and the camera. Specifically, this form of block diagonalization implies a local
normalization of local space-time structures that is invariant under superimposed
Galilean transformations (see appendix A.1).

From (18) and (19) it follows that block diagonalization is obtained if (u,v) satisfy
the following equations:

(:uxm Nmy><u>:_<ﬂxt> (22)
Hay  Hyy v Myt

i.e., structurally similar equations as are used for computing optic flow according to
the method by (Lukas & Kanade 1981). The solution of these equations is

( U ) - _ 1 < Nyy,uxt - Nmyﬂyt ) (23)
v Haaxlbyy — ,Uzg%y Myt + Moo oyt

Hence, if the local space-time structures represent a pure translational model, the
result of Galilean diagonalization will be a stationary pattern. The same form of nor-
malization, however, also applies to spatio-temporal events that cannot be modelled

by a pure translational model. In the latter case, the result of this normalization will
be a local spatio-temporal pattern that satisfies

/ Ly Lig(z,y,t; ¥)dedydt = / LyLig(z,y,t; ¥)dedydt =0 (24)
z,1,tER3 z,1,tER3

In other words, after Galilean diagonalization, the elements L,, L, and L; in the
local spatio-temporal pattern will be scattered according to a non-biased distribution,
such that the spatial and temporal derivatives are locally uncorrelated with respect
to (here) a Gaussian window function. In situations when the constant brightness
assumption is satisfied, there is an interpretation of this property in terms of the
weighted average of local normal flow vectors (u”,UH) being zero, using the product



of the window function and the magnitude of the spatial gradient vector Vgpqcel =
(L, Ly)T as weight (see appendix A.2 for a proof):

B (T DNl (3 )) = B (Wel (0 )) =00 29

In this respect, Galilean diagonalization implies cancelling the average velocity also for
spatio-temporal events that cannot be locally modelled by a Galilean transformation.

Given that we have block diagonalized p’, we can continue with a two-dimensional
rotation p” = Rp’ in space that diagonalizes the remaining spatial second moment
matrix with the elements (1, /15, f1y,,) such that p7, = 0. Thus, we diagonalize the
original second moment matrix p into

V1
W' =R TG TuG 'R = vy (26)
Vs

where (v1,19,1v3) are the diagonal elements. There is a close structural similarity
between such a Galilean/rotational diagonalization and the more commonly used
approach of using the eigenvalues of a spatio-temporal second-moment matrix for
motion analysis (Bigiin et al. 1991, Jahne 1995). In terms of diagonalization, an
eigenvalue analysis corresponds to transforming the space by unitary transformation,
a rotation U in three dimensions, such that

A1
M/// — U_TMU_I — )\2 (27)
A3

There is, however, no physical correspondence to a rotation in 2+1-D space-time.
For a second-moment matrix defined over a 3-D space (x,y, z), an eigenvalue anal-
ysis has a clear physical interpretation, since it corresponds to determining a 3-D
rotation in space such that p will be a diagonal matrix with the eigenvalues as en-
tries. If similar algebraic manipulations are applied to a second-moment matrix over
space-time, however, there is no physical analogue. For this reason, we propose that
a Galilean/rotational transformation is a more natural concept for diagonalizing a
spatio-temporal second-moment matrix.

Remarks: Note also that compared to an eigenvalue based diagonalization of a
3 x 3 matrix, the Galilean diagonalization is easy to compute in closed form, since
we have a closed-form expression (23) for the velocity vector (u,v)? in the Galilean
transformation G defined in (7), and the remaining two-dimensional rotation R in
space

cos¢p —sing 0

R=| sing cos¢p O (28)
0 0 1
is easily obtained from
2u! 2
tan 2¢ = — Hay  _ Hoy (29)

yy /’Lgm B Hyy — /’Lacac'
In many cases, and as we shall see examples of next, it is, however, not necessary to
compute this spatial rotation matrix explicitly, since we can compute the sum and the



product of the diagonal elements v and 15 in the purely spatial part of the Galilean
diagonalized second-moment matrix according to

vty = ,U,;x + :U*;/y = Haz + Hyy, (30)
nry = M;m#;y - (N;y)Z = Hzalyy — Miy‘ (31)

If an explicit Galilean diagonalization is needed, it can be obtained from the following
types of operations: (i) computing a rational expression for v3 = puj,, (ii) comput-
ing (u,v) from a linear system of equations if the explicit transformation matrix G
is needed, (iii) performing direct lookup of trigonometric functions to obtain R if
needed, and (iv) solving quadratic equations to obtain v; and vy from (30) and (31),
or alternatively performing 2 x 2 matrix multiplications by applying an explicit ex-
pression for R on p. Thus, besides being more accurate than a more traditional
eigenvalue decomposition, this form of normalization is also more easy to compute.

Combining Galilean diagonalization with affine normalization. In the spa-
tial domain, an effective method for spatial normalization consists of determining a
spatial affine normalization pj,,.c = Bpspace that transforms a spatial second-moment
matrix

2
. Hzz  Hzy _ Ly Lﬂ?Ly _ ;e
Hspace = ( Vo Hyy ) = /(.g,n)eR2 ( L.L, L?QJ 'LUspzzce(l' §y—mn; Zspace) dé dn
(32)
into diagonal form, i.e. determining B such that

N/s/pace = B_TNSpaceB_l =cl (33)
for some constant ¢ where I denotes the unit matrix (Lindeberg & Garding 1997,
Mikolajezyk & Schmid 2002). Specifically, such affine normalization can be achieved
with B = #i{,ﬁce, where ,uiz/)?we denotes a solution to the equation BTB = Hspace-
Alternatively, we can compute B from a combination of a spatial rotation and a
diagonal transformation. Let first Rgpqce denote a two-dimensional spatial rotation
matrix of the form (28) with ¢ determined analogous to (29). Then, it follows that
the rotation p’S]mzce = RgpacePspace implies that the transformed spatial second-moment
matrix fig,,.. will be a diagonal matrix:

!
-7 -1 p 0
)u;pace = RspaceﬂSPlZCQRspace = ( SI ,LL/ ) (34)
vy

"
space

4 s 0
Hiyy (35)
0 4 “/ﬂ
V i

the transformed second-moment matrix p” will be of the form:

Next, if we perform a diagonal transformation p = DspacePspace With

Dspace =

" —pT Dl — Ngm 0 _ V M&m%y 0 36
:U’space - space/’bspace space ~ 0 " - 0 7 7 ( )
:u’yy Nmmﬂyy



i.e. suitable for affine normalization according to (33). By applying a corresponding
form of spatial normalization to the Galilean diagonalized spatio-temporal second-
moment matrix (26), i.e., performing a spatio-temporal transformation p”’ = Dp”

with
4/V1
\/ v2
D = 4/ V2 (37)
\/ n

we obtain

\/ V12
" =D 'RT G TuG 'R L. D7t = NIZYZ (38)

space space
V3

In other words, Galilean diagonalization can be easily combined with affine nor-
malization, and we can interpret the combined transformation (38) as a canonical
generalization of affine normalization from space to space-time.!

4 Galilean invariant and Galilean corrected operators

The notion of Galilean diagonalization can be used for defining spatio-temporal image
descriptors that are either fully invariant or approximately invariant under Galilean
transformations. Operators within the first class will be referred to as Galilean invari-
ant, while operators within the latter class will be referred to as Galilean corrected.

The context we consider is that the spatio-temporal second moment matrix is
computed at every point p in space-time for a set of scale parameters Y. Two main
approaches can be considered:

e Consider the full family of spatio-temporal scale-space kernels, parameterized
over both the amount of spatial smoothing, the amount of temporal smoothing,
and the orientation of the filter in space-time.

e Restrict the analysis to space-time separable scale-space kernels only.

A motivation for using the first approach is that the spatio-temporal scale-space will
be truly closed under Galilean transformations only if the full family of covariance
matrices is considered. Thus, this alternative has advantages in terms of robustness
and accuracy, while the second alternative will be more efficient on a serial architec-
ture. In the first case, (11,12, v3) will be truly Galilean invariant, while in the second
case the effect of the Galilean diagonalization is to compensate for a major part of the
relative motion to the camera.? If we aim at affine invariance in addition to Galilean
invariance, then also an affine Gaussian scale-space concept should be considered over
the spatial domain (Lindeberg 1994).

!Note, however, that in order to normalize for scale variations, a complementary scale selection
step will be needed.

2In comparison with the related notions of affine shape-adaptation in space (Lindeberg & Garding
1997, Mikolajczyk & Schmid 2002) or velocity adaptation in space-time (Lindeberg 1997, Nagel &
Gehrke 1998, Lindeberg 2002, Laptev & Lindeberg 2004b), we can interpret the combination of
Galilean diagonalization with space-time separable scale-space as an estimate of the first step in an
iterative velocity adaptation procedure.



Galilean-corrected motion descriptors. By differentiating the Galilean trans-
formation (7), it follows that the first-order derivative operators transform according
to

Oy = Oy, (39)
Oy = 9y, (40)
Op = Oy + u0y; + v0,. (41)

In other words, the spatial derivative operators are unaffected by Galilean transfor-
mations, while the temporal derivative transforms according to the image velocity.
Given that a second-moment descriptor has been computed at any image point and
that this descriptor been Galilean diagonalized with velocity vector (u,v)? according
to (23), a general approach to motion compensation is therefore to express all tem-
poral derivatives in a Galilean transformed frame with the same image velocity. If
the derivative expression are computed from scale-space concept that is closed under
this Galilean transformation, it follows that these derivatives will be truly invariant.
Otherwise, the effect of this Galilean correction is to perform a partial compensation
for the influence of the Galilean transformation.

For example, if we apply this approach to the purely temporal element gy in the
second-moment matrix, alternatively if we use the transformation property (20), we
obtain

'u;t = UQNM? + QUU,Lny + UQNyy + Upige + 2vﬂyt + e (42)
)T

which after insertion of the explicit expression for (u,v)’ can be simplified to

Nm?ﬂ?/t + Nyy'ugzct — 2fgyflat Pyt
Mz flyy — N%y

[y = fet — (43)
This form of Galilean correction of temporal derivatives is, however, not restricted
to the elements of a second-moment matrix, and applies to any temporal derivative
expression, with applications to spatio-temporal feature extraction and recognition.

Remark: Note that also in the absence of a second-moment matrix, a correspond-
ing determination of a unique Galilean transformation for an image point can be
performed based on the spatio-temporal Hessian matrix, by determining a veloc-
ity vector (u,v) such that the transformed mixed second-order derivatives satisfy
Ly = Ly = 0. This property follows from the fact that under linear transforma-
tions the Hessian matrix transforms in a similar way as the second-moment matrix.
Therefore, the idea of Galilean diagonalization of the second-moment matrix applies
to Galilean diagonalization of the spatio-temporal Hessian matrix as well. A local
velocity estimate for Galilean correction obtained from a pointwise Hessian matrix
can, however, be expected to be less robust than a velocity estimate computed from
a regional second-moment matrix.

5 Spatio-temporal interest operators

In the following, we shall apply the abovementioned notion of Galilean correction for
defining spatio-temporal interest operators. A first approach we shall follow is to use

L =v3= M;St (44)



as a basic measure for computing candidate regions of interest. If the space-time im-
age is locally constant over time, or if the local space-time structure corresponds to
a translation with constant velocity, then in the ideal case (of using velocity adapted
space-time filters) the value of this descriptor will be zero. Hence, I; can be regarded
as a measure of how the local space-time image structure deviates from that of a pure
translation model. Note that compared to a more traditional stabilization scheme,
there is no need for warping the space-time image according to a local motion esti-
mate. Instead, we use the closed-form expression for (u,v) for evaluating I; from the
elements of y at every point according to

Mxxﬂgt + Myyﬂgt = 2figyflat iyt
Kz lbyy — M%y

I = p — (45)
The operator I; will respond to rather wide classes of space-time events. If one
is interested in more restrictive space-time interest operators, we can, for example,
consider two extensions of the Harris operator (Harris & Stephens 1988) to space-time.
Given a spatial second moment matrix pop with eigenvalues (A1, A2), the traditional
Harris operator is defined as

H = M)y — C(M\1 4 A\2)? = det pap — Cltrace pgp)? (46)

where C is usually chosen as C' = 0.04, and values of H below zero are thresholded
away. For images on a 2-D spatial domain, this operator will give high responses if
both the eigenvalues of uop are high, and the image thus contains significant variations
along both of the two dimensions.

We can build upon this idea for defining two space-time operators of different
forms, either by treating the spatial dimensions together or separately. By treating
the spatial diagonal elements together, it is natural to let Ay = 11 4+ 19 and Ao = v3,
and we can define an operator of the form

Iy = (11 + vo)vg — Co(v1 + 12 + V3)2, (47)
which using v1 + v9 = pize + piyy can also be written

I = (paz + Nyy)'u;t — Oy (ptaz + Hyy + N;St)Q (48)

By treating all diagonal elements individually, we can define the following modifica-
tion? of the operator in (Laptev & Lindeberg 2003)

I3 = vivovs — Cy(vy + vg + 13)° (49)

which using vi1vo = piggplyy — ugy can be expressed as

Iy = (Nxxﬂyy - ng):u’;t —C3 (M;mc + pyy + M:ﬁt)?) (50)

3With A1, A2 and A3 denoting the eigenvalues of a spatio-temporal second-moment matrix, in
(Laptev & Lindeberg 2003) a space-time interest operator H is defined as H = A1A2A3 — C3(A1 +
A2 + )\3)3. While this operator has been demonstrated to give intuitively reasonable space-time
interest points corresponding to high spatial and temporal variations in the image structures, due to
the fact that this operator is defined in terms of the eigenvalues of the second-moment matrix it follows
that this operator is not Galilean invariant. By redefining H into I3 = vivovs — Cs(vy + v2 + 1/3)3,
however, we obtain a Galilean invariant operator provided that either of the following mechanisms are
included: (i) considering the entire family of spatio-temporal smoothing kernels, or (ii) performing
velocity adaptation.



In both cases, Cy and C3 are parameters to be determined. Initially, we use Cy = 0.04
and C3 = 0.005 in analogy with (Harris & Stephens 1988, Laptev & Lindeberg 2003).
The requirement for I to respond is that there are significant variations in the image
structures over the temporal dimension beyond those that can be described by a
local translation model. For Is to respond, it is necessary that there are strong image
variations over at least one spatial dimension in addition to the temporal dimension.
For I3 to respond, there must be significant variations over both of the two spatial
dimensions in addition to the temporal dimension. Thus, we can expect the operator
I3 to be most selective and I to be the least selective operator of these three.

Remarks: With regard to invariance of operator responses, a possible drawback of
defining interest point operators in space-time in a fully analogous way as done in the
Harris operator, i.e., in terms of a product of diagonal elements minus a sum of diag-
onal elements raised to a suitable power so as to make the expression homogeneous, is
that the operator response will be dependent on the actual units by which the spatial
dimensions are measured. To obtain invariance to, alternatively to compensate for
such effects, one could also consider the following alternative definitions, which will
share qualitatively similar properties as I and I3:

I = (v, + v2)vs, (51)
I_Q = (Vl + V2)V3 - (02,space(l/1 + V2) + CZ,timeVB)zv ( )
I_S = 1als, (53)
I=3 = V1V — (03,space(l/1 + V2) + CB,timeV3)3‘ ( )

(55)

= 3
I3 = vivovs — (C3 spaceV/V1V2 + C3 timel/3)”.

With these modified definitions, it follows that the maps of I» and I3 will transform
by constant scaling factors under uniform rescalings of the spatial or the temporal
domains. Therefore, spatio-temporal maxima of these operators will be preserved
under any uniform scaling of either space, time or both dimensions. If one instead
aims at building explicit thresholding on ranges of parameter values into the operator,
the parameters Co space, C2 times C3,space and C3 time in I, and I3 can be adjusted so as
to perform thresholding on the magnitudes of the spatial and temporal contributions
to the operator response.

With regard to combined affine and Galilean invariance, it follows from (38) that
the operators I3 and I3 will be both affine and Galilean invariant (for I3,the constants
C3.space and Cs3 time should be appropriately adjusted), i.e. invariant to both affine
transformations in space and Galilean transformations in space-time.

6 Experiments

Figures 1-3 show a few snapshots of computing Iy, I and I3 for different types
of spatio-temporal image patterns, for simplicity computed by space-time separable
filtering. 4 For comparison, we also show maps of the corresponding entities without

4For simplicity, we have in these experiments used a scale-space constructed from space-time
separable spatio-temporal smoothing kernels, resulting in Galilean-corrected as opposed to truly
Galilean invariant image descriptors. In a companion paper (Laptev & Lindeberg 2004a), we explore
the combination of non-separable velocity-adapted filters with interest points derived from Is.
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Galilean-correction i.e.,

fl = Mt (56)
I, = (Nmm + ,Uyy),utt - CZ(N&?&? + Hyy + Ntt)Z (57)
I3 = det yu — Cs(trace p)? (58)

as well as sample frames from the original image sequence f and its spatio-temporal
scale-space representation L.

Figure 1 shows result from a synthetic experiment with two circular blobs that
are moving against a static textured background. In the left columns, the blobs differ
in size, while having the same image velocity u = 2.5 pixels/frame. In the right
columns, the blobs have the same size while differing in image velocity (low velocity
0.5 pixels/frame, high velocity 3 pixels/frame). The results in the leftmost column
have been computed at a fine spatial scale (¢ = 1, 7 = 0.5), and the middle left
column shows corresponding results at a coarser spatial scale (¢ = 6, 7 = 0.5).°> In
the middle right column, the results have been computed at a fine temporal scale
(0 =3, 7 = 0.5), and in the right column the results have been computed at a
coarse temporal scale (o0 = 3, 7 = 6) As can be seen from the results, all operators
give a strong response in regions where a local translational model is not valid. By
comparison the results in the leftmost and the middle left column, we can moreover
note that finer spatial scales give more emphasis to small size image structures, and
coarse spatial scales gives more emphasis to image structures with large spatial extent.
Similarly, by comparing the results in the middle right and the rightmost columns,
we can observe that fine temporal scales give more emphasis to objects that move
with high image velocities and that coarser temporal scales give more emphasis to
slowly moving objects.

Figure 2 shows the result of computing corresponding descriptors for real images
of (i) a walking person with approximately stabilized camera, (ii) a jumping person
with the camera slowly following the person, (iii) two walking persons with camera
stabilized on right person, (v) walking person with camera stabilized on person. All
sequences have been taken with a handheld camera. Figure 3 shows more results
with (i-ii) pedestrian lights turning green while the camera is shaking, (iii-iv) a traffic
scene with nearby cars and cars far away registered at a fine spatial scale and coarse
temporal scale (o = 0.4, 7 = 16.0) as well as at coarse spatial scale and fine temporal
scale (o0 = 3,7 = 0.5). As can be seen from the results, there is a substantial difference
between the output from the Galilean diagonalized I1 = pj, and the corresponding
non-diagonalized entry I 1 = 4, with I; being much more specific to motion events in
the scene. For the pedestrian light scene, a small camera motion results in responses of
ey at object edges, while uy, gives relatively stronger responses to the lights switching
to green. In the case of two persons walking in different directions, Iy = pj, gives
responses of similar magnitude for the two persons, while for p; the response of one
person dominates. In the case of a walking person against a moving background (the
camera following the person), the built-in Galilean correction in I} = uy effectively
suppresses a major part of the background motion compared to ps. In comparison
with I, the operators Iy and I3 give somewhat stronger responses at edges and
corners, respectively.

5In all experiments, we have set the integration scales proportional to the local scale, i.e., o5 = o
and 7; = 7, with v = 2.
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Figure 1: Maps of the Galilean-corrected interest operators Iy, Is and I3 as well as correspond-
ing non-corrected descriptors I, Ir and I3 computed from space-time separable spatio-temporal
scale-space representations L of different synthetic image sequences f with moving circular
blobs against a static textured background. (i-ii) blobs of different sizes (sigma = 2.5,0 = 6)
moving with same image velocity (2.5 pizels/frame): (i) fine spatial scale (o0 = 1,7 = 0.5),
(i) coarse spatial scale (o0 = 6,7 = 0.5). (iii-iv) blobs of same size (¢ = 3) moving with
different velocities (0.5 and 3 pixels/frame): (iii) fine temporal scale (o = 3,7 = 0.5), (i)
coarse temporal scale (o = 3,7 = 6). Image size: 160 x 120 pizels. (Note! This figure should
be viewed in colour. Moreover, notice that thifolour scales are different in all images.)
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Figure 2: Maps of the Galilean-corrected interest operators I, Iy and I3 as well as corre-
sponding non-corrected descriptors I, I, and I3 computed from space-time separable spatio-
temporal scale-space representations L of different image sequences f. From left to right:
(i) a walking person with approzimately stabilized camera, (i) a jumping person with the
camera slowly following the person, (iii) two walking persons with camera stabilized on right
person, (v) walking person with camera stabilized on person. In columns (i)-(ii) the scale
parameters were (o0 = 1.0,7 = 0.5), while in columns (iii)—(iv) the scale parameters were
(o0 = 1.5,7 = 0.5). Image size: 160 x 120 pizels. (Note! This figure should be viewed in
colour.)
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Figure 3: Maps of the Galilean-corrected interest operators Iy, Is and Is as well as correspond-
ing non-corrected descriptors I, I, and I3 computed from space-time separable spatio-temporal
scale-space representations L of different image sequences f. From left to right: (i-ii) traffic
lights turning green while camera moves, (ii-iv) a traffic scene with nearby cars and cars far
away registered at a fine spatial scale and coarse temporal scale (0 = 0.4,7 = 16.0) as well as
at coarse spatial scale and fine temporal scale (o = 3,7 = 0.5). Image size: 160 x 120 pizels.
(Note! This figure should be viewed in colour.)
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Figure 4: The result of computing maps of the Galilean-corrected spatio-temporal interest
operators Iy, Is and I3 as well as corresponding non-diagonalized descriptors for two real
image sequences subjected to a synthetic Galilean transformation with u = 2.5 pizels/frame.
As can be seen from a visual comparison, the Galilean-corrected entities in the left columns
give a better approzimation to Galilean invariance than the corresponding non-diagonalized
entities in the right columns. (Note! This figure should be viewed in colour.)
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Quantitative evaluation of approximation of (zalilean invariance. To eval-
uate the stability of these descriptors under relative motions, we subjected a set of
image sequences to synthetic Galilean transformations v € {1,2,3}. Thus, given an
image sequence f, we computed a Galilean transformed image sequence f' = G, f,
and computed spatio-temporal scale-space representations of L and L’, respectively.
Then, we computed maps My and Mg, s of each spatio-temporal interest operator
from the original as well as the Galilean transformed image sequences. As can be
seen from the illustration in figure 4, the Galilean-corrected spatio-temporal interest
operators I1, I and I3 give a better approximation to Galilean invariance than the
corresponding non-corrected entities .fl, fz and fg. To form a quantitative measure
on the difference in terms of deviations from Galilean invariance, we computed the
following correlation error measure

> opey (My(p) = Ma, s (p))?

E(M) = C(My, Me, ;) =
e e M0 [ Ma s )

(59)

between the maps M; and Mg, s of these descriptors computed from the original
image sequence f as well as its corresponding Galilean transformed image sequence
G.f at corresponding points p <> p’ in space-time, see table 1 for a few examples.

C(My,Mg,;) L L L I, I3 I

u=1 0.03 0.07 0.03 0.05 0.06 0.51
U =2 0.11 031 0.0 0.11 0.19 1.17
u=3 0.21 077 020 0.18 036 2.13

CMyMg,;) I L L L Iy Iy

u=1 0.08 030 0.06 0.27 0.08 0.48
U =2 0.27 144 026 0.71 031 1.22
U= 044 163 036 089 040 1.49

Table 1: Correlation error measures between interest operators responses under synthetic
Galilean transformations for two sample image sequences.

Then, we formed ratios between these measures of deviations from Galilean invari-
ance for (I1, I, I3) and their corresponding non-diagonalized descriptors (I, Iz, I3);
the geometric average and the geometric standard deviations for seven image se-
quences are given in table 2. For this data set, the use of Galilean diagonalization
reduced the correlation errors with factors typically in the range between 2 and 5,
depending on the image contents and the type of descriptor. As can be seen from
the results, the ratio between the error measures for Galilean-corrected as opposed to
corresponding uncorrected entities is largest for small image velocities and decreases
with increasing velocity, indicating that in combination with a space-time separa-
ble smoothing kernels, the relative compensatory effect of Galilean-diagonalization is
largest for small image velocities and decreases with increasing image velocity.
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velocity E(N)/E(L) E(l2)/E(2) E(Is)/E(I3)
u=1 32 (2.2) 45 (3.4) 16 (2.2)
uw=2 3.2 (1.6) 2.5 (2.3) 3.8 (1.9)
uw=3 2.6 (1.4) 1.7 (2.0) 3.9 (1.6)
all u 3.0 (1.7) 2.7 (2.5) 41 (1.9)

Table 2: Ratios between Galilean correlation errors for Galilean-diagonalized vs. corresponding
non-diagonalized descriptors computed from a space-time separable spatio-temporal scale-space
representation. The values are geometric averages computed over a set of seven image se-
quences. (The geometric standard deviation is given within parentheses.) As can be seen, the
ratios are largest for small image velocities and decrease with increasing velocity, indicating
that in combination with a space-time separable scale-space, the relative compensatory effect
of Galilean-diagonalization is largest for small image velocities and decreases with increasing
1mage velocity. Moreover, the compensatory effect is usually larger for a cluttered background.

7 Extensions

7.1 Spatio-temporal interest operators for colour images

With minor modifications, the ideas behind these interest operators can also be ex-
tended to colour images, in order to make use of the additional information available
in colour channels in situations when there is poor contrast in the grey-level informa-
tion. In order to develop a corresponding scheme for colour cues, let us make use of
the close analogue between the equations for determining the Galilean-diagonalization
of the second-moment matrix (22) and the solution of the equations for optic flow
according to (Lukas & Kanade 1981).

Given an RGB colour image, let us first transform this image into three colour
channels CHC@(CG), which separate the intensity information C) from two chro-
matic channels CC®) according to®

o 111 R

@ |1 % ]

C =3 -3 0 G |. (60)
c® 5 & -1 B

Next, in analogy with the least-squares formulation of the Lukas and Kanade method,
let us differentiate the constant brightness assumption for each individual channel,
c =,

10, CD 4 1, 8,00 + 9,00 =0 (61)

and let us integrate the square of this relation using a window function w, and sum
up these expressions over all channels 7 in order to state the following least-squares
problem for determining u = (uy,uy,) at any point p = (z,y,t)":

. . . 2
min Y / (um&rC“) (p— q) + uyd,CD(p— q) + C(p — Q)) w(q) dg
u=(aty) ;175 3y 4€R?

(62)

5This colour space, which can be seen as a slight variation of the more common linear colour
transformation (C1 = R—G, C2 = G— B) has been previously been used in connection with Gaussian
derivative operators by (Hall 2001) and has the qualitative effect of approximating red-green and blue-
yellow colour opponent channels, as opposed to red-green and green-blue colour opponent channels
which result from the more commonly used R — G- and G — B-transformation.
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Figure 5: The result of computing grey-level based as well as colour-based spatio-temporal in-
terest operators for an image sequence with a walking person against a cluttered background,
in which there is sometimes poor grey-level contrast between the moving object and the back-
ground. As can be seen, the use of colour-based spatio-temporal interest operators may give
stronger responses for the moving objects. (Note! This figure should be viewed in colour.)
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By dropping the arguments of C9) (p — q) and w(q), and with

A = . . . w d 5
ie‘%,?)} /qeR3 ( ey (o)) ! (63)
Clg0)
b = / I. t . w d R 4
z'e{%;ﬁ} geR? ( ngz)ct(z) ! (64
c= Z / 3(015(1))211) dq, (65)
ie{1,2,3) VI€R

this least squares problem can be written

min v’ Au 4+ 207 u + ¢ with the solution u=—A"1b (66)
u

In the special case when there is only one colour channel, these are the equations for
optic flow according to the method by (Lukas & Kanade 1981). In the case when we
have multiple colour channels, we proceed as follows for expressing colour analogues
to the previously expressed spatio-temporal interest operators.

1. Compute second moment matrices (¥ for all individual motion channels.
2. Sum up the elements in these in order to form:
@ )

(i)
A= ZA (“‘”‘” “fg), and b—Zb (“It ) (67)

N:ry Hyy Nyt

3. Compute a joint velocity estimate u = (uy, uy)T according to u = —A~1b.

4. For each colour channel, insert this estimate into the expression for

(@)

(N;t)( )= Umﬂg(u% + 2“muyﬂa(n13 + Uyﬂg(;g,), + 2ug iy + QUyNg(;t) + Ni(ﬁt) (68)

5. Sum up these entities over all colour channels to define the following analogue
of the purely temporal diagonal element:

vy = Z(an)(i) (69)

6. Compute analogues to the spatial diagonal elements v; and vy from

v + vy =trace A, and wvirp = det A. (70)

7. Define Iy, I and I3 from v, 15 and 3 in analogy with the previously stated
equations (44), (47) and (49).

Figure 5 shows a few examples of computing spatio-temporal operators in this way
for an image sequence with a cluttered background, for which the contrast is some-
times low between the moving object in the background. As can be seen, the use of
complementary colour cues may give more prominent regions of interest in situations
when there is poor contrast in terms of grey-level information only.
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Figure 6: Colour-based spatio-temporal interest operators computed for two image sequences
with and without using complementary contrast normalization. (Note! This figure should be
viewed in colour.)
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7.2 Contrast normalization

One limitation of the previously stated definitions of spatio-temporal interest opera-
tors is that the magnitude of the response is influenced by the local image contrast.
Specifically, regions with high spatial contrast may result in relatively higher values of
the magnitudes of I;. To compensate for local intensity variations, a straightforward
approach is to define contrast normalized interest operators according to

(Iy)Y/*
J, = —"% 71
F (c1 4+ v+ 12)® (71)

where « € [0,1] is a constant and the purpose of the exponentiation operator (I k)l/ k

is to compensate for the different dimensionality of Iy, I and I3 in terms of the
diagonal elements vy, 5 and v of the Galilean diagonalized second-moment matrix.
The entity v1 + vo = trace A serves as a measure of the local image contrast (the
average gradient magnitude within the support region of the window function), and
the constant c¢; serves as a soft threshold for avoiding the division with small values.”

Figure 6 shows the result of computing such contrast normalized spatio-temporal
interest operators Ji with corresponding unnormalized entities I, for two colour
image sequences.® As can be seen, the contrast normalized spatio-temporal interest
operators result in comparably stronger operator responses at the moving objects as
well as in small regions around them. Hence, we propose contrast normalization as a
complementary mechanisms when using the Galilean-corrected interest operators for
computing motion masks for subsequent motion recognition.

8 Summary and discussion

We have presented a theory for how Galilean-diagonalization can be used for reducing
the influence of local relative motions on spatio-temporal image descriptors, and used
this theory for defining a set of spatio-temporal interest operators. In combination
with velocity-adapted scale-space filtering, these image descriptors are truly Galilean
invariant. Combined with space-time separable filtering, they allow for a substantial
reduction of the influence of Galilean motions. In this respect, these operators allow
for more robust regions of interest under relative motions of the camera.

Besides the application of spatio-temporal interest operators considered here, how-
ever, the notion of Galilean diagonalization is of much wider applicability and should
be regarded as an interesting conceptual tool also in the following contexts: (i) as
an alternative to local eigenvalue analysis of space-time image structures, (ii) when
extracting spatio-temporal features, and (iii) for performing local normalization of
space-time structures for subsequent spatio-temporal recognition.

Concerning actual spatio-temporal scale-space concept, we have here considered
Gaussian smoothing kernels. While an implementation based on this notion is not
time-causal, time-causality is straightforward to achieve by replacing the Gaussian
temporal smoothing operation by time-causal recursive filters. In on-going work, we

“In this work, we have estimated ¢; as a constant times the average gradient magnitude over
a typical image sequence, i.e. c¢1 = catrace A, with ca = 1/4. Of course, other robust contrast
estimation schemes could also be used.

8In these experiments, we used o = 3/4 and slightly coarser scales o = 2, 7 = 5/4 and v = 3.
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are developing scale selection mechanisms to be used in conjunction with these spatio-
temporal interest operators, as well as spatio-temporal recognition schemes that work
upon regions of interest in space-time defined from the responses of these operators.

A Appendix

A.1 Galilean invariance property of Galilean diagonalization

In this appendix, we give a formal proof of the fact that Galilean diagonalization
according to (21) is preserved under Galilean transformations.

Consider a spatio-temporal image f(p) = f(z,y,t) with spatio-temporal scale-
space representation L(p; X) defined from L(-; X) = g(-; X) % f(-), where g denotes
a spatio-temporal Gaussian kernel (3) and ¥ is a covariance matrix according to (2).

Given any velocity vector u, define a Galilean transformed image f” by f”(p”) =
f(p), where p” = G(u)p and G(u) denotes a Galilean transformation with image
velocity u. Moreover, define the spatio-temporal scale-space representation L” of f”
according to L"(-; ") = g(; ¥”) % f”(-). Then, from the transformation property
under Galilean transformations, it follows that L”(p” X") = L(p; X) provided that
the covariance matrices satisfy X" = GXG?T. Analogous to equations (11) and (12),
let us define second-moment matrices of L and L” according to

uip; =) = / (VL@)(VL@)" o(p— s ) da. (72)
geR3
W B = / o VE VT g~ s ). ()

Then, the second-moment matrices p and p” are related according to
W= G ) p G ). (74)

Let us next assume that v is a velocity vector that transforms p into a block diagonal
matrix. In other words, assume that we have a Galilean transformation G(v) such
that

W=G"T()uG " (v). (75)

Our next goal is to find a Galilean transformation that transforms p” into block
diagonal form. From equation (74) we can rewrite p as p = GT (u) i’ G(u), which
after insertion into (74) gives

p=G"(0) G (u) 1" Gu) G (v). (76)

Since Galilean transformation matrices satisfy G=1(v) = G(—v) as well as G(u—v) =
G(u) G(—v), it follows that

p=GTw—-u)p" G o—u) (77)

and we have that the Galilean transformation G(v — u) brings u” into block diagonal
form. Thus, the property of block diagonalization is preserved under Galilean trans-
formations. Specifically, the velocity vector associated with the Galilean transforma-
tion that brings a second-moment matrix into block diagonal form is additive under
superimposed Galilean transformations. Therefore, if we normalize local space-time
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structures using a local Galilean transformations determined from the requirement
that the second-moment matrix should be block diagonal, it follows that the result af-
ter normalization will always be the same, irrespective of any superimposed Galilean
transformation. From this view-point, the notion of Galilean diagonalization can be
regarded as a canonical way of normalizing local space-time structures.

Note that although a similar result could be expected from the viewpoint of optic
flow computations according to the method by (Lukas & Kanade 1981), we have in
this proof not made any assumption that the local spatio-temporal image structures
within the support region of the window function should represent a local translational
model. (The optic flow estimation method by Lukas and Kanade is derived from
such an assumption.) Therefore this result applies to arbitrary types of space-time
structures and spatio-temporal events.”

A pre-requisite for carrying out this proof, however, is that the spatio-temporal
second moment matrices used for computing the second-moment matrices are related
according to ¥ = GXGT (and for the Galilean diagonalization that ¥/ = GEGT).
Thus, perfect Galilean invariance can only be expected if the shapes of the spatio-
temporal smoothing kernels are coupled according to this relation. Otherwise, the
relation will only be approximate. One way of achieving full Galilean invariance
is therefore by considering scale-space smoothing over the full family of space-time
kernels. An alternative approach is to adapt the spatio-temporal smoothing kernels
to the local space-time image structures (Lindeberg & Garding 1997, Lindeberg 1997,
Nagel & Gehrke 1998, Mikolajczyk & Schmid 2002, Laptev & Lindeberg 2004b).

A.2 Interpreting Galilean diagonalization with average normal flow

In situations when motion constraint equation is valid, Galilean diagonalization im-
plies that a weighted average of the normal flow vectors will be zero within the sup-
port region of the window function used for computing the second-moment matrix.
To state and prove this property, let Vgpaeel = (L, Ly)T denote the spatial gradient
vector and let u denote the optic flow. Then, the optic flow constraint equation can
be written

Li + (Vspace L) u = 0. (78)

By multiplying this expression by the spatial gradient vector Vp,..L and integrating
over the support region of the window function, we obtain

/ 3(VspaceL) (Lt + (VspaceL)Tu) g(x,y,t; X)dxdydt =0 (79)
z,y,teR

which with a more compact averaging operator E' can written as

E((vsmceL)(Lt + (vsmceL)TU)) =0 (80)

9The only assumption we have made above is that the purely spatial component of the second-
moment matrix is non-singular, i.e., that peeptyy — ,uiy # 0. If this assumption is violated, then the
velocity vector u in the Galilean transformation G(u) that diagonalizes y is not uniquely determined,
and we have a situation with a local aperture problem. This indeterminacy will, however, not
effect the Galilean normalization, since the indeterminacy will not effect the transformed pattern.
Therefore, we can for example choose the pseudo inverse to determine the velocity vector u from
(23), and we will obtain either v1 = 0 or v = 0.

The case 1 = v2 = 0 is trivial, since ¥1 = 0 and v» = 0 imply L, = L, = 0 in the entire support
region of the window function, and therefore that pi,: = pye = 0.
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According to our convention, Galilean diagonalization is achieved by when E(L,L;) =
E(LyL;) = 0. In vector notation we have E((VgpaceL)L:) = 0. Hence, Galilean
diagonalization implies

E((vspaceL)(vspaceL)TU) =0 (81)

which can be interpreted as a weighed matrix average of the optic flow vectors being
zero. To interpret this relation further, let us split the optic flow vector u into one
component | parallel to the gradient vector and one component u; perpendicular,
i.e. u = +uy. Then, since (VspaceL)TuJ_ =0, it follows that

E((VspaceL)(Vspace L) uj)) = 0 (82)

Due to the fact that VZ,,..L and ) are parallel, we have (VZ,qce L)ty = |V paceL| |1 |
and (VL) vyl = [V e Lluy. Hence, we can rewrite the previous relation as

E(|VpaceL|* u)) =0 (83)

which means that after Galilean diagonalization, the following weighted average of
the normal flow vectors u|| will be zero:

/ |V spaceL|* u g(z, y, ¢ ) dx dy dt = 0. (84)
x,1,tER3
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