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Abstract

Local scale information extracted from visual data in a bottom-up manner con-
stitutes an important cue for a large number of visual tasks. This article presents
a framework for how the computation of such scale descriptors can be performed
in real time on a standard computer.

The proposed scale selection framework is expressed within a novel type
of multi-scale representation, referred to as hybrid multi-scale representation,
which aims at integrating and providing variable trade-offs between the relative
advantages of pyramids and scale-space representation, in terms of computational
efficiency and computational accuracy. Starting from binomial scale-space ker-
nels of different widths, we describe a family pyramid representations, in which
the regular pyramid concept and the regular scale-space representation consti-
tute limiting cases. In particular, the steepness of the pyramid as well as the
sampling density in the scale direction can be varied.

It is shown how the definition of γ-normalized derivative operators under-
lying the automatic scale selection mechanism can be transferred from a regular
scale-space to a hybrid pyramid, and two alternative definitions are studied in
detail, referred to as variance normalization and lp-normalization. The computa-
tional accuracy of these two schemes is evaluated, and it is shown how the choice
of sub-sampling rate provides a trade-off between the computational efficiency
and the accuracy of the scale descriptors. Experimental evaluations are pre-
sented for both synthetic and real data. In a simplified form, this scale selection
mechanism has been running for two years, in a real-time vision system.
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1 Introduction

Recent works have shown how the notion of automatic scale selection constitutes an
essential complement to traditional scale-space representation. While a scale-space
representation provides a well-founded framework to represent image structures at
different scales, the scale-space representation by itself contains no explicit informa-
tion about what scales are relevant for further processing. By using automatic scale
selecting as a pre-processing stage to early visual operations, hypotheses can be gen-
erated about interesting scales and image structures for further analysis. Moreover,
visual operations can be normalized with respect to size variations.

For addressing the problem of choosing interesting scale levels from image data, a
number of different approaches have been developed in the literature (see the review in
section 2). If one aims at real-time performance, however, a common problem of most
present approaches for automatic scale selection, is computational efficiency. Since
scale selection is performed by either minimizing or maximizing feature measures
over scales, the algorithms involve explicit search over scales. The purpose of this
article is to show how these problems can be remedied for a class of scale selection
methods based on normalized derivatives, and how real-time performance can be
obtained on a standard PC by implementation in terms of an oversampled pyramid
representation referred to as a hybrid multi-scale representation. It will also be shown
how hybrid pyramid representations allows different trade-offs to be reached between
computational efficiency, computational accuracy and algorithmic simplicity.

2 Related work

An early approach to scale selection focused on the detection of blob-like image fea-
tures and scale levels were selected from local maxima over scales of a normalized
measure of blob strength (Lindeberg 1993a). Later, this idea was generalized to a
wide class of differential image features, by selecting scale levels from local max-
ima over scales of differential invariants expressed in terms of normalized derivatives
(Lindeberg 1993b, Lindeberg 1994). This principle has been applied to various prob-
lems relating to the detection of image features (Lindeberg 1998b, Lindeberg 1998a,
Chomat et al. 2000, Almansa & Lindeberg 2000, Pedersen & Nielsen 2000, Nielsen
& Lillholm 2001, Kadir & Brady 2001). In particular, and motivated by the ob-
servation that single-scale ridge detection may be highly sensitive to the choice
of scale level, special emphasis has been on the detection of ridges for medical
image analysis (Pizer et al. 1994, Eberly et al. 1994, Koller et al. 1995, Lorenz
et al. 1997, Sato et al. 1998, Staal et al. 1999, Frangi et al. 1999, Majer 2001); for
related applications to brain activation analysis, see (Worsley et al. 1996b, Coulon
et al. 1997, Lindeberg et al. 1999). Moreover, for the purpose of obtaining zoom in-
variant image features for further processing, scale selection mechanisms have proven
highly useful for interest point detection (Mikolajczyk & Schmid 2001, Mikolajczyk
& Schmid 2002) with applications to object recognition (Lowe 1999, Lowe 2000,
Hall et al. 2000, Schmid 2001, Sidenbladh & Black 2001) and tracking (Bretzner &
Lindeberg 1998, Laptev & Lindeberg 2001, Bretzner et al. 2002). Other approaches for
scale selection have been presented from the behaviour of entropy measures over scales
(Jägersand 1995, Sporring & Weickert 1999, Hadjidemetriou et al. 2002), the mini-
mization of error measures over scales (Lindeberg 1995, Elder & Zucker 1996, Niessen
& Maas 1996, Yacoob & Davis 1997, Lindeberg 1998c, Pedersen & Nielsen 2001),
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probabilistic methods (Marimont & Rubner 1998) or by making explicit use of depth
information (Olson 2000). A scale selection mechanism for mean shift analysis has
been developed by (Comaniciu et al. 2001).

The algorithms that will presented bear close relations to previous work by (Crowley
& Parker 1984) for detecting peaks and ridges in a bandpass pyramid, as well as previ-
ous works performing scale selection in a regular scale-space representation (Lindeberg
1994, Lindeberg 1998b) without spatial subsampling, although reformulated to be ex-
pressed in a hybrid pyramid representation (Lindeberg 1995, Grostabussiat 1997,
Niemenmaa 2001). Parallel developments of real-time algorithms for automatic scale
selection are being made by (Crowley 2002) and (Lowe 2002).

3 Background: Scale-space and pyramid representations

Since we will build upon pyramid and scale-space representation, we shall first briefly
review basic notions concerning these concepts.1

3.1 Scale-space representation

Given any continuousD-dimensional signal f : R
D → R, its scale-space representation

L : R
D × R+ → R is defined as the result of convolving f with Gaussian kernels

g(x; t) =
1

(2πt2)D/2
e−(x2

1+···+x2
D)/(2t) (1)

of different widths t. In other words, for t = 0 the scale-space representation L is
defined by L(·; 0) = f , and for t > 0 by

L(x; t) =
∫
ξ∈RD

g(ξ; t) f(x− ξ) dξ. (2)

Equivalently, L can be defined as the solution to the (linear) diffusion equation

∂tL =
1
2
∇T∇L (3)

with initial condition L(x; 0) = f(x) ∀x ∈ R
D. From this representation, scale-space

derivatives are defined by

Lxα(·; t) = Lx
α1
1 x

α2
2 ...x

αD
D

(·; t) = ∂xαL(·; t) = gxα(·; t) (4)

where the multi-index notation α = (α1, . . . , αD) denotes the order of differentiation.
Several results have been presented concerning uniqueness properties of this represen-
tation as a visual front-end, see (Iijima 1962, Witkin 1983, Koenderink 1984, Babaud
et al. 1986, Yuille & Poggio 1986, Koenderink & van Doorn 1992, Lindeberg 1994, ter
Haar Romeny 1994, Pauwels et al. 1995, Florack 1997, Sporring et al. 1996, ter
Haar Romeny et al. 1997, Weickert 1998, Nielsen et al. 1999, Kerckhove 2001).

1For a more extensive background, see e.g. chapters 2–4 in (Lindeberg 1994).

2



Scale-space for discrete signals. For a discrete signal f : Z
D → R, the canonical

way of defining an analogous scale-space representation L : Z
D × R+ → R is by

solving a semi-discretized version of the diffusion equation, in which the continuous
scale parameter is left untouched and the Laplacian operator is replaced by discrete
second-order difference approximation (Lindeberg 1990). In the one-dimensional case,
this corresponds to convolution with the discrete analogue of the Gaussian kernel
T : Z × R+ → R, i.e.,

L(x; t) =
∑
n∈Z

T (n; t) f(x− n) (5)

where
T (n t) = e−tIn(t) (6)

and In are the modified Bessel functions of integer order. In terms of differential
equations, this discrete scale-space satisfies the semi-discretized diffusion equation

∂tL =
1
2
δxxL, (7)

where δxx denotes the second-order difference operator with coefficients (1, −2, 1).
In two dimensions, the corresponding discrete scale-space is given by the solution to
the semi-discrete diffusion equation

∂tL =
1
2
∇2

λL =
1
2

(
(1 − λ)∇2

5L+ λ∇2
×2L

)
(8)

where ∇2
5 and ∇2

×2 are five-point and cross-point approximations to the Laplacian
operator and λ ∈ [0, 1] is a free parameter. With λ = 0, this two-dimensional discrete
scale-space corresponds to the Cartesian product of the one-dimensional scale-space
according to (5) and (7), while λ = 1

3 gives the two-dimensional discrete scale-space
with the highest degree of rotational symmetry (Lindeberg 1994).

∇2
5 =


 1

1 −4 1
1
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Figure 1: Computational molecules corresponding to; (a) the five-point operator ∇2
5, (b) the

cross-operator ∇2
×2 , and (c) the linear combination ∇2

λ = (1 − λ)∇2
×2 + λ∇2

×2 when λ = 1
3 .

3.2 Pyramid representation

In a pyramid, the smoothing operation is combined with a subsampling step. For
simplicity, let us first assume that the smoothing filter is separable, and that the
number of filter coefficients along one dimension is odd. Then, it is sufficient to study
the following one-dimensional reduction operator , which with L(0) = f states how to
compute a coarser-scale representation L(i+1) at level k + 1 from the representation
L(i) at the current scale level k, given a set of filter coefficients c : Z → R:

L(i+1) = Reduce(L(i)) (9)

L(i+1)(x) =
N∑

n=−N

c(n)L(i)(2x− n). (10)
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Common conditions on the filter coefficients include:

• positivity: c(n) ≥ 0,

• unimodality: c(|n|) ≥ c(|n| + 1),

• symmetry: c(−n) = c(n), and

• normalization:
∑N

n=−N c(n) = 1.

Another common condition is that all pixels should contribute equally to the next
level. With a subsampling factor equal to two, it can be shown that this condition
implies that the sum of the filter coefficients with odd indices should be equal to
the sum of the filter coefficients with even indices, or equivalently, that the kernel
(1/2, 1/2) should occur as one factor in the smoothing kernel. For N = 1, the only
kernel that satisfies all these conditions is the binomial three-kernel .

(
1
4
,

1
2
,

1
4
) (11)

A negative property of this filter, however, is that when combined repeatedly with
a subsampling operation, the equivalent convolution kernel, corresponding to the
combined effect of iterated smoothing and subsampling, tends to a triangular function
(see the left column in figure 4 for a few illustrations). For N = 2, the same conditions
imply that the kernel has to be of the form

(
1
4
− a

2
,

1
4
, a,

1
4
,

1
4
− a

2
). (12)

(Burt & Adelson 1983) proposed to determine a such that the equivalent smoothing
kernel should be as similar to a Gaussian as possible, and suggested a ≈ 0.4. For
further descriptions about pyramids, see (Burt 1981, Crowley 1981, Burt & Adelson
1983, Rosenfeld 1984, Crowley & Parker 1984, Crowley & Stern 1984, Meer et al.
1987, Chehikian & Crowley 1991, Jähne 1995) and the references therein.

3.3 Connections between scale-space and pyramid representations

There is a close connection between pyramid filters and the diffusion interpretation
of scale-space representation. If (7) is discretized in the scale direction using Eulers
forward method with scale step ∆t, we obtain a smoothing kernel of the form(

∆t
2
, 1 − ∆t,

∆t
2

)
. (13)

The limit case for this kernel to be a scale-space kernel, ∆t = 1
2 , corresponds to the

commonly used binomial kernel (11). If iterated twice, we obtain a kernel of the form
(12) with a = 3/8, the so-called binomial five-kernel(

1
4
,

1
2
,

1
4

)2

=
(

1
16
,

4
16
,

6
16
,

4
16
,

1
16

)
. (14)

Moreover, if we consider the limit case of composing K such kernels in cascade, all
having the same scale step ∆t = t/K, and let K tend to infinity, then as limit case
we obtain the discrete analogue of the Gaussian kernel (6)

lim
K→∞

(
t

2K
, 1− t

K
,

t

2K

)K

= T (·; t). (15)
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which satisfies similar scale-space axioms for discrete signals as the Gaussian kernel
does for continuous signals (Lindeberg 1990, Lindeberg 1994).

3.4 Separable and non-separable smoothing operations

In view of the abovementioned theory, there are two main ways of computing a
pyramid representation in two dimensions. If the one-dimensional binomial diffusion
filter is applied as a separable filter in two dimensions, we obtain a two-dimensional
primitive diffusion smoothing filter with the coefficients


∆t2

4
∆t(1−∆t)

2
∆t2

4
∆t(1−∆t)

2 (1 − ∆t)2 ∆t(1−∆t)
2

∆t2

4
∆t(1−∆t)

2
∆t2

4


 (16)

On the other hand, discretizing the two-dimensional semi-discrete diffusion equation
(8) using Eulers method in the scale direction gives a two-dimensional primitive dif-
fusion filter of the form


λ∆t

4
(1−λ) ∆t

2
λ∆t

4
(1−λ) ∆t

2 1 − (2 − λ)∆t (1−λ) ∆t
2

λ∆t
4

(1−λ) ∆t
2

λ∆t
4


 (17)

(which is separable only if ∆t = λ). In situations where a good approximation of ro-
tational symmetry is critical, we can expect kernels generated from (17) with λ = 1

3
to give better performance compared to the grid effects that may be introduced by
only using separable smoothing of one-dimensional kernels according to (16). Corre-
sponding arguments can be carried out in higher dimensions.

4 Hybrid pyramid representations

While pyramids and scale-space representation have both been developed from the
intuitive idea of representing a given data set at multiple scales in such a way that the
resulting representation can be used as input to a large number of visual processes,
these concepts have their relative advantages and disadvantages.

A pyramid representation is highly efficient in the sense that it leads to a rapidly
decreasing image size, while a scale-space representation successively becomes more
redundant as the scale parameter increases. The highly discretized nature of a pyra-
mid can, however, lead to algorithmic problems at coarse scales, while in scale-space
representation the task of operating on the data will be successively simplified at
coarser scales.

When processing data at a coarse scale in a scale-space representation, it thus
seems natural that a certain amount of subsampling can be performed without af-
fecting the performance too seriously. On the other hand, one could also consider
decomposing the smoothing operation in a pyramid into a set of smoothing stages,
so as to obtain a denser sampling along the scale direction. In this way, we obtain
an oversampled pyramid , characterized by the fact that not every smoothing step is
followed by a subsampling operation.

The goal of this section is to present a general class of multi-scale representa-
tions, which comprises both regular pyramids, oversampled pyramids and scale-space
representation as special cases.
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4.1 Reduction operators: The separable case

To formalize these notions, let us decompose the reduction operator in (9) into a
smoothing operation and a subsampling stage. Moreover, let us assume that the
smoothing operation can be decomposed into several smoothing steps:

ReduceCycle := SubSample
Smooth+ (18)

where the notation Op+ means that several operators of the form Op may occur.
The subsampling operation is here defined by

S = SubSample(L) (19)

S(x) = L(2x). (20)

and each smoothing step according to

S = Smooth(L) (21)

S(x) =
N∑

n=−N

c(n)L(x− n). (22)

For simplicity of presentation, we shall usually assume that the smoothing operation
corresponds to diffusion smoothing repeated K times

Smooth(L) = DeltaSmooth(L; ∆t,K) = [DeltaSmooth(L; ∆t, 1)]K (23)

where in one dimension the DeltaSmooth(L; ∆t, 1) operator corresponds to con-
volution with a binomial diffusion filter of the form (13)

D = DeltaSmooth(L; ∆t, 1) (24)

D(x) =
∆t
2
L(x− 1) + (1 − ∆t)L(x) +

∆t
2
L(x+ 1) (25)

and in two dimensions we either apply this diffusion filter as a separable filter along
each dimension (16) or use a genuine two-dimensional diffusion filter (17). Thus, for
one-dimensional filtering, the binomial three-kernel (11) corresponds to

Bin3Kernel(L) = DeltaSmooth(L; 1
2 , 1) (26)

and the binomial five-kernel (14) to

Bin5Kernel(L) = DeltaSmooth(L; 1
2 , 2) (27)

Using this notation, we can now define different types of oversampled pyramid repre-
sentations as illustrated in figure 2 and figure 3. To index the levels in such a hybrid
representations, we shall henceforth use the index l ∈ [1 . . . L] for the subsampling
levels and the index j ∈ [1 . . . J ] within each subsampling level (see figure 3).
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Bin3ReduceCycle := SubSample
Bin3Kernel

Bin5ReduceCycle := SubSample
Bin5Kernel

Bin3Reduce6Cycle := SubSample
Bin3Kernel
Bin3Kernel
Bin3Kernel
Bin3Kernel
Bin3Kernel
Bin3Kernel

Bin5Reduce3Cycle := SubSample
Bin5Kernel
Bin5Kernel
Bin5Kernel

Figure 2: Examples of regular and oversampled pyramids as generated using the notation for
hybrid multi-scale representations defined in (18)–(27).

t

y

x

Smooth+Subsample

Smooth

Smooth

Figure 3: A hybrid pyramid with I = 3 levels for each resolution.
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Figure 4: Examples of equivalent convolution kernels and equivalent derivative approximation
kernels for the Bin3Pyramid derived from the Bin3ReduceCycle in figure 2. (The values
of the scale parameters for these kernels are given in table 1.)
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Figure 5: Examples of equivalent convolution kernels and equivalent derivative approximation
kernels for the Bin5Pyramid derived from the Bin5ReduceCycle in figure 2. (The values
of the scale parameters for these kernels are given in table 1.)
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4.2 Equivalent convolution and derivative approximation kernels

Since the representation at each level is constructed from a set of repeated smoothing
and subsampling operations, which are all linear operations, the composed operation
can equivalently be modeled as the result of applying one kernel C(i,j), termed equiv-
alent convolution kernel , to the original image, followed by a pure subsampling step.
If we define a dual operator2 to the ReduceCycle operator according to

ExpandCycle := Smooth+

Enlarge

where the Enlarge operation enlarges any D-dimensional image by a factor of 2
along each dimension

E = Enlarge(L) (28)

E(x) =
{
sDL(x/s) if all indices in x are even
0 if any index in x is odd

(29)

the equivalent convolution kernel corresponding to level (i, j) can be obtained by
expanding a discrete delta function δ(i,j) at the given pyramid level (i, j) down to the
original image

C(i,j) = ExpandAll(δ(i,j)) (30)

Thus, ExpandAll denotes the ExpandCycle operators corresponding to the set
of all the ReduceCycle operators used for reaching this level. Similarly derivative
approximations are computed by taking the grid spacing h at the current into explicit
account

∂xr ≈ Dxr =
1
h|r|

δxr , (31)

at any level with resolution h in the pyramid, the corresponding equivalent derivative
approximation kernel is given by

C
(i,j)
xr = ExpandAll(δ(i,j)xr ) (32)

where higher dimensional difference approximations δxr = δx1
r1δx2

r2 ..δxD
rD are ex-

pressed in terms of the one-dimensional rth order difference operator according to

δxr =
{

(δxx)r/2 if r is even
δx δxr−1 if r is odd

(33)

and δx and δxx denote the first-order symmetric difference operators with computa-
tional molecules

δx = (−1
2
, 0,

1
2
) (34)

and
δxx = (1, −2, 1). (35)

Figures 4–6 show examples of equivalent derivative approximations of orders r = 1
and r = 2 computed in this way for the pure and oversampled pyramid representations
defined in figure 2.

2The interpretation of this operator is that the same weights c(n) are used for propagating grey-
level values from a coarser resolution at level i to a finer resolution at level i − 1 as were used when
constructing the coarser-scale representation L(i) from the the finer-scale representation L(i−1). The
factor 2D is needed to preserve the L1-norm (the mass) of the signal.
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Figure 6: Examples of equivalent convolution kernels and equivalent derivative approxima-
tion kernels for the Bin3(6)Pyramid and Bin5(3)Pyramid pyramids derived from the
Bin3Reduce6Cycle and Bin5Reduce3Cycle reduction cycles in figure 2. (The values
of the scale parameters for these kernels are given in table 1.)

4.3 Measuring the scale parameter

In a multi-scale representation, it is natural to measure the scale parameter in terms
of the variance of the convolution kernel used for reaching any scale level. Thus, in
an oversampled pyramid representation, it is natural to define the scale parameter in
terms of the covariance matrix of the equivalent convolution kernel:

t(i,j) = (detV (C(i,j)))1/D = (detV (Expand(δ(i,j))))1/D (36)

where V (C) represents the spatial covariance matrix of a kernel C and D is the
dimension of the signal.3 A major motivation underlying this choice is that for non-
negative distributions, variances and covariance matrices obey an additive property
under convolutions

V (C1 ∗ C2) = V (C1) + V (C2). (37)

This definition is also natural from the viewpoint of the diffusion formulation of
the scale-space representation. For pyramid generation kernels of the form (∆t

2 , 1 −
∆t, ∆t

2 ), the scale step ∆t exactly corresponds to the variance of the kernel, and if
we compose a set of such kernels in cascade, the concatenation of scale steps per-
fectly corresponds to the addition of variances of the primitive convolution kernels.
Moreover, if using such filters for separable filtering along each dimension, if follows
that the scale parameters will be added for each dimension. Thus, at coarser levels of
resolution with grid spacing h ∈ Z+, the operator DeltaSmooth(L; ∆t,K) in (23)

3For the isotropic scale-spaces and pyramids we consider in this paper, the covariance matrix
will always be proportional to the unit matrix V (C(i,j)) = t(i,j) I . A more general treatment of
non-uniform scale-spaces with non-diagonal covariance matrices is given in (Lindeberg 2001).
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corresponds to scale values at levels k and k + 1 related according to

t(i,j+1) − t(i,j) = K h2 ∆t. (38)

Table 1 shows scale levels computed in this way for the examples of pure and over-
sampled pyramids defined in figure 7.

Bin3Pyramid

0.0
0.5
2.5
10.5
42.5
170.5
682.5

Bin5Pyramid

0.0
1.0
5.0
21.0
85.0
341.0
1365.0

Bin3(6)Pyramid

0.0 0.5 . . . 2.5
3.0 5.0 . . . 13.0
15.0 23.0 . . . 55.0
63.0 95.0 . . . 223.0
255.0 383.0 . . . 895.0
1023.0 1535.0 . . . 3583.0

Bin5(3)Pyramid

0.0 1.0 2.0
3.0 7.0 11.0
15.0 31.0 47.0
63.0 127.0 191.0
255.0 511.0 767.0
1023.0 2047.0 3071.0

Table 1: Scale values for the examples of pure and oversampled pyramids defined in figure 2
(here, without adding an initial pre-smoothing stage as will be described later in figure 7).

4.4 Measuring the subsampling rate

Given that an oversampled pyramid is defined in terms of a set of Smooth and
subsample operations as exemplified in figure 2, we are interested in describing how
the grid spacing h depends on the scale parameter t. Conceptually, it is natural to
let the maximum allowed grid spacing hmax at any level be proportional to the scale
parameter measured in units of the standard deviation σ =

√
t of the equivalent

convolution kernel. We may thus define a subsampling factor ρ from the relation

hmax = ρ σ = ρ
√
t (39)

and for reasons of computational efficiency define the actual grid spacing as the
maximum power of two that does not exceed this upper bound

h(t, ρ) =
{

maxh′=2i−1 : i∈Z+\{0} h′ : h′ < hmax(t, ρ) if hmax ≥ 1
1 otherwise

(40)

Thus, a subsampling factor of ρ = 0 corresponds to preserving the original resolution
at all levels of scales, while increasing values of ρ correspond to higher decimation of
the number of samples with increasing scale.

In this context, the relation h < ρ
√
t holds at the first pyramid level if and only of

tstart(ρ) ≥ 1
ρ2 If we aim at self-similarity over scales, it is in many situations natural

to assume that the input image has been pre-smoothed by this amount. Moreover,
physical imaging devices always imply a certain amount of pre-smoothing, given by
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Bin3Pyramid := [Bin3ReduceCycle]+

DeltaSmooth(·; 1
6
, 1)

Bin5Pyramid := [Bin5ReduceCycle]+

DeltaSmooth(·; 1
6
, 2)

Bin3(6)Pyramid := [Bin3Reduce6Cycle]+

DeltaSmooth(·; 1
2
, 2)

Bin5(3)Pyramid := [Bin5Reduce3Cycle]+

DeltaSmooth(·; 1
2
, 2)

Figure 7: Pure and oversampled pyramids after adding an initial pre-smoothing stage (with
pre-smoothing amount tstart according to (43)) to the four sample hybrid multi-scale repre-
sentations defined in figure 2.

the spatial extent of the sensor. Hence, when performing synthetic experiments, or
in the absence of knowledge about the physical imaging device for real-world images,
we will often add this amount of smoothing prior to the computation of the actual
pyramid.

For a pyramid with a reduction cycle of the form (18), it is straightforward to
compute the subsampling factor ρ as well as the initial amount of pre-smoothing
tstart from the assumption that equality in (40) should hold at the first level after
each sub-sampling stage. If the total amount of smoothing in the composed Smooth+

stage between two sub-sampling stages in (18) corresponds to a variance of h2∆tcycle,,
where for hybrid pyramids generated according to (23) and (24) we have

h2∆tcycle = h2 J K∆t, (41)

then from the resolutions h = 1, h = 2, h = 4 and h = 8 etc, we can form the system
of equations 



1 = ρ
√
tstart

2 = ρ
√
tstart + ∆tcycle

4 = ρ
√
tstart + ∆tcycle + 22∆tcycle

8 = ρ
√
tstart + ∆tcycle + 22∆tcycle + 42∆tcycle

...

(42)

and solve for ρ and ∆tcycle, which gives

ρ =

√
3

∆tcycle
, tstart =

∆tcycle
3

(43)

Table 2 shows values of ρ and tstart computed in this way for the pyramids in figure 7,
as well as a Bin3(12)Pyramid and a Bin5(6)Pyramid object.

For a more general pyramid corresponding to the application of the binomial
DeltaSmooth(L; ∆t,K) operator J times at each pyramid level, we have ∆tcycle =
J K∆t. Thus, for a general Bin3(M)Pyramid consisting of J3 layers of binomial
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three-kernels (11) at each subsampling level (corresponding to ∆t = 1/2 and K = 1
in (23) and (24)), we have

ρBin3(M)Pyramid =
√

6
J3

(44)

while for a general Bin5(M)Pyramid generated from J5 layers of binomial five-
kernels (14) at each subsampling level (corresponding to ∆t = 1/2 and K = 2 in (23)
and (24)), the corresponding subsampling rate is:

ρBin5(M)Pyramid =
√

3
J5

(45)

Pyramid t(i,j+1) − t(i,j) Levels ρ tstart dmean

Bin3Pyramid h2/2 1
√
6 1/6 2

Bin5Pyramid h2 1
√
3 1/3 2

Bin3(6)Pyramid h2/2 6 1 1 1/3
Bin5(3)Pyramid h2 3 1 1 2/3

Bin3(12)Pyramid h2/2 12 1/
√
2 2 1/6

Bin5(6)Pyramid h2 6 1/
√
2 2 1/3

Table 2: The subsampling rate ρ computed for the four sample pyramids with initial pre-
smoothing stages in figure 2 extended with initial pre-smoothing stages according to figure 7.

4.5 Measuring the sampling density in the scale direction

A major aim of a multi-scale representation is to capture the behaviour of image
structures over scale. To measure how stable image structures are over scales as well
as for quantifying how densely we sample the multi-scale representation in the scale
direction, a natural unit to use is effective scale. For the scale-space representation of
a continuous signal, it can be shown that effective scale is given by τ(t) = A log t+B
for some A ∈ R+ and B ∈ R, while for discrete signals a well-founded way of defining
this entity can be expressed in terms of the expected number of local extrema as
function of scale (Lindeberg 1994).

Thus, for a reduction cycle of the form (18), with the Smooth+ operation corre-
sponding to J steps of the DeltaSmooth(L; ∆t,K) operator at each subsampling
level i, we can define the average subsampling density as

dmean =
τ(t(i+1,1)) − τ(t(i,1))

J
(46)

where we for simplicity of presentation shall approximate τ(t) as

τ(t) ≈ log2(t) (47)

For pyramids generated according to (40), (42) and (43), the first scale level after any
subsampling step will be given by

t(i,1) = tstart + ∆tcycle + 22∆tcycle + 24∆tcycle + · · · + 22(i−2)∆tcycle = 4i−1∆tcycle
(48)
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which means that the explicit value for the subsampling density is

dmean =
2
J

(49)

Table 2 lists these values for the four sample pyramids in figure 2 extended with an
initial pre-processing stage according to figure 7. Notably, the Bin3(6)Pyramid and
the Bin5(3)Pyramid pyramid have the same ρ-values, while they differ in dmean.

5 Scale selection in hybrid multi-scale representation

Our next goal is to express a scale selection mechanism within a hybrid pyramid
representation. In previous works, it has been shown that a powerful principle for
automatic scale selection consists of selecting interesting scale levels from the scales
at which (possibly non-linear) combinations of γ-normalized derivatives

∂ξi
= tγ/2 ∂xi , (50)

assume local maxima over scales (see section 2). Intuitively, this corresponds to
selecting scale levels at which the normalized feature response is locally strongest.

General scale invariance property. A basic property of this scale selection
method is as follows: If D(L) is a homogeneous differential expression, and if a local
maximum of a signal f is detected at scale tlocmax, then under a rescaling of f by a
factor s, this local maximum over scale is transferred to the scale level s2tlocmax.

Interpretation in terms of Lp-norms. With respect to the computation of
derivatives of the scale-space representation, it can be shown that γ-normalization
corresponds to normalizing the corresponding γ-normalized Gaussian derivative op-
erators gξm(·; t) = tmγ/2gxm(·; t) to constant Lp-norms

‖gξm(·; t)‖p =
(∫

x∈RD

|gξm(·; t)|pdx
)1/p

(51)

over scales, where the parameter p in the Lp-norm is related to the parameter γ in
the γ-normalized derivative concept according to

p =
1

1 + m
D (1 − γ) , (52)

where m is the order of differentiation and D denotes the dimension of the signal.
Specifically, γ = 1 corresponds to p = 1 and thus to L1-normalization of all the
Gaussian derivative kernels. For orders up to four, the kernel norms are in the one-
dimensional case with with p = 1 given by

N1 =
∫ ∞

−∞
|gξ(u; t)| du =

√
2
π
≈ 0.797885, (53)

N2 =
∫ ∞

−∞
|gξ2(u; t)| du =

√
8
π e

≈ 0.967883, (54)
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N3 =
∫ ∞

−∞
|gξ3(u; t)| du =

√
2
π

(
1 +

4
e3/2

)
≈ 1.51003, (55)

N4 =
∫ ∞

−∞
|gξ4(u; t)| du

=
4
√

3

e3/2+
√

3/2 √π
(
√

3−
√

6 e
√

6 +
√

3 +
√

6) ≈ 2.8006. (56)

while for other (non-integer) p-values, it is straightforward to compute the corre-
sponding integrals numerically. Then, due to separability, the Lp-norm of a partial
Gaussian derivative operator in higher dimensions is given by the product of Lp-
norms of one-dimensional Gaussian derivative kernel along each dimension; in two
dimensions we have

‖∂xmyng(x, y; t)‖p = ‖∂xmg(x; t)‖p‖∂ymg(y; t)‖p (57)

where g(x, y; t) denotes the two-dimensional Gaussian kernel and g(x; t) and g(y; t)
denote one-dimensional Gaussian kernels along the x- and y-directions.

5.1 Defining normalized derivatives with spatial subsampling

For transferring this notion of γ-normalized derivatives from a scale-space represen-
tation to a hybrid pyramid, our next goal is to define normalization parameters αr
such that normalized derivative approximations can be written:

Dxr ,norm = αr Dxr . (58)

Here, two approaches will be considered and evaluated:

• variance-based normalization: multiplying the equivalent derivative approxima-
tion kernel (32) at any level in the pyramid by the variance (36) of the equivalent
convolution kernel at the corresponding level

αr,var =
(
t(i,j)

)γ|r|/2
=

(
det(V (C(i,j)))1/D

)γ|r|/2
(59)

• lp-normalization: requiring the lp-norm of the normalized equivalent derivative
approximation kernel to be equal to the Lp-norm of the corresponding Gaussian
derivative operator ∂ξrg(x; t)

αr,lp‖C(i,j)
xr ‖p = ‖∂ξrg(x; t)‖p (60)

Experiments: Scale-space signatures for Gaussian blobs. For a rotationally
symmetric Gaussian blob with variance t0 in two dimensions f(x, y) = g(x, y; t0) it
can be shown that the evolution over scales of the γ-normalized Laplacian response
at the center of the blob is in the case when γ = 1 given by

(∇2
normL)(0, 0; t) = t (∂xx + ∂yy)L(0, 0; t) =

t

π(t0 + t)2
(61)

and there is a unique maximum over scales in −(∇2
normL)(0, 0; t) at t = t0.
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Figure 8 shows a few examples of such scale-space signatures computed for Gaus-
sian blobs of different sizes, using a separable Bin3(6)Pyramid with an initial pre-
smoothing stage. As can be seen from these graphs, lp-normalization (stars) gives
a closer approximation of the continuous behaviour (the solid curve) than variance-
based normalization (crosses). Moreover, for variance-based normalization there are
a number of “kinks” in the graph at the scales where subsamplings occur. In these
respects, lp-normalization has clear advantages compared to variance-based normal-
ization.

t0 = 10 t0 = 30 t0 = 100

0 10 20 30
0

0.002

0.004

0.006

0.008

0.01

sqrt(t)

Lp−norm
Variance
Continuous

0 10 20 30
0

0.5

1

1.5

2

2.5

3x 10
−3

sqrt(t)

Lp−norm
Variance
Continuous

0 10 20 30
0

0.2

0.4

0.6

0.8

1x 10
−3

sqrt(t)

Lp−norm
Variance
Continuous

Figure 8: Scale-space signatures of the normalized Laplacian response for rotationally sym-
metric Gaussian blobs with variances t0 = 10, t0 = 30 and t0 = 100, respectively, com-
puted using a separable Bin3(6)Pyramid in two dimensions using lp-normalization (stars)
and variance-based normalization (crosses). For reference, the corresponding continuous be-
haviour is shown as well (solid curve).

5.2 Detecting scale-space maxima

A method for complementary scale selection and detection of interest points con-
sists of simultaneously maximizing differential entities over both space and scale. If
DspaceL denotes the differential entity used for spatial selection and if Dscale,normL is
the γ-normalized differential entity used for scale selection, such interest points with
automatic scale selection can be characterized by


∇(DspaceL) = 0
H(DspaceL) negative definite
∂t(Dscale,normL) = 0
∂tt(Dscale,normL) ≤ 0

(62)

where H(DspaceL) denotes the Hessian of DspaceL. In the special case when DspaceL =
Dscale,normL such points are referred to as scale-space maxima of Dscale,normL. Our
next goal is to investigate how the performance of a blob detector with automatic scale
selection depends on the choice of normalization method as well as the subsampling
rate ρ in the pyramid.

To quantify the difference between these two normalization approaches, 1000
Gaussian images were generated containing one blob each with random variance be-
tween t0 = 10 and t0 = 100 and at a random position within a central 128× 128 win-
dow in the image. Local maxima in the normalized Laplacian response were detected
as described in appendix A.1, and the scale-space maximum having the strongest
response was selected. Then, quadratic interpolation over scales was performed as
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described in appendix A.2 to estimate the scale t̂ of the peak in the scale-space sig-
nature as well as its position (x̂, ŷ) with higher accuracy. The relative error in the
estimate was computed

εn = log2

(
t̂n
t0,n

)
(63)

and the performance was measured in terms of the following descriptors

εmean =
1
N

N∑
n=1

εn, εspread =

√∑N
n=1 ε

2
n

N
(64)

where N is the number of blobs. These error measures were then transformed into
relative error factors measured in dimension length σ =

√
t according to

rmean =
√

2εmean , rspread =
√

2εspread (65)

where the ideal case corresponds to rmean = 1 and rspread = 1. In addition, the abso-
lute error in the estimated position (x̂, ŷ) was measured as δ =

√
(x̂− x0)2 + (ŷ − y0)2

and a relative error measure in relation to the scale level σ0 =
√
t0 was defined

as δrel = δ/σ0. This procedure was repeated for different types of separable two-
dimensional pyramids as shown in tables 3–4.

Pyramid type lp-normalization variance-based

rmean rspread rmean rspread

Bin3Pyramid 0.65 1.61 0.62 1.70
Bin5Pyramid 0.78 1.34 0.77 1.36
Bin3(6)Pyramid 0.93 1.11 0.93 1.15
Bin5(3)Pyramid 0.93 1.12 0.92 1.15
Bin3(12)Pyramid 0.96 1.08 0.95 1.13
Bin5(6)Pyramid 0.94 1.10 0.94 1.13

Table 3: Performance of the scale selection method when performing simultaneous spatial
and scale selection based on scale-space maxima of the normalized Laplacian response using
different types of hybrid multi-scale representations and either lp-normalization or variance-
based normalization.

As can be seen from the results, there is a substantial variation in the accuracy
of the estimate local maximum over scales depending on the type of pyramid — the
oversampled Bin3(6)Pyramid and the Bin5(3)Pyramid perform significantly bet-
ter than the regular Bin3Pyramid and the Bin5Pyramid, and further improvement
is obtained if we increase the amount of oversampling by using a Bin3(12)Pyramid
or a Bin5(6)Pyramid. In all of these cases, lp-normalization leads to better perfor-
mance measures than variance-based normalization. For this reason, we will hence-
forth prefer lp-normalization.

Concerning the spatial localization error, we can see how the error decreases as
we increase the degree of oversampling in the hybrid pyramid, by decreasing ρ and
hmax. For the Bin3(6)Pyramid, the Bin5(3)Pyramid, the Bin3(12)Pyramid and
the Bin5(6)Pyramid, the average error in all cases corresponds to a fraction of a
pixel, and true sub-pixel accuracy is obtained for these synthetic data.
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Pyramid type lp-normalization variance-based

δ δrel δ δrel

Bin3Pyramid 1.86 0.32 1.76 0.29
Bin5Pyramid 1.21 0.21 1.21 0.21
Bin3(6)Pyramid 0.18 0.03 0.05 0.01
Bin5(3)Pyramid 0.19 0.03 0.07 0.01
Bin3(12)Pyramid 0.05 0.01 0.03 0.00
Bin5(6)Pyramid 0.05 0.01 0.02 0.00

Table 4: Measures of the spatial localization error when performing simultaneous spatial
and scale selection based on scale-space maxima of the normalized Laplacian response using
different types of hybrid multi-scale representations and either lp-normalization or variance-
based normalization.

5.3 Post-processing the scale-space maxima from a hybrid pyramid

While the previous results show that scale-space maxima can be detected in a hybrid
pyramid using conceptually very clean operations, there is a minor complication with
the previous approach. From the quantitative measure rmean shown in table 3, it
can be seen that there is a certain bias in the scale selection procedure that leads to
an average underestimate of the scale estimate by 4 to 7 % for the sample types of
oversampled hybrid pyramid representations that have been evaluated here.

When analysing the image data in more detail, it can be observed that a major
reason for this scale bias is due to the detection of local maxima when translational
invariance has been violated by the subsampling step. If the position of the original
blob is far away from the closest grid point at the scale levels around the scale level
t0 at which it would be detected without spatial subsampling, the magnitude of the
normalized Laplacian at the available grid points at the desired scale level tk ≈ t0
may be significantly smaller than they would have been without spatial subsampling.
As a result of this, the values of the normalized Laplacian at lower scale levels may
be higher (since the grid sampling there is denser), which in turn means that a lower
scale level is selected than in the ideal case without spatial subsampling (see figure 9).
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Figure 9: Illustration of how detection of local maxima in combination with sub-sampling
may lead to a bias towards smaller scale values.
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To reduce this problem, an additional post-processing stage is applied: If a scale-
space maximum is detected at a scale level where the next coarser scale level is at
lower resolution, then a computation of image values at (one level of) finer resolution
is initiated in a spatial 3× 3 neighbourhood around the scale space maximum at this
pyramid level. If the magnitude of the normalized differential entity is greater at this
scale, then the scale-space maximum is translated to this nearest coarser scale level.
Moreover, a tri-quadratic interpolation is performed in a 3× 3× 3 neighbourhood in
space and scale to estimate the position and the scale of the scale-space maximum
with sub-pixel accuracy.

Table 5 shows the results obtained by adding these two post-processing stages to
the previously methodology. As can be seen from a comparison with table 3, for the
Bin5(3)Pyramid and the Bin5(6)Pyramid the average bias in the scale estimate is
reduced by basically one order of magnitude, from 6–7 % to 0.4–0.6 %. Moreover, the
measure rspread of the spread in the scale values is reduced from 10–12 % to 1–3 %.

Pyramid type lp-normalization variance-normalization

rmean rspread rmean rspread

Bin5Pyramid 1.196 1.250 1.182 1.239
Bin5(3)Pyramid 1.006 1.032 0.999 1.180
Bin5(6)Pyramid 0.996 1.019 0.999 1.082

Table 5: Performance of the scale selection method when adding extended coarser scale
level search and tri-quadratic interpolation to the previously developed method for perform-
ing simultaneous spatial and scale selection based on scale-space maxima of the normalized
Laplacian response (see table 3). The numerical values show the mean rmean and the spread
rspread of the relative error according to (63) for 1000 Gaussian blobs with random variances
between t0 = 10 and t0 = 100.

6 Trade-off: Computational efficiency vs. accuracy

From the experiments on blob detection with automatic scale selection, we have seen
how decreasing the value of ρ improves the accuracy of the results. On the other
hand, increasing ρ improves the computational efficiency, since fewer grid points are
computed. Thus, the hybrid pyramid concept allows us to obtain different trade-offs
between computational efficiency vs. accuracy by varying ρ.

To quantify this trade-off, we started out by measuring the computational ef-
ficiency in the following way: For a given image size of 384*288 pixels, a thresh-
old on the magnitude of the blob response was determined such that around 500
blobs would be detected between tmin = 4 and tmax = 2000 in a Bin5(6)Pyramid.
Keeping this threshold fixed, blobs were then detected using the Bin5Pyramid,
Bin5(2)Pyramid, . . .Bin5(5)Pyramid. A similar experiment was performed using
a lower threshold on the blob response, determined in such a way that about 1000
blobs would be obtained in the Bin5(6)Pyramid. Table 6 shows the computation
time for detecting scale-space extrema in this way, with and without using the addi-
tional localization stage described in section 5.3. To allow for comparison, a denser
estimation of the scale and localization errors for Gaussian blob detection was also
performed for the same types of pyramids and using the methodology described in
section 5.2 — see table 7.
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Pyramid type ρ 500 blobs 1000 blobs

det det+loc det det+loc

Bin5Pyramid 1.73 16 32 17 45
Bin5(2)Pyramid 1.22 23 51 25 79
Bin5(3)Pyramid 1.00 39 66 43 97
Bin5(4)Pyramid 0.87 55 89 63 127
Bin5(5)Pyramid 0.77 72 105 81 153
Bin5(6)Pyramid 0.71 88 121 101 173

Table 6: Computation times (in ms) for blob detection in different hybrid pyramids with and
without the additional post-processing stage for scale localization. The timings have been
performed on a 2.4 GHz DELL PC with a Pentium 4 processor. No hardware specific software
libraries have been used and no extensive code optimization has been performed.

Pyramid type ρ δ (pixels) rspread

Bin5Pyramid 1.73 1.72 1.250
Bin5(2)Pyramid 1.22 0.52 1.050
Bin5(3)Pyramid 1.00 0.29 1.032
Bin5(4)Pyramid 0.87 0.18 1.022
Bin5(5)Pyramid 0.77 0.12 1.022
Bin5(6)Pyramid 0.71 0.11 1.019

Table 7: The spatial and scale localization errors for different subsampling factors ρ using
lp-normalization. The experiments were performed on 1000 Gaussian blobs with random
position and random variances between 10 and 100.

If we regard these measures as representative indicators of the computational effort
and the computational accuracy in the scale estimates, we thus obtain the following
trade-off curves for how ρ affects rspread and the computation time:

scale localization error vs. time spatial localization error vs. time

40 60 80 100 120
1

1.05

1.1

1.15

1.2

1.25

time (ms)

r sp
re

ad

40 60 80 100 120
0

0.5

1

1.5

time (ms)

δ 
(p

ix
el

s)

Figure 10: Trade-offs between the localization error (vertical axis) and the computation time
(horizontal axis) for hybrid pyramids with different values of ρ: (left) scale localization error,
(right) spatial localization error.

20



7 Stability of the scale descriptors

In addition to the abovementioned quantitative experiments on synthetic data with
ground truth, it is of particular interest to investigate the stability of the scale descrip-
tors on real-world images. To investigate this, we performed the following experiment:
An image sequence was taken for a set of uniformly spaced distances to an object.
In each image, blob detection was performed by detecting scale-space extrema of the
normalized Laplacian response in a Bin5(6)-pyramid using lp-normalization. Five
scale-space maxima were selected manually in the first frame, and these features were
matched over time as illustrated in figure 11.

Image frame 0 Image frame 10            

*

ox
+

Figure 11: Two out of eleven images in an image sequence used for testing the stability of
the scale descriptors over time. In each image, a set of detected image features is indicated,
out of which a subset has been matched over time and been used for measuring variations in
scale levels over time. In the last image, five scale-space maxima used for scale measurements
have been marked by corresponding symbols used in figure 12.

For each one of these five features, a straight line of the form 1√
t
= Aτ + B was

fit to the data (with τ denoting time), and the time to collision was estimated by
extrapolating the line to τ → ∞ (see figure 12). Here, the mean value of the five
different estimates of the time to collision was 14.89 time units and the standard de-
viation 0.30 time units. Considering that these estimates are based on measurements
at single points in scale-space, the results show how scale descriptors computed from
a hybrid multi-scale representation can be stable enough to be used as a visual cue
in its own right.
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Figure 12: Graph showing the variation over time of 1/
√
t for five image features matched

over time as a camera approaches an object with uniform velocity.
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8 Summary and discussion

We have presented a general framework for defining subsampled multi-scale represen-
tations in such a way that the theory comprises both traditional pyramid representa-
tions and discrete scale-space as limiting cases. Regular pyramids arise as a special
case when we have only one scale level between any pair of successive subsampling
stages (i.e. a reduction cycle with J = 1), while a regular discrete scale-space rep-
resentation is obtained as the limiting case if we let the scale increment ∆t in the
diffusion smoothing operator tend to zero, while keeping the product of J∆t constant
and equal to the maximum scale level tmax that needs to be accessed. Since this
family of multi-scale representations provides a way to express different trade-offs
between the relative advantages of pyramids and scale-space representation, we refer
to it as hybrid multi-scale representations.

Then, we presented a theory for how scale selection mechanisms based on the
maximization over scales of γ-normalized derivatives can be expressed within this
family of subsampled multi-scale representations. Two ways of defining normalized
derivatives in the presence of spatial subsampling have been studied, and it has been
shown that the approach referred to as lp-normalization performs significantly better
than the possibly more straightforward approach of variance-based normalization.
Specifically, we have quantified how the steepness of a hybrid representation, param-
eterized by the subsampling rate ρ, allows us to obtain different trade-offs between
computational accuracy as enabled by dense sampling and computational efficiency as
promoted by sparse sampling. While we have here focused on separable pyramids, the
extension to non-separable pyramids is straightforward, and allows for more accurate
approximation of rotational symmetry in higher-dimensional scale-spaces.

We have also shown how the scale descriptors computed from a hybrid multi-
scale representation are stable enough to be used as a cue in its own right. Combined
with a multi-scale tracking and recognition method described elsewhere (Laptev &
Lindeberg 2001), an integrated real-time computer vision based on a simplified hybrid
pyramid has been presented in (Bretzner et al. 2002).

A Appendix

A.1 Detection of scale-space maxima in hybrid pyramids

For a regular discrete scale-space representation without spatial subsampling, it is
straightforward to detect scale-space maxima by mere comparisons with the near-
est neighbours. For example, in the two-dimensional case, one compares any point
(x, y; tk) with its 26-neighbours (x+ i, y+ j; tk+l for all x, y, l ∈ {−1, 0,+1}. The use
of different levels of resolution in a subsampled multi-scale representation, however,
complicates the situation somewhat, and in this section we will describe the discrete
implementation that has been used for all the experiments reported in this article.

The discrete detection of scale-space maxima is based on comparisons with spatial
nearest neighbours at:

• the representation at the current scale level f (k)

• the representation at the nearest lower scale level f (k−1)

• the representation at the nearest higher scale level f (k+1)
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For simplicity, we describe the implementation of each of these comparisons in the one-
dimensional case only. The generalization to higher dimensions is straightforward, by
extending the comparison to comparisons over the Cartesian product of the subsets
indicated below for each dimension.

Comparisons at the current scale level: In the one-dimensional case, any image
point x is compared to its nearest neighbours x+ 1 and x− 1. Specifically, the point
x is rejected as a discrete scale-space maximum if either f (k)(x) < f (k)(x − 1) or
f (k)(x) < f (k)(x+ 1).

Comparisons with the nearest lower level: If the representation at the nearest
lower scale level f (k−1) has the same resolution as the current scale level, then compar-
isons are made using the same subset of image points as for the current level. Thus,
the point x is rejected as a scale-space maximum if either f (k)(x) < f (k−1)(x − 1),
f (k)(x) < f (k−1)(x) or f (k)(x) < f (k−1)(x+ 1).

If the representation at the nearest finer scale has a higher resolution than the cur-
rent scale level, then the point x at the current level is projected to a new point xlower

at the lower level of resolution. (Due to the convention that representations at coarser
scales will always be subsets of representations at finer scales, the projection will al-
ways be on an actual grid point.) Then, comparisons are made relative to the nearest
neighbours of xlower. Thus, the point x is rejected as a scale-space maximum if either
f (k)(x) < f (k−1)(xlower − 1), f (k)(x) < f (k−1)(xlower) or f (k)(x) < f (k−1)(xlower + 1).

Comparisons with the nearest higher level: If the representation at the nearest
higher scale level f (k+1) has the same resolution as the current scale level, then com-
parisons are made using the same subset of image points as for the current level. Thus,
the point x is rejected as a scale-space maximum if either f (k)(x) < f (k+1)(x − 1),
f (k)(x) < f (k+1)(x) or f (k)(x) < f (k+1)(x+ 1).

If the representation at the nearest finer scale has a higher resolution than the
current scale level, then two cases can be distinguished: If we use a subsampling
factor of two and project the point x to its nearest higher level, it can either be the
case that the projection falls on a grid point or in the middle between two grid points:

• If the projection to the nearest higher level falls on a grid point xhigher, then
comparisons to the nearest higher level are made only relative to this grid
point. Thus, the point x is rejected as a scale-space maximum if f (k)(x) <
f (k+1)(xhigher).

• If the projection to the nearest higher level falls just between two grid point,
xhigher1 and xhigher2, then the comparisons at the nearest higher level are made
relative to both these grid points. Thus, the point x is rejected as a scale-space
maximum if either f (k)(x) < f (k+1)(xhigher1) or f (k)(x) < f (k+1)(xhigher2).

Accepting scale-space maxima. Finally, the point x is accepted as a scale-space
maximum at level k if it is not rejected by any of the abovementioned comparisons.
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Figure 13: Examples of neighbourhood comparisons situations when detecting scale-space
maxima.

A.2 Sub-pixel estimation of local extrema

In several algorithms presented in this paper, the following straightforward procedure
is used for estimating the position of a local maximum in a discrete signal by sub-
pixel accuracy. Assume that a discrete local maximum has been found at index n
in a discrete vector (f1, f2, . . . , fn−1, fn, fn+1, . . . , fN ) in other words fn ≥ fn−1 and
fn ≥ fn+1. Moreover, assume that the discrete vector is associated with attribute
values (t1, t2, . . . , tn−1, tn, tn+1, . . . , tN ) where ti < ti+1. Then, we can interpolate
the data (tn−1, fn−1), (tn, fn) and (tn+1, fn+1) by a quadratic polynomial. Centering
these values around (tn, fn){

gn−1 = fn−1 − fn
un−1 = tn−1 − tn

{
gn+1 = fn+1 − fn
un+1 = tn+1 − tn (66)

and interpolating the pairs (un−1, gn−1), (0, 0) and (un+1, gn+1) by

g(u) = A
u2

2
+Bu+ C (67)

results in C = 0 and

A =
2

un−1 un+1(un−1 − un+1)
(un+1 gn−1 − un−1 gn+1) (68)

B =
1

un−1 un+1(un−1 − un+1)
(
u2
n−1 gn+1 − un+1 gn−1

)
(69)

Thus, we obtain the following estimate of the position

tmax = tn − B

A
(70)

and the value

fmax = fn − B2

2A
(71)

of the local maximum. Of course, a similar approach applies to a local minimum
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