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Abstract

This article presents an experimental study of the inuence of velocity adap-
tation when recognizing spatio-temporal patterns using a histogram-based sta-
tistical framework. The basic idea consists of adapting the shapes of the �lter
kernels to the local direction of motion, so as to allow the computation of image
descriptors that are invariant to the relative motion in the image plane between
the camera and the objects or events that are studied. Based on a framework
of recursive spatio-temporal scale-space, we �rst outline how a straightforward
mechanism for local velocity adaptation can be expressed. Then, for a test
problem of recognizing activities, we present an experimental evaluation, which
shows the advantages of using velocity-adapted spatio-temporal receptive �elds,
compared to directional derivatives or regular partial derivatives for which the
�lter kernels have not been adapted to the local image motion.
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1 Introduction

A recent approach for recognition consists of computing statistical descriptors of
receptive �eld responses. In particular, histogram based schemes of derivative oper-
ators have emerged as an interesting alternative for formulating recognition schemes
for static as well as time-dependent image data (Swain and Ballard, 1991; Schiele
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and Crowley, 2000; Chomat, de Verdiere, Hall and Crowley, 2000a; Hall, de Verdiere
and Crowley, 2000; Schneiderman and Kanade, 2000; Chomat, Martin and Crowley,
2000b; Zelnik-Manor and Irani, 2001). Computing responses of local spatio-temporal
receptive �elds involves �ltering in both space and time. This naturally rises the
question of how the existing framework for spatial �ltering can be extended to the
spatio-temporal domain.

When analysing spatio-temporal image data, one observation that can be made is
that temporal events can often be characterized by their extents over time in a similar
manner as spatial structures have their characteristic scales in space. This motivates
and emphasizes the need for analysing spatio-temporal data at di�erent scales, both
with respect to time and space (Witkin, 1983; Koenderink, 1984; Koenderink, 1988;
Lindeberg, 1994; Lindeberg and Fagerstr�om, 1996; Florack, 1997; Lindeberg, 1997a).

The temporal domain, however, also has a number of speci�c properties, which
di�er from spatial data, and which must be taken into account explicitly. A basic
constraint on real-time processing is that the time direction is causal, and real-time
algorithms may only access information from the past (Koenderink, 1988; Lindeberg
and Fagerstr�om, 1996). Another di�erence concerns the classes of characteristic
transformations that inuence the data. Whereas perspective transformations have
a high inuence on the image data in the spatial image domain, one of the most
important sources of changes in the temporal dimension is due to motion between
the observer and the patterns that are studied. This is illustrated in �gure 1, where
the spatio-temporal pattern of a walking person is inuenced by the relative motion
of the camera (�gures 1(b){(c)). If separable spatial �ltering is extended to the tem-
poral domain, we observe that �lter responses are highly dependent on the relative
motion between the person and the camera (�gures 1(d){(f)).

When interpreting image data, it is important to base the analysis on image
representations that are invariant to the external imaging conditions. Hence, it is
important to construct representations of spatio-temporal patterns that are inde-
pendent of the relative motion between the patterns and the observer. Previous
work has addressed this problem by �rst stabilizing patterns of interest in the �eld
of view, and then computing spatio-temporal descriptors using a �xed set of �lters
(Zelnik-Manor and Irani, 2001); see also (Irani, Anandan and Hsu, 1995) for related
stabilization approaches. Camera stabilization, however, may not always be avail-
able, for example, in situations with multiple moving objects, moving backgrounds
or in cases where initial segmentation of the patterns of interest cannot be done
without (preliminary) recognition.

A main aim of this work is to de�ne and compute spatio-temporal descriptors
that compensate for the relative motion between the pattern and the observer and
do not rely on external camera stabilization. This is performed by local velocity
adaptation of receptive �elds. In Section 2 we �rst introduce velocity-adapted �l-
tering using the framework of spatio-temporal scale-space. Then in section 3, the
mechanism for performing local velocity adaptation is described. By integration
with a histogram-based statistical framework in section 4, we then consider a test
problem of recognizing activities and show how velocity adaptation results in a con-
siderable increase in recognition performance compared to two other receptive �eld
representations not involving velocity adaptation. Section 5 concludes the paper
with a summary and discussion.
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Figure 1: Spatio-temporal image of a walking person (a) depends on the relative mo-
tion between the person and the camera (b)-(c). If this motion is not taken into account,
spatio-temporal �ltering (here, the second order spatial derivative) results in highly di�erent
responses as illustrated in (d) and (e). Manual stabilization of the pattern in (e) shown in
(f) makes the di�erence more explicit for comparisons with (d).

1.1 Related work

Velocity adaptation of spatio-temporal receptive �elds follows the idea of shape
adaptation in the spatial domain, which has previously been considered by (Lin-
deberg and Garding, 1994; Ballester and Gonzalez, 1998; Florack, Niessen and
Nielsen, 1998; Weickert, 1998; Almansa and Lindeberg, 2000; Scha�alitzky and Zis-
serman, 2001; Mikolajczyk and Schmid, 2002). In the spatio-temporal domain,
adaptive spatio-temporal �lters have been studied by (Lindeberg, 1997a; Nagel and
Gehrke, 1998; Lindeberg, 2002); see also (Black, 1994; Guichard, 1998). Nagel and
Gehrke (Nagel and Gehrke, 1998) proposed an adaptation scheme close to ours and
used it for robust estimation of optic ow.

With regard to recognition, this work relates to histogram-based methods �rst
proposed in the spatial domain by (Swain and Ballard, 1991) using color histograms
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computed from single pixel responses. Extensions to receptive �eld histograms were
later presented by (Schiele and Crowley, 2000; Chomat et al., 2000a; Hall et al.,
2000; Schneiderman and Kanade, 2000). Speci�cally, combinations of automatic
scale selection in the spatial domain (Lindeberg, 1998) with histogram based recog-
nition schemes have been presented by (Chomat et al., 2000a; Hall et al., 2000).
In the spatio-temporal domain, histogram-based approaches have been used for the
recognition of activities by (Chomat et al., 2000b; Zelnik-Manor and Irani, 2001).
Here, we build upon this work and show how the performance of spatio-temporal
recognition schemes can be increased by velocity adaptation.

2 Spatio-temporal scale-space

The image data we analyse is a spatio-temporal image sequence, in the continuous
case modeled as a function f : R2 �R ! R or in the discrete case as f : Z2�Z! Z.
From this signal, a separable spatio-temporal scale-space L is computed by separable
convolution with a set of spatial smoothing kernels g(x; y; �2) with variances �2 and
a set of temporal smoothing kernels h(t; �2) with variances �2. For continuous data,
the natural choice of a spatial smoothing kernel is the Gaussian kernel (Witkin,
1983; Koenderink, 1984; Lindeberg, 1994; Florack, 1997). Regarding continuous
time, we may model the temporal smoothing either by a non-causal Gaussian kernel,
or as a causal Gaussian kernel on a logarithmically transformed temporal domain
(Koenderink, 1988; Lindeberg and Fagerstr�om, 1996). For discrete data, a canonical
spatial scale-space concept originates from the discrete analogue of the Gaussian
kernel

g(x; y; �2) = e�2�
2

Ix(�
2) Iy(�

2) (1)

where Ix and Iy denote the modi�ed Bessel functions of integer order (Abramowitz
and Stegun, 1964). Regarding discrete time, a natural and computationally eÆcient
scale-space representation can be computed by coupling �rst-order recursive �lters
in cascade (Lindeberg, 1994; Lindeberg and Fagerstr�om, 1996)

Lout(x; y; t) =
1

1 + �
(Lin(x; y; t) + �Lout(x; y; t� 1)): (2)

The temporal mean of the corresponding �lter is � and the temporal variance is
�2. Thus, by coupling k such �lters in cascade, we obtain a �lter with mean mk =Pk

i=1 �i and variance �2k =
Pk

i=1 �
2
i + �i.

It can be shown that if for a given variance �2 we let �i = �2=K become succes-
sively smaller by increasing the number of �ltering steps K, then the �lter kernel
approaches the Poisson kernel (Lindeberg, 1997a), which corresponds to the canon-
ical temporal scale-space concept having a continuous scale parameter on a discrete
temporal domain. Another practical advantage of the recursive �ltering scheme
in (2) is that it enables the computation of temporal scale-space representations
without need of bu�ering previous time frames.

2.1 Transformation properties under motion

To describe spatio-temporal smoothing step, we will henceforth use covariance ma-
trices of �lter kernels. For a separable smoothing kernel, with a spatial variance �2
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and a temporal variance �2, the covariance matrix is diagonal:
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A limitation of using a separable scale-space for analysing motion patterns, however,
originates from the fact that this scale-space concept is not closed under 2-D motions
in the image plane. For a 2-D Galilean motion
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the covariance matrix of the smoothing kernel transforms as (Lindeberg, 1997a;
Lindeberg, 2002)
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and spatio-temporal derivatives transform according to

@x0 = @x @y0 = @y @t0 = vx @x + vy @y + @t: (6)

Hence, if we consider separable smoothing kernels only and if we do not take the
transformation property of spatio-temporal derivatives into explicit account, it will
not be possible to perfectly match the spatio-temporal scale-space representations
for di�erent amounts of motion.

2.2 Scale-space with velocity adaptation

A natural way of de�ning a scale-space that is closed under Galilean motion in the
image plane, is by considering a scale-space representation that is parameterized
by the full family of (positive de�nite) covariance matrices (Lindeberg, 1997a; Flo-
rack, 1997; Lindeberg, 2002). In terms of implementation, there are two basic ways
of computing such a scale-space | either by transforming the smoothing kernels
themselves, or by transforming the input image prior to smoothing (see �gure 2).
In this work, the latter approach is taken, and for reasons of simplicity and compu-
tational eÆciency, we restrict the set of image velocities to integer multiples of the
pixel size. Thus, in combination with spatial smoothing

L(0)(x; y; t; �2) = g(x; y; �2) � f(x; y; t); (7)

a set of velocity-adapted time-recursive smoothing steps is computed according to

L(k+1)(x; y; t; �2) =
1

1 + �k
(L(k)(x; y; t; �2)+�kL

(k+1)(x�vx; y�vy; t�1; �
2));

(8)
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Figure 2: A pre-requisite for perfect matching of spatio-temporal receptive �eld
responses for di�erent amounts of motion is that the image representation is closed
under motions in the image domain. The aim of the velocity-adaptation mechanism
is to allow for such closedness, and to permit the construction of a velocity invariant
recognition scheme.

where k represents the level of temporal smoothing corresponding to the convolution
with temporal kernels with variances �2k . The scale-space concept we make use of,
will hence be parameterized by a spatial scale �2, a temporal scale �2 and a set of
discrete image velocities (vx; vy)

T .
The result of applying such velocity-adapted �lters to spatio-temporal image

data is illustrated in �gure 3. Here a synthetic pattern with one spatial and one
temporal dimension has been �ltered using di�erent values of velocity parameter v.
As can be seen, depending on the value of v, the �ltering is able to emphasize either
the moving pattern (�g. 3(b)) or the stationary background (�g. 3(c)).

tim
e 
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v = �1

(c)
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Figure 3: The e�ect of global velocity adaptation for a synthetic spatio-temporal pattern in
(a). (b)-(d): convolution of (a) with spatio-temporal second-order derivative operators with
sx = 32, st = 32 and velocity parameters v = �1; 0; 1, respectively. Note, that depending on
the velocity parameter, global velocity adaptation emphasizes either the moving pattern (b)
or the stationary pattern (c).
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3 A mechanism for local velocity adaptation

If we want to interpret events independently of their relative motion to the camera,
one approach is to adapt the receptive �elds globally with respect to the velocity of
the events in the �eld of view. This approach also corresponds to camera stabilization
followed by non-adapted �ltering. As illustrated in �gure 3(b), the result of �ltering
with globally adapted receptive �elds with v = �1 indeed enhances the structure
of the moving pattern. However, the stationary pattern is suppressed and it follows
that global velocity adaptation is not able to handle multiple motions. Moreover,
global velocity adaptation is likely to fail if the external velocity information is
incorrect (�gure 3(d)).

To address these problems, we propose to make use of local velocity adaptation
of receptive �elds. The main idea is to obtain information about motion in the local
neighborhood and to use this information for velocity adaptation of receptive �elds
in the same neighborhood.

Before proceeding to speci�c schemes for local velocity adaptation in space-time,
however, let us observe that there are two main approaches for handling multiple
image velocities. One approach is to consider the entire ensemble of receptive �elds
over image motions as the representation, while the other is to select receptive �eld
outputs corresponding to a single motion estimate. From basic arguments, the �rst
approach can be expected to be more robust in critical situations (compare with
biological vision systems), while the second approach followed in this work could be
expected to be more accurate and also computationally more eÆcient on a serial
architecture.

The mechanism we will use for accomplishing local velocity adaptation is inspired
by related work on automatic scale selection (Lindeberg, 1998) extended to a multi-
parameter scale-space (Lindeberg, 1997a) as well as by motion energy approaches for
computing optic ow (Adelson and Bergen, 1985; Heeger, 1988). Given a set of image
velocities, the normalized Laplacian response is computed for each image velocity in
a motion compensated frame (8) in the spatio-temporal scale-space. Then, for each
scale, a motion estimate is computed from the velocity (vx; vy)

T that maximizes the
normalized derivative response

(v̂x; v̂y)
T (x; y; t)(k) = argmaxvx;vy

�
r2

normL
(k)(x; y; t; �2; vx; vy)

�2
; (9)

where r2
norm = �2(@xx + @yy) is a scale-normalized Laplacian operator in space.

This approach is equivalent to the application of a set of velocity-adapted Laplacian
operators (�gure 4) at each spatio-temporal scale, and selecting the motion estimate
from the spatio-temporal �lter parameters that gives the maximum response. While
one could also consider the use of optic ow estimation schemes for computing the
velocity estimates (Nagel and Gehrke, 1998), a main reason why we here consider
maximization of normalized receptive �eld responses over image velocities is that a
similar mechanism, when extended to maximization over spatial scales and temporal
scales, can also be used for performing simultaneous automatic selection of spatial
scales and temporal scales (Lindeberg, 1997b; Lindeberg, 1998).

Figure 5 illustrates the results of local velocity adaptation for a synthetic spatio-
temporal pattern (�g. 5(a)) and its Galilean transformation (�g. 5(d)). From the
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Figure 4: Spatio-temporal �lters Lxx computed from a velocity-adapted spatio-temporal
scale-space for a 1+1{D image pattern, for di�erent values of the velocity parameter v, the
spatial scale �2 and the temporal scale �2.
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Figure 5: Results of �ltering original patterns in (a) and (d) using the proposed local

velocity adaptation are illustrated in (b) and (e) respectively. The orientation of the ellipses
in (c) and (f) show the chosen velocity at each point of the pattern. Note that �ltering
with local velocity adaptation preserves the details of the moving and stationary pattern.
The similarity of the �lter responses in (b) and (e) also illustrates the independence of the
�ltering results with respect to the amount of camera motion.
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responses of velocity-adapted receptive �elds and from the ellipses displaying the
selected orientation of �lters in space-time, it is apparent that the proposed �ltering
scheme adapts to the local motion and enhances structures both in the moving
pattern and in the static background. Moreover, by comparing results in �gures 5(e)
and 5(f), we can visually con�rm the invariance of locally adapted receptive �eld
responses with respect to the Galilean transformation of the pattern or, equivalently,
to the relative motion between the pattern and the camera.

Application of the local velocity adaptation to a sequence with a walking person
is illustrated in �gure 6. Note, that �ltering here has been done in three dimensions
while for the purpose of demonstration, the results are shown only for one x� t-slice
of a spatio-temporal cube (see �g. 1). As for the synthetic pattern above, we ob-
serve successful adaptation of �lter kernels to the motion structure of a gait pattern
(�gures 6(c)-(d)). The results in �gures 6(e)-(g) also demonstrate approximative
invariance of �lter responses with respect to camera motion. The desired e�ect of
the proposed local velocity adaptation is especially evident when these results are
compared to the results of separable �ltering as shown in �gures 1(e)-(g).

            

(a)

            

(b)
            

(c)

            

(d)
            

(e)

            

(f)
            

(g)

Figure 6: Spatio-temporal �ltering with local velocity adaptation applied to a gait pattern
recorded with a stabilized camera (a) and a stationary camera (b) (see �g. 1 for comparison).
(c)-(d): velocity adapted shape of �lter kernels; (e)-(f): results of �ltering with a second-
order derivative operator; (g): warped version of (f) showing high similarity with (e).
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3.1 Comparison with steerable �lters

When computing spatio-temporal derivatives, we perform velocity-adaptation of
both, the shapes of smoothing kernels and the derivatives according to (5) and (6).
An alternative approach that is more eÆcient but less accurate consists of separa-
ble smoothing step followed by adaptation of the derivatives only. Such a scheme is
closely related to steerable �lters (Freeman and Adelson, 1991) for computing higher-
order spatial derivatives in a rotationally invariant way. To di�erentiate these two
approaches, we will refer to them as velocity-adapted �ltering and velocity-steered

�ltering.
To compare these two alternatives and to illustrate the importance of shape adap-

tation of �lter kernels, we will here compare results of �ltering applied to a synthetic
prototype of a moving spatio-temporal impulse. The original signal is shown in �g-
ure 7(a) in two spatial and one temporal dimensions. Figure 7(b) illustrates the
result of computing a partial spatio-temporal derivative @xxt using velocity-adapted
�ltering. With positive and negative �lter values represented by di�erent colors,
we can visually con�rm the correctness of the resulting shape. On the contrary,
computation of the same derivative using velocity-steered �ltering (�g. 7(c)) results
in a di�erent and incorrect shape. A similar result is obtained when �ltering is
performed without adaptation of neither the smoothing kernels nor the derivatives
(�g. 7(d)).

In the next section we apply these �ltering schemes to a recognition task and
give their quantitative comparison as well as emphasize the importance of velocity-
adapted �ltering in practice.

Original signal

t

y
x

(a)

Velocity-adapted �ltering

t

y
x

(b)

Velocity-steered �ltering

t

y
x

(c)

Non-adapted �ltering

t

y
x

(d)

Figure 7: (a): Prototype spatio-temporal blob signal with velocity vx = 2. (b)-(d): Re-
sponses to the @xxt-derivative operator when using (b): velocity-adapted �lters; (c): velocity-
steered �lters; (d): non-adapted �lters. A correct shape of the �lter response is obtained
only for the case of velocity-adapted �ltering.
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4 Histogram based recognition

Following (Schiele and Crowley, 2000; Chomat et al., 2000b; Chomat et al., 2000a;
Zelnik-Manor and Irani, 2001), let us represent image patterns by histograms of
receptive �eld responses. For this purpose, we use mixed spatio-temporal derivative
operators up to order four and collect histograms of these at di�erent spatial and
temporal scales. For simplicity, we restrict ourselves to 1-D histograms for each
type of �lter response. To achieve independence with respect to the direction of
motion (left/right or up/down) and the sign of the spatial grey-level variations, we
simplify the problem by only considering the absolute values of the �lter responses.
Moreover, to emphasize the parts of the histograms that correspond to stronger
spatio-temporal responses, we also weight the accumulated histograms H(i) by a
function f(i) = i2 resulting in h(i) = i2H(i).

4.1 Experimental setup

As a test problem we have chosen a data set with image sequences containing people
performing actions of type walking W1:::W4 and exercise E1:::E4 as illustrated in
�gure 8. Some of the sequences were taken with a stationary camera, while the
others were recorded with a manually stabilized camera. Each of these 4 sec. long
sequences were subsampled to a spatio-temporal resolution of 80�60�50 pixels and
convolved with a set of spatio-temporal smoothing kernels for all combinations of
seven velocities vx = �3:::3, �ve spatial scales �2 = f2; 4; 8; 16; 32g and �ve temporal
scales �2 = f2; 4; 8; 12; 16g.

W1 W2 W3 W4 E1 E2 E3 E4

Figure 8: Test sequences of people walking W1{W4 and people performing an exercise E1{
E4. Whereas the sequences W1,W4,E1,E3 were taken with a manually stabilized camera,
the other four sequences were recorded using a stationary camera.
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For each spatial scale �i, velocity adaptation was performed according to (9)
at scale level �i+1. Since in our examples the relative camera motion was mostly
horizontal, we maximized (9) over vx only. The result of this adaptation for the
sequences W2 and E1 is illustrated in �g. 9.

(a)

(c)

(b)

(d)

Figure 9: Results of local velocity adaptation for image sequences recorded with a manually
stabilized camera (a), and with a stationary camera (b). Directions of cones in (c)-(d)
correspond to the velocity chosen by the proposed adaptation algorithm. The size of the

cones corresponds the value of the squared Laplacian
�
(@xx + @yy)L(x; y; t; �; �)

�2
at the

selected velocities.

To represent the patterns, we accumulated histograms of derivative responses
for each combination of scales and each type of derivatives. For the purpose of eval-
uation, separate histograms were accumulated over (i) velocity-adapted derivative
responses; (ii) velocity-steered directional derivative responses and (iii) non-adapted
partial derivative responses computed at velocity v = 0.

4.2 Discriminability of histograms

Figure 10 illustrates the means and the variances of the histograms computed sep-
arately for both of the classes. As can be seen from �gures 10(a)-(c), velocity-
adaptation of receptive �elds results in discriminative class histograms and low vari-
ation of histograms computed for the same class of activities. On the contrary, the
high variations in the histograms in �gures 10(d)-(f) and �gures 10(g)-(i) clearly
indicate that activities are much harder to recognize when using velocity-steered or
non-adapted receptive �elds.

Whereas �gure 10 presents histograms for three types of derivatives Lxxt, Lxyt
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and Lyyt at scales �
2 = 4, �2 = 4 only, we have observed a similar behavior for other

derivatives at most of the other scales considered.
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Histograms of velocity-steered directional derivatives

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Lxxt

(d)

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Lxyt

(e)

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Lyyt

(f)

Histograms of non-adapted partial derivatives
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Figure 10: Means and variances of histograms for the activities \walking" (red) and \ex-
ercise" (blue). (a)-(c): histograms of velocity-adapted derivatives Lxxt, Lxyt, Lyyt; (d)-(f):
histograms of velocity-steered directional derivatives Lxxt, Lxyt, Lyyt; (g)-(i): histograms of
non-adapted partial derivatives Lxxt, Lxyt, Lyyt. As can be seen, the velocity-adapted �lter
responses give considerably better possibility to discriminate the motion patterns compared
to velocity-steered or non-adapted �lters.

4.3 Discriminability measure

To quantify these results, let us measure the distance between pairs of histograms
(h1,h2) de�ned according to the �2-divergence measure

D(h1; h2) =
X
i

(h1(i) � h2(i))
2

h1(i) + h2(i)
; (10)

where i is the index to the histogram bin. To evaluate the distance between a
pair of sequences, we accumulate di�erences of histograms over di�erent spatial
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and temporal scales as well as over di�erent types of receptive �elds according to
d(h1; h2) =

P
l;�;� D(h1; h2), where l denotes the type of the spatio-temporal �lters,

�2 the spatial scale and �2 the temporal scale.
To measure the degree of discrimination between di�erent actions, we compare

the distances between pairs of sequences that belong to the same class dsame with
distances between sequences of di�erent classes ddiff . Then, to quantify the average
performance of the velocity adaptation algorithm, we compute the mean distances
�dsame, �ddiff for all valid pairs of examples and de�ne a distance ratio according to
r = �dsame= �ddiff . Hence, low values of r indicate good discriminability, while r close
to one corresponds to a performance no better than chance.

Lxt Lyt Ltt Lxtt Lytt Lxxt Lxyt Lyyt Lxxtt Lxytt Lyytt
0.3

0.4

0.5

0.6

0.7

0.8

0.9
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1.1

Velocity adaption
Steerable, v=0   
Velocity v=0     

Figure 11: Distance ratios computed for di�erent types of derivatives and for velocity-
adapted (solid lines), velocity-steered (point-dashed lines) and non-adapted (dashed lines)
�lter responses. As can be seen, local velocity adaptation results in lower values of the
distance ratio and therefore better recognition performance compared to steered or non-
adapted �lter responses.

Figure 11 shows distance ratios computed separately for di�erent types of recep-
tive �elds. The lower values of the curve corresponding to velocity-adaptation clearly
indicate the better recognition performance obtained by using velocity-adapted �l-
ters compared to velocity-steered or non-adapted �lters. Computing distance ratios
over all types of derivatives and scales used, results in the following distance ratios:
radapt = 0:64 when using velocity-adapted �lters, rsteered = 0:81 using velocity-
steered �lters, and rnon�adapt = 0:92 using non-adapted �lters.

4.4 Dependency on scales

When analysing discrimination performance for di�erent types of derivatives and
di�erent scales, we have observed an interesting dependency of the distance ratio on
the spatial and the temporal scales. Figures 12(a)-(b) show how the distance ratio
has a clear minimum over scales at �2 = 2, �2 = 8 indicating that these scales give
rise to the best discrimination for patterns considered here. In particular, it can
be noted that �2 = 8 approximately corresponds to the temporal extent of one gait
cycle in our examples.

Computation of distance ratios for the selected scale values results in radapt =
0:41 when using velocity-adapted �lters, rsteered = 0:71 using velocity-steered �lters
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and rnon�adapt = 0:79 using non-adapted �lters. The existence of such preferred
scales motivates approaches for automatic selection of both spatial (Lindeberg, 1998)
and temporal (Lindeberg, 1997b) scales.
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Figure 12: Evolution of the distance ratio r over spatial scales (a) and temporal scales (b).
Minima over scales indicate scale values with the highest discrimination ability.

5 Summary and discussion

We have addressed the problem of representing and recognizing events in video in
situations where the relative motion between the camera and the observed events
is unknown. Experiments on a test problem of recognizing activities show that the
use of a velocity adaptation scheme results in a clear improvement in the recog-
nition performance compared to using either (steerable) directional derivatives or
regular partial derivatives computed from a non-adapted spatio-temporal �ltering
step. Whereas for the treated set of examples, recognition could also have been
accomplished by using a camera stabilization approach, a major aim here has been
to consider a �ltering scheme that can be extended to recognition in complex scenes,
where reliable camera stabilization may not be possible, i.e. scenes with complex non-
static backgrounds or multiple events of interest. Full-edged recognition in such
situations, however, requires more sophisticated statistical methods for recognition
than the present histogram-based scheme. We plan to investigate such extensions
in future work.

Less restricted to this speci�c visual task, the results of our investigation also in-
dicate how, when dealing with �lter-based representations of spatio-temporal image
data, velocity adaptation appears as an essential complement to more traditional
approaches of using separable �ltering in space-time. For the purpose of performing
a clean experimental investigation, we have in this work made use of an explicit
velocity-adapted spatio-temporal �ltering for each image velocity. While such an
implementation has interesting qualitative similarities to biological vision systems
(where there are two main classes of receptive �elds in space-time | separable �l-
ters and non-separable ones (DeAngelis, Ohzawa and Freeman, 1995)), there is a
need for developing more sophisticated multi-velocity �ltering schemes for eÆcient
implementations in practice.
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Finally, future work should also address the problem of selecting appropriate
scales in both the spatial and the temporal domains. The preliminary results in
section 4.4 indicate the potential of performing joint scale selection in space-time
for increasing the recognition performance.
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