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Abstract. This paper develops and investigates a new approach for
evaluating feature based object hypotheses in a direct way. The idea is
to compute a feature likelihood map (FLM), which is a function nor-
malized to the interval [0; 1], and which approximates the likelihood of
image features at all points in scale-space. In our case, the FLM is de�ned
from Gaussian derivative operators and in such a way that it assumes its
strongest responses near the centers of symmetric blob-like or elongated
ridge-like structures and at scales that re
ect the size of these struc-
tures in the image domain. While the FLM inherits several advantages
of feature based image representations, it also (i) avoids the need for
explicit search when matching features in object models to image data,
and (ii) eliminates the need for thresholds present in most traditional
feature based approaches. In an application presented in this paper, the
FLM is applied to simultaneous tracking and recognition of hand models
based on particle �ltering. The experiments demonstrate the feasibility
of the approach, and that real time performance can be obtained by a
pyramid implementation of the proposed concept.

1 Introduction

When interpreting image data, the purpose of �ltering is to emphasize and ab-
stract relevant properties in the data while suppressing others. Common ap-
proaches for computing image descriptors involve either (i) the computation of
sparse sets of image features (feature detection) or (ii) the computation of dense
maps of �lter responses (direct methods).

In this respect, a main strength of feature based approaches is that they
provide an abstracted and compact description of the local image shape. Image
features are usually invariant to absolute intensity values and can selectively
represent characteristic visual properties of image patterns. In particular, using
multi-scale feature detection it is possible to estimate the size of image structures
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Fig. 1. The result of computing the proposed feature likelihood map on an image of a
hand. At any point (x; y; t) in scale-space, this function approximates the likelihood of
symmetric blob-like or ridge-like image structures. In this �gure, the feature likelihood
map is shown for three scale levels t = 4; 48; 629, which (here) are characteristic
scales for the background, the �ngers and the palm of a hand, respectively. Note that
the response of the map is well localized in space and scale and that the response is
invariant to the local amplitude of the image structures.

and to represent image patterns in a scale-invariant manner. Relations between
features in terms of positions, scales, types and other attributes may then be
e�ectively used for recognizing objects and image patterns.

The use of features for image representation, however, also has drawbacks.
One is that image features may depend on thresholds used for separating relevant
image structures from noise. This may make the results unstable for patterns
with low contrast. Another disadvantage is that algorithms involving matching
of sparse points in image space usually lead to combinatorial complexity.

The aim of this paper is to develop a dense image representation, which pre-
serves the advantages of feature-based representation, while avoiding the prob-
lems of local thresholding and selection of sparse image features for matching.
The idea is to compute a function on a multi-scale feature space, which is nor-
malized to the interval [0; 1] and thus independent of the local contrast of the
grey-level pattern. Moreover, the function will be de�ned in such a way that its
response is localized in space and scale, with the strongest responses near the
centers of blob-like and ridge-like structures. The proposed function, referred
to as a feature likelihood map, can be used for approximating the likelihood of
image features. Figure 1 illustrates this concept for an image of a hand.

A main reason behind this construction is to provide means for direct veri�-
cation of feature-based object hypotheses. Given a hypothesis, the veri�cation on
such a map does not require explicit search and will therefore be highly eÆcient.
In particular, this approach is convenient for object tracking and object recogni-
tion based on the recently developed approach of particle �ltering. In this paper,
the feature likelihood map will indeed be used for simultaneous hand tracking
and hand recognition. The viability of the approach will be demonstrated with
a pyramid implementation, which gives real time performance.
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2 The feature likelihood map

The aim of the proposed likelihood map is to emphasize speci�c structures in the
image domain, and to localize them in space and scale. To study this problem, we
initially restrict ourselves to symmetric blob-like and elongated ridge-like image
features. The general ideas behind this construction, however, are more general
and apply to many other aspects of local image structures.

A general requirement on the proposed feature likelihood map, M : R2 �
R+ 7! R, is that for a blob of size t0 located at a point (x0; y0) in space, M
should satisfy the following basic properties: (i)M should assume its maximum
value one at (x0; y0; t0), (ii) M should assume high values in a small neigh-
borhood of (x0; y0; t0), and (iii)M should decrease monotonically towards zero
elsewhere. Additionally, M should not give preference to blobs of any partic-
ular size, position or amplitude, and should thus be invariant to scalings and
translations in the image as well as local changes of the image contrast.

2.1 Scale-space representation

For any continuous signal f : RD 7! R, the linear scale-space representation
L : RD � R+ 7! R is de�ned as the convolution of f with Gaussian kernels g

L(�; t) = g(�; t) � f(�); (1)

where g(x; t) = exp(�(x21 + ::: + x2D)=2t)=(2�t)
D=2, and x = (x1; :::; xD)

T . One
reason for considering such a representation is that the Gaussian derivatives

Lxm(�; t) = @xm(g � f) = (@xmg) � f = g � (@xmf) (2)

(where m denotes the order of di�erentiation) constitute a canonical set of �lter
kernels given natural symmetry requirements on a visual front-end (Witkin 1983,
Koenderink and van Doorn 1992, Lindeberg 1994, Florack 1997). Another reason
is that the evolution over scales of a signal and its Gaussian derivatives provides
important cues to local image structure. One such property, which we will make
particular use of here, is based on the behavior over scales of 
-normalized Gaus-
sian derivative operators (Lindeberg 1998)

L�m;
�norm(�; t) = tm
=2Lxm(x; t): (3)

where � = x=t
=2 denotes 
-normalized coordinates. It can be shown both theo-
retically and experimentally that the scales at which such normalized di�erential
entities assume local maxima over scales re
ect characteristic scales of local im-
age patterns and can thus be used for, for example, local size estimation.

2.2 Likelihood map in the 1-D case

When we construct the feature likelihood map, let us �rst consider the one-
dimensional case and take a Gaussian function f(x) = g(x; x0; t0) as a prototype
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for a blob of size t0 centered at x0 (see Figure 2(a)). Using the semi-group
property of the Gaussian kernel, it follows that the scale-space representation of
f is L(x; t) = g(x; x0; t+ t0), and its 
-normalized second-order derivative:

L��(�; t) = t
2Lxx(x; t) = �
t
2(t+ t0 + (x� x0)

2)p
2�(t+ t0)5

e
�

(x�x0)
2

2(t+t0) : (4)

If we choose 
2 = 3=4, then it can be shown (Lindeberg 1998) that L�� assumes
a local extremum over space and scale at the point (x0; t0) in scale-space that
corresponds to the position x0 and the size t0 of the original blob f . Thus, L2��
satis�es some of the required properties of the desired likelihood map M, how-
ever, L2�� is not invariant to the local amplitude of the signal (see Figure 2(b)).
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�� in the case when 
2 = 3=4.

Quasi-quadrature. A standard approach for amplitude estimation in signal pro-
cessing is in terms of quadrature �lter pairs (h+; h�), from which the amplitude
can be estimated as Q = (h+ � f)

2 + (h
�

� f)2. Strictly, a quadrature �lter pair
is de�ned from a Hilbert transform, in such a way that Q is phase-independent.
Within the framework of scale-space derivatives, the quadrature entity Q for
�rst- and second-order derivatives can be approximated by a pair of normalized
�rst- and second-order Gaussian derivative operators (Lindeberg 1998):

Q1L = AL2� + L2�� = At
1L2x + t
2L2xx: (5)

where A is a constant and L� = t
1=2Lx(x; t) is the normalized �rst-order deriva-
tive operator, where we choose 
1 = 1=2 to match 
2 = 3=4. Moreover, the value
of A can be chosen to A � 4=e, such that the response of the Q1L is approx-
imately constant over space in the neighborhood of (x0; t0) (Lindeberg 1998).
This quadrature entity is, however, not phase-independent over scales.

Including stability over scales. To include the stability of image structures over
scales (corresponding to low values of derivatives with respect to scale), and
to also increase approximate phase invariance with respect to space and scale
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simultaneously, we propose to include the derivative of L�� with respect to ef-
fective scale � = log t. Using @� = t @t and the fact that all Gaussian derivatives
satisfy the di�usion equation @t(Lx�) = 1=2 @xx(Lx�), it follows that:

L��� (�; t) = t @tL��(�; t) = 
3t

3 Lxx+ t
3 Lxxt = 
3t


3 Lxx+
t
3+1

2
Lxxxx: (6)

By adding this expression to (5), we thus propose to extend Q1L into

Q2L = AL2� + BL2��� + L2��: (7)

Figures 3(a) and (b) illustrate the evolution of the components in this expression,
i.e. L2� , L

2
��� and L2��, over space and scale. As can be seen, the responses of L2�

and L2��� complement the response of L2�� by assuming high values where L2��
is low and vice versa. Thus, one can expect that by an appropriate choice of
the weights A and B, Q2L will approximately be constant in a neighborhood of
(x0; t0). Such a behavior is illustrated in Figures 3(c) and (d).
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Fig. 3. (a)-(b): Evolution of L2

� ; L
2

�� and L2

��� over space and scale when applied to
a Gaussian blob centered at x0 = 0 and with variance t0 = 4; (c)-(d): Evolution of
L2

�� and Q2L when using the parameter values A = 1 and B = 2:8. Note that Q2L is
approximately constant over space and scale in the neighborhood of (x0; t0).

Invariance properties. If we consider the ratio L2��=Q2L, it is apparent that
the amplitude cancels between the numerator and the denominator. Thus, we
achieve local contrast invariance. Moreover, since Q2L � L2�� � 0, it follows that

the ratio L2��=Q2L will always be in the range [0; 1]. Scale invariance of Q2 holds
if we for 
2 = 3=4 take 
1 = 1=2. Moreover, it can be shown that for a Gaussian
blob, the scale-space maximum of Q2L is assumed at t0 if and only if 
3 = 1.
The relative magnitudes of L2�� and Q2L are illustrated in Figures 3(c) and (d).
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To conclude, the ratio L2��=Q2L satis�es all the stated requirements on the
feature likelihood map, and we de�ne

M =
L2��
Q2L

=
L2��

AL2� + BL2��� + L2��
: (8)

Determination of the free parameters A and B. Concerning the choice of A and
B, it can be veri�ed that A � 1 and B � 3 give an approximately constant
behavior of the denominator ofM around (x0; t0). This was the original design
criterion when the quasi quadrature entity (5) was proposed. Figure 4(a) shows
the behavior ofM in this case. Notably, the peak around (x0; t0) is rather wide
in the scale direction, and there are two quite strong side lobes in the spatial
direction. For the purpose of dense scale selection with application to recognition,
it is desirable to have a more narrow and localized response with respect to scale
and space. For this reason, we increase the parameters to A = 10 and B = 100
and obtain a desired behavior of M as illustrated in Figure 4(b).
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of parameters A and B when applied to a Gaussian blob (x0 = 0; t0 = 4).

2.3 Likelihood map in the 2-D case

The likelihood map de�ned in (8) can be easily extended to two dimensions.
Consider again a Gaussian kernel f = g(x; y; x0; y0; t0) as a prototype image
blob of size t0 centered at (x0; y0). The scale-space representation of this signal is
given by L(x; y; t) = g(x; y; x0; y0; t+t0) and the normalized Laplacian operator

r2
normL = L�� + L�� = t
2Lxx(x; y; t) + t
2Lyy(x; y; t) (9)

assumes a local extremum at (x0; y0; t0) if 
2 = 1. To construct a quadrature
entity Q, we consider the gradient magnitude (with 
1 = 1)

jrnormLj =
q
L2� + L2� = t
1=2

q
L2x + L2y; (10)

as the analogue to L� in the one-dimensional case, and take

@� (r
2
normL) = L��� +L��� = 
3t


3(Lxx+Lyy)+
t
3+1

2
(Lxxxx+Lyyyy+2Lxxyy)
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as the analogue to L��� . Then, we de�ne the feature likelihood map as

ML =
(L�� + L��)

2

A(L2� + L2�) + B(L��� + L��� )2 + (L�� + L��)2
: (11)

Clearly, ML is rotationally invariant, and invariant with respect to scale and
local contrast; it assumes values in the range [0; 1] and for a Gaussian blob the
maximum value 1 is assumed at (x0; y0; t0). Hence, ML has essentially similar
properties as the likelihood map (8) in the one-dimensional case. Figures 5(a)-(c)
illustrate how, with A = 10 and B = 100,ML assumes a rather sharp maximum
at (x0; y0; t0) and rapidly decreases with deviations from this point.

-4
-2

0
2

4

-4
-2

0
2

4

0
0.2
0.4
0.6
0.8
1

0
2
4
6

-4
-2

0
2

4

-4
-2

0
2

4

0
0.2
0.4
0.6
0.8
1

0
2
4
6

-4
-2

0
2

4

-4
-2

0
2

4

0
0.2
0.4
0.6
0.8
1

0
2
4
6

LM (x,y)LM (x,y)(x,y) M
0t = 0.5t

L

(b) (c)

t = t t = 4t0 0

x
y

x
y

(a)

x
y

Fig. 5. Evolution of the likelihood mapML over space and scale for a two-dimensional
Gaussian blob de�ned by (x0 = 0; y0 = 0; t0 = 1). Plots in (a),(b) and (c) illustrate
ML for scale values t = 0:5, 1 and 4.

Suppression of saddle regions and noise. Besides blobs and ridges, however,ML

will also respond to certain saddle points. This occurs when rnormL = 0 and
@� (r

2
normL) = 0. To suppress such points, introduce a saddle suppression factor

� =
�21 + �22 + 2�1�2
�21 + �22 + 2j�1�2j

=
L2�� + L2�� + 2L��L��

L2�� + L2�� � 2L2�� + 2jL��L�� � L2�� j
; (12)

where �1 and �2 denote the eigenvalues of the Hessian matrix. Then, it can
be seen that � is equal to one when �1 and �2 have the same sign (i.e., for
emphasized blob and ridge structures), while � decreases towards zero if �1 and
�2 have equal magnitude and opposite sign. Moreover, to suppress the in
uence
of spurious noise structures of amplitude lower than "N , we introduce a small
normalising parameter "N in the denominator of the expression for the FLM.
Thus, we de�ne a saddle- and noise-suppressed feature likelihood map as

~ML = �kML =
�k(L�� + L��)

2

A(L2� + L2�) + B(L��� + L��� )2 + (L�� + L��)2 + "2N
(13)

Examples of other feature likelihood maps, with exclusive emphasis on speci�c
types of image structures are presented in (Lindeberg 2001).
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Fig. 6. The result of computing feature likelihood map on a synthetic image and a real
image, where in the second case, the response of the FLM has been set to zero for points
with r2L > 0, in order to enhance the response to bright image structures. From the
�rst image, it can be veri�ed that the FLM gives a correct localization of blobs in space
and scale. In the second image, it can be seen that the FLM clearly separates di�erent
image structures, such as the �ngers and the palm of a hand, according to their size.
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2.4 Experiments on synthetic and real data

Figure 6 shows the result of computing this feature likelihood map for a synthetic
image with three Gaussian blobs. As can be observed, the high values of M are
well localized in space and scale, and the peaks over space and scale correspond
to the positions and the sizes of the original blobs. Figure 6 shows the result of
computingM for an image of a hand. Here, it can be seen thatM responds not
only to circular structures but also to elongated ridge-like structures, such as
�ngers. The reason for this is that the Laplacian operator, besides responding to
circular blob-like structures, also gives a reasonably high response to elongated
structures. From these results it can be clearly seen how M separates between
small structures in the background, the �ngers and the palm of a hand. More-
over, despite the varying contrast of the image structures,M gives equally high
response to weak ridges in the background and to the �ngers of higher contrast.
In many cases, this is a desirable property of a recognition system aimed at
classifying local image structures irrespective of illumination variations.

3 Hand tracking and recognition

To experimentally investigate the proposed direct approach for evaluation of
feature hypotheses, we will in this section present an application of the feature
likelihood map in combination with particle �ltering for simultaneous tracking
and recognition of hands in image sequences. By necessity the presentation is
heavily condensed; more details can be found in (Laptev and Lindeberg 2001).

3.1 Hand model

An image of a hand can be expected to give rise to blob and ridge features cor-
responding the �ngers and the palm of a hand. These image structures together
with information about their relative orientation, position and scale can be used
for de�ning a simple but discriminative, view-based model of a hand. Thus, we
represent a hand by a set of blob and ridge features as illustrated in Figure 7,
and de�ne di�erent hand states, depending on the number of open �ngers.

To model translations, rotations and scalings of hands, we de�ne a parameter
vector X = (x; y; s; �; l) which describes the global position (x; y), the size s
and the orientation � of a hand in the image, together with its discrete state
l = 1. . . 5. The vector X uniquely identi�es the hand con�guration in the image
and estimation of X from image sequences corresponds to simultaneous hand
tracking and recognition.

3.2 Model evaluation

Given a feature-based object model, the feature likelihood map provides a direct

way to evaluate the model on image data. To obtain the likelihood that a model
con�guration X gives rise to an image I , one can simply multiply the likelihood
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l=1 l=2 l=3 l=4 l=5

Fig. 7. Feature-based hand models in di�erent states. The circles and ellipses corre-
spond to blob and ridge features. When aligning models to images, the features are
translated, scaled and rotated according to the parameter vector X.

values for model features which are directly available fromML. Hence, we de�ne
the likelihood p for a model hypothesis X and an image I as

p(I jX) = (1� ")N�n
nY
i=1

ML(xi; yi; ti); (14)

whereML is computed on the image I , xi, yi and ti denote the position and the
size of the ith feature in the model, while " 2 (1; 0) accounts for a maximal ad-
missible matching error and enables for comparison of models with the di�erent
number of features n (N = maxj(nj)). In addition, this likelihood is multiplied
by a prior on skin colour computed from colour histograms of human hands.
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Notably, the described evaluation does not involve any search and is simple
and eÆcient to compute. Therefore it is highly useful for real-time applications.

3.3 Tracking and recognition

To detect, recognize and track hands in image sequences, we search for a hand
con�guration de�ned by a parameter vector Xk that maximizes the posterior
distribution p(XkjIk) on a given image Ik at a time moment k. Using Bayes
rule, the posterior can be estimated by

p(XkjIk) = h p(IkjXk) p(XkjIk�1) (15)

where p(IkjXk) is the likelihood of Xk given Ik , p(XkjIk�1) is the prior distribu-
tion of Xk derived from a previous time step and h is a normalization constant.
Since the likelihood distribution above has no closed-form expression, the desired
posterior must be approximated. For this reason, we apply particle �ltering to
estimate and approximate the posterior by a set of N samples (here N � 1000)
distributed in a parameter space (see (Isard and Blake 1996) for an introduc-
tion). Given the posterior p(XkjIk), we compute its mean Xk;mean and consider
it as the estimate of a hand pose at time moment k.

Particle �lters spend most of their time on evaluating the likelihood of model
hypotheses (samples). As described in the previous section, the proposed feature
likelihood map is highly eÆcient for this purpose and we use it for evaluating
the likelihood of samples within the framework of particle �ltering. The eÆcient
evaluation enables recognition and tracking to be done in real-time (currently
at the frame rate 5{10 Hz). Figure 8 illustrates the result of combined tracking
and recognition using the described framework.

tracking of a rescaling and translating hand

simultaneous tracking and recognition of hand poses

Fig. 8. Results of combined hand tracking and pose recognition using particle �ltering
and evaluation of feature-based hand models on feature likelihood maps.
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3.4 Implementation details

In practice, the abovementioned scheme has been implemented in a pyramid
framework using a �xed set of scale levels. The resolution at scale level ti was
obtained by sub-sampling the original image with a factor �i =

p
ti=tf , and

the derivatives have been computed using �lter kernels of �xed scale tf . In the
experiments, we found tf � 2:0 to be suÆciently large for obtaining a satisfactory
quality of M on one hand, while on the other hand being suÆciently small to
enable fast computations. On a modest 550 MHz Pentium III processor our
current implementation (without extensive optimization) requires about 0.1 s to
compute the feature likelihood map on a 100 � 100 image and about 0.04 s to
perform the particle �ltering using 1000 hypotheses.

4 Related work

The subject of this paper relates to multi-scale approaches for image represen-
tation, computation of di�erential invariants, detection of image features as well
as tracking and recognition of view-based object models. Because of the scope of
these areas, it is not possible to given an extensive review, and only a few closely
related works will be mentioned. Crowley and Sanderson (1987) considered a
graph-like image representation containing links between blobs at di�erent scales.
Pizer et al. (1994) proposed the use of multi-scale medial-axis representations
computed directly from image patterns distributions. Multi-scale image di�eren-
tial invariants (Koenderink and van Doorn 1992, Lindeberg 1994, Florack 1997)
have been computed by several authors, including Schmid and Mohr (1997) who
apply such descriptors at interest points for image indexing and retrieval. Explicit
scale selection for extraction of multi-scale image features has been investigated
by Lindeberg (1998). A similar approach by Shokoufandeh et al. (1999) extracts
extrema in a wavelet transform. Lindeberg (1998), Chomat et al. (2000) and
Almansa and Lindeberg (2000) have computed dense descriptors for estimating
the characteristic scale at any image point. With respect to object tracking, Isard
and Blake (1996) developed a particle �ltering approach for tracking contour-
based models. Black and Jepson (1998) used eigenspace models of gray-value
patterns for tracking deformable models. The approach by Bretzner and Linde-
berg (1999) is closer to ours and applies a hierarchy of multi-scale features for
representing and tracking hands.

5 Summary and future work

In this paper, we have presented a new approach for probabilistic and dense
image representation by feature likelihood maps. Such maps are invariant to the
amplitude of patterns and emphasize local structures in images by assuming high
values at certain points in feature space. We derived the feature likelihood map
for symmetric blob-like image structures and analyzed its behavior on synthetic
and real images. Using the dense structure of the feature likelihood map, we have
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shown how it can be applied for direct and eÆcient evaluation of feature-based
object hypotheses. Based on this evaluation procedure, we developed a particle
�ltering approach for recognizing and tracking hands in image sequences.

By analogy with the developed likelihood map for symmetric blob-like struc-
tures, similar maps can be constructed for other types of local image structures.
For this purpose, the expression in (11) must be rede�ned by substituting the
normalized Laplacian operator and its quadrature by other di�erential entities
emphasizing the desired image properties. Examples of other feature likelihood
maps constructed in this way are presented in (Laptev and Lindeberg 2001), as
well as ways to incorporate colour information into this framework.

Another interesting direction of future research concerns the extension of
feature likelihood maps to spatio-temporal domain. Here, the general ideas of
this presentation could be combined with the concept of normalized derivatives
in spatio-temporal scale-space. The resulting maps could then be used in order
to analyze, capture and recognize temporal events in image sequences.

References

Almansa, A. and Lindeberg, T. (2000). Fingerprint enhancement by shape adaptation
of scale-space operators with automatic scale-selection, IEEE-IP, 9(12): 2027{2042.

Black, M. and Jepson, A. (1998). Eigen tracking: Robust matching and tracking of
articulated objects using view-based representation, IJCV 26(1): 63{84.

Bretzner, L. and Lindeberg, T. (1999). Qualitative multi-scale feature hierarchies for
object tracking, JVCIR 11: 115{129.

Chomat, O., de Verdiere, V., Hall, D. and Crowley, J. (2000). Local scale selection for
gaussian based description techniques, ECCV'00, Dublin, Ireland, 117{133.

Crowley, J. and Sanderson, A. (1987). Multiple resolution representation and proba-
bilistic matching of 2-D gray-scale shape, IEEE-PAMI 9(1): 113{121.

Fleck, M., Forsyth, D. and Bregler, C. (1996). Finding naked people, ECCV'96, Cam-
bridge, UK, II:593{602.

Florack, L. M. J. (1997). Image Structure, Kluwer.
Isard, M. and Blake, A. (1996). Contour tracking by stochastic propagation of condi-
tional density, ECCV'96, Cambridge, UK, I:343{356.

Koenderink, J. J. and van Doorn, A. J. (1992). Generic neighborhood operators, IEEE-
PAMI, 14(6): 597{605.

Laptev, I and Lindeberg, T. (2001) \A multi-scale feature likelihood map for direct
evaluation of object hypotheses", Technical report ISRN KTH/NA/P{01/03{SE.
http://www.nada.kth.se/cvap/abstracts/cvap249.html

Lindeberg, T. (1994). Scale-Space Theory in Computer Vision, Kluwer.
Lindeberg, T. (1998). Feature detection with automatic scale selection, IJCV,
30(2): 77{116.

Pizer, S. M., Burbeck, C. A., Coggins, J. M., Fritsch, D. S. and Morse, B. S. (1994).
Object shape before boundary shape: Scale-space medial axis, JMIV 4: 303{313.

Schmid, C. and Mohr, R. (1997). Local grayvalue invariants for image retrieval, IEEE-
PAMI 19(5): 530{535.

Shokoufandeh, A., Marsic, I. and Dickinson, S. (1999). View-based object recognition
using saliency maps, IVC 17(5/6): 445{460.

Witkin, A. P. (1983). Scale-space �ltering, Proc. IJCAI'83, Karlsruhe, West Germany,
1019{1022.


