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Abstract

This paper addresses the problem of computing three-dimensional structure and
motion from an unknown rigid con�guration of points and lines viewed by an
aÆne projection model. An algebraic structure, analogous to the trilinear ten-
sor for three perspective cameras, is de�ned for con�gurations of three centered
aÆne cameras. This centered aÆne trifocal tensor contains 12 non-zero coeÆ-
cients and involves linear relations between point correspondences and trilinear
relations between line correspondences. It is shown how the aÆne trifocal tensor
relates to the perspective trilinear tensor, and how three-dimensional motion can
be computed from this tensor in a straightforward manner. A factorization ap-
proach is developed to handle point features and line features simultaneously in
image sequences, and degenerate feature con�gurations are analysed. This the-
ory is applied to a speci�c problem in human-computer interaction of capturing
three-dimensional rotations from gestures of a human hand. This application
to quantitative gesture analyses illustrates the usefulness of the aÆne trifocal
tensor in a situation where suÆcient information is not available to compute the
perspective trilinear tensor, while the geometry requires point correspondences
as well as line correspondences over at least three views.
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1 Introduction

The problem of deriving structural information and motion cues from image sequences

arises as an important subproblem in several computer vision tasks. In this paper,

we are concerned with the computation of three-dimensional structure and motion

from point and line correspondences extracted from a rigid three-dimensional object

of unknown shape, using the aÆne camera model.

Early works addressing this problem domain based on point correspondences

from perspective and orthographic projection have been presented by Ullman [1],

Maybank [2], Huang and Lee [3], Huang and Netravali [4] and others. With the

introduction of the aÆne camera model (Koenderink and van Doorn [5], Mundy

and Zisserman [6]) a large number of approaches have been developed, including

(Shapiro [7], Beardsley et al. [8], McLauchlan et al. [9], Torr [10]) to mention just a

few, see also (Faugeras [11]). Line correspondences have been studied by (Spetsakis

and Aloimonos [12], Weng et al [13]), and factorization methods for points and lines

constitute a particularly interesting development (Tomasi and Kanade [14], Poelman

and Kanade [15], Quan and Kanade [16], Sturm and Triggs [17]). These directions of

research have recently been combined with the ideas behind the fundamental matrix

(Longuet-Higgins [18], Faugeras [19], Xu and Zhang [20]) and have lead to the trilin-

ear tensor (Shashua [21], Hartley [22], Heyden [23]) as a uni�ed model for point and

line correspondences for three cameras, with interesting applications (Beardsley et

al. [24]) as well as a deeper understanding of the relations between point features and

line features over multiple views (Faugeras and Mourrain [25], Heyden et al. [26]).

The subject of this paper is to build upon the abovementioned works, and to

develop a framework for handling point and line features simultaneously for three

or more aÆne views. Initially, we shall focus on image triplets and show how an

aÆne trifocal tensor can be de�ned for three centered aÆne cameras. This tensor

has a similar algebraic structure as the trilinear tensor for three perspective cameras.

Compared to the trilinear tensor, however, it has the advantage that it contains

a smaller number of coeÆcients, which implies that fewer feature correspondences

are required to determine this tensor. Motion estimation from this tensor is more

straightforward than for the perspective trilinear tensor. Moreover, the results from

aÆne motion estimation can be expected to be more robust than perspective analysis

in situations when the perspective e�ects are small. The handle image features in

more than three images, we shall also develop a factorization approach, which involves

simultaneous handling of point and line features in multiple image frames.

This theory will then be applied to the problem of computing changes in three-

dimensional orientation from a sparse set of point and line correspondences. Speci�-

cally, it will be demonstrated how a man-machine interface for 3-D interaction can be

designed based on the theory presented. The idea is to track point and line features

corresponding to the �nger tips and the orientation of the �ngers, and to compute

three-dimensional rotations (and translations) assuming rigidity of the hand. These

motion estimates can then be used for controlling the motion of other computer-

controlled equipment (Lindeberg and Bretzner [27]). Notably, we thereby eliminate

the need for other external control equipment than the operator's own hand.
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2 Geometric problem and extraction of image features

A main rationale to this work originates from the following question: If we have a

sparse set of image features that have been tracked over a relatively long period of

time, to what extent can such extended feature trajectories be used for computing

the three-dimensional structure and motion of a rigid object? Moreover, we are

interested in exploring whether it is possible to make use of image features that have

been extracted from natural objects. Most works on three-dimensional structure

and motion estimation have been performed under di�erent conditions, by exploiting

dense sets of image features, which have been computed from man-made objects.

Figure 1 shows one speci�c application, which we will focus on. The idea is to

capture three-dimensional motions as mediated by the gestures of a human hand,

and to use measurements of 3-D rotational information computed in this way for

controlling other computerized equipment, see [27] for a more general description and

Cipolla et al. [28], Freeman and Weissman [29], Maggioni and K�ammerer [30] for

related works. In contrast to previous approaches for human{computer interaction

that are based on detailed geometric hand models (such as Kuch and Huang [31], Lee

and Kunii [32], Heap and Hogg [33], Yasumuro et al. [34]), we shall here explore a

model based on qualitative features only. This model involves three to �ve �ngers,

and for each �nger the position of the �nger tip and the orientation of the �nger are

measured in the image domain. Successful tracking of these image features over time

leads to a set of point correspondences and line correspondences. The task is then to

compute changes in the 3-D orientation of such a con�guration, which is assumed to

be rigid.

Given only a a small number of image features, neither the trajectories of the

point features or the line features per se are suÆcient to compute the motion in-

formation we are interested in. For example, when a user holds his hand with the

�ngers spreading out, we have experienced that the positions of the �nger tips will

often be in approximately the same plane, leading to ill-conditioned motion estimates

if computed from point features only. Therefore, the ability to combine point fea-

tures and line features is of high importance. Moreover, due to the small number of

image features, the information is not suÆcient to compute the trilinear tensor for

perspective projection (see the next section). For this reason, we shall use an aÆne

projection model, and the aÆne trifocal tensor will be a key tool.

The trajectories of image features used as input are extracted using a framework

for feature tracking with automatic scale selection reported in (Bretzner and Lin-

deberg [35, 36]). Blob features corresponding to the �nger tips are computed from

points (x; y; t) in scale-space (Koenderink [37], Lindeberg [38]) at which the squared

normalized Laplacian

(r2
normL)

2 = t2 (Lxx + Lyy)
2 (1)

assumes maxima with respect to scale and space simultaneously (Lindeberg [39]).

Such points are referred to as scale-space maxima of the normalized Laplacian. In

a similar way, ridge features are detected from scale-space maxima of a normalized

measure of ridge strength

AL2

�norm = t4
 (L2

pp � L2
qq)

2 = t4

�
(Lxx � Lyy)

2 + 4L2
xy

�2
; (2)
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where Lpp and Lqq are the eigenvalues of the Hessian matrix and the normalization

parameter 
 = 0:875 (Lindeberg [40]). At each ridge feature, a windowed second

moment matrix

� =

Z Z
(�;�)2R2

�
L2
x LxLy

LxLy L2
y

�
g(�; �; s) d� d� (3)

is computed using a Gaussian window function g(�; �; s) centered at the spatial max-

imum of AL
�norm and with the integration scale s tuned by the detection scale of

the scale-space maximum of AL
�norm. The eigenvector of � corresponding to the

largest eigenvalue gives the orientation of the �nger.

Figure 1: Results of multi-scale tracking of point and line features corresponding to the �nger
tips and the �ngers of a human hand. (left) grey-level image showing the �rst frame in an
image sequence, (middle) image features extracted by combining the detection of scale-space
maxima of blob and ridge features [39, 40] with a qualitative hand model in the form of a
multi-scale feature hierarchy [41], (right) feature trajectories obtained by multi-scale feature
tracking [35].

Figure 1(c) shows an example of image trajectories obtained in this way. An at-

tractive property of this feature tracking scheme is that the scale selection mechanism

adapts the scale levels to the local image structure. This gives the ability to track

image features over large size variations, which is particularly important for the ridge

tracker. Provided that the contrast to the background is suÆcient, this scheme gives

feature trajectories over large numbers of frames, using a conceptually very simple

interframe matching mechanism.

3 The trifocal tensor for three centered aÆne cameras

To capture motion information from the projections of an unknown con�guration

of points and lines in 3-D, it is necessary to have at least three independent views.

A canonical model for describing the geometric relationships between point corre-

spondences and line correspondences over three perspective views is provided by the

trilinear tensor (Shashua [21, 42], Hartley [22], Heyden et al. [26]). For aÆne cam-

eras, a compact model of point correspondences over multiple frames can be obtained

by factorizing a matrix with image measurements to the product of two matrices of

rank 3, one representing motion, and the other one representing shape (Tomasi and

Kanade [14], Ullman and Basri [43]). Frameworks for capturing line correspondences

over multiple aÆne views have been presented by Quan and Kanade [16] and for point

features under perspective projection by Sturm and Triggs [17].
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The subject of this section is to combine the idea behind the trilinear tensor for

simultaneous modelling of point and line correspondences over three views with the

aÆne projection model. It will be shown how an algebraic structure closely related

to the trilinear tensor can be de�ned for three centered aÆne cameras. This centered

aÆne trifocal tensor involves linear relations between the point features and trilinear

relationships between the line features.

3.1 Perspective camera and three views

Consider a point P = (x; y; 1; �)T which is projected by three camera matrices M =

[I; 0], M 0 = [A; u0] and M 00 = [B; u00] to the image points p, p0 and p00:

p =

0
@ x

y

1

1
A =

0
@ 1 0 0 0

0 1 0 0

0 0 1 0

1
A
0
BB@

x

y

1

�

1
CCA ; (4)

p0 = �

0
@ x0

y0

1

1
A =

0
@ a11 a12 a13 u0

1

a21 a22 a23 u0
2

a31 a32 a33 u0
3

1
A
0
BB@

x

y

1

�

1
CCA =

0
B@

a1
T
p+ �u0

1

a2
T
p+ �u0

2

a3
T
p+ �u0

3

1
CA ; (5)

p00 = �

0
@ x00

y00

1

1
A =

0
@ b11 b12 b13 u00

1

b21 b22 b23 u00
2

b31 b32 b33 u00
3

1
A
0
BB@

x

y

1

�

1
CCA =

0
B@

b1
T
p+ �u00

1

b2
T
p+ �u00

2

b3
T
p+ �u00

3

1
CA : (6)

Following Faugeras and Mourrain [25] and Shashua [42], introduce the following two

matrices

r
�
j =

�
�1 0 x0

0 �1 y0

�
; s�k =

�
�1 0 x00

0 �1 y00

�
: (7)

Then, in terms of tensor notation (where i; j; k 2 [1; 3], �; � 2 [1; 2] and we follow

the Einstein summation convention that a double occurrence of an index implies

summation over that index) the relations between the image coordinates and the

camera geometry can be written

�r
�
j u

0j + r
�
j a

j
ip

i = 0; �s�ku
00k + s�kb

k
i p

i = 0: (8)

By introducing the trifocal tensor (Shashua [21], Hartley [22])

T
jk
i = a

j
iu
00k � bki u

0j; (9)

the relations between the point correspondences lead to the trifocal constraint

r
�
j s

�
k T

jk
i = 0: (10)

Written out explicitly, this expression corresponds to the following four (independent)

relations between the projections p, p0 and p00 of P (Shashua [42]):

x00T 13
i pi � x00x0T 33

i pi + x0T 31
i pi � T 11

i pi = 0;

y00T 13
i pi � y00x0T 33

i pi + x0T 32
i pi � T 12

i pi = 0;

x00T 23
i pi � x00y0T 33

i pi + y0T 31
i pi � T 21

i pi = 0;

y00T 23
i pi � y00y0T 33

i pi + y0T 32
i pi � T 22

i pi = 0:

(11)
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Given three corresponding lines, lT p = 0, l0
T
p0 = 0 and l00

T
p00 = 0, each image line

de�nes a plane through the center of projection, given by LTP = 0, L0
T
P = 0 and

L00
T
P = 0, where

LT = lTM = (l1; l2; l3 0);

L0
T
= l0

T
M 0 = (l0j a

j
1; l

0

j a
j
2; l

0

j a
j
3; l

0

j u
0j);

L00
T
= l00

T
M 00 = (l00k b

k
1 ; l

00

k b
k
2; l

00

k b
k
3 ; l

00

k u
00k):

(12)

Since l, l0 and l00 are assumed to be projections of the same three-dimensional line,

the intersection of the planes L, L0 and L00 must degenerate to a line and

rank

0
BBB@

l1 l0j a
j
1 l00k b

k
1

l2 l0j a
j
2 l00k b

k
2

l3 l0j a
j
3 l00k b

k
3

0 l0j u
0j l00k u

00k

1
CCCA = 2: (13)

All 3� 3 minors must be zero, and removal of the three �rst lines respectively, leads

to the following trilinear relationships, out of which two are independent:

(l2T
jk
3 � l3T

jk
2 ) l0j l

00

k = 0;

(l1T
jk
3 � l3T

jk
1 ) l0j l

00

k = 0;

(l1T
jk
2 � l2T

jk
1 ) l0j l

00

k = 0:

(14)

These expressions provide a compact characterization of the trilinear line relations

�rst introduced by Spetsakis and Aloimonos [12].

In summary, each point correspondence gives four equations, and each line cor-

respondence two. Hence, K points and L lines are (generically) suÆcient to express

a linear algorithm for computing the trilinear tensor (up to scale) if 4K + 2L � 26

(Shashua [21], Hartley [22]).

3.2 AÆne camera and three views

Consider next a point Q = (x; y; �; 1)T which is projected to the image points q, q0

and q00 by three aÆne camera matrices M , M 0 and M 00, respectively:

q =

0
@ x

y

1

1
A =MQ =

0
@ 1 0 0 0

0 1 0 0

0 0 0 1

1
A
0
BB@

x

y

�

1

1
CCA (15)

q0 =

0
@ x0

y0

1

1
A =M 0Q =

0
@ c11 c12 c13 v0

1

c21 c22 c23 v0
2

0 0 0 1

1
A
0
BB@

x

y

�

1

1
CCA (16)

q00 =

0
@ x00

y00

1

1
A =M 00Q =

0
@ d11 d12 d13 v00

1

d21 d22 d23 v00
2

0 0 0 1

1
A
0
BB@

x

y

�

1

1
CCA (17)
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Here, the parameterization of Q di�ers from P , since for an image point q = (x; y; 1)T

the projection (15) implies that the three-dimensional point is on the ray Q =

(x; y; �; 1)T for some �. By eliminating �, we obtain the following linear relation-

ships:

(c13d
1
1 � c11d

1
3)x+ (c13d

1
2 � c12d

1
3)y + d13x

0 � c13x
00 + (c13v

001 � d13v
01) = 0;

(c23d
1
1 � c21d

1
3)x+ (c23d

1
2 � c22d

1
3)y + d13y

0 � c23x
00 + (c23v

001 � d13v
02) = 0;

(c13d
2
1 � c11d

2
3)x+ (c13d

2
2 � c12d

2
3)y + d23x

0 � c13y
00 + (c23v

002 � d23v
02) = 0;

(c23d
2
1 � c21d

2
3)x+ (c23d

2
2 � c22d

2
3)y + d23y

0 � c23y
00 + (c23v

002 � d23v
02) = 0:

(18)

This structure corresponds to the trilinear constraint (11) for perspective projection,

and we shall refer to it as the aÆne trifocal point constraint.

Three lines lT q = 0, l0
T
q0 = 0 and l00

T
q00 = 0 in the three images de�ne three

planes LTQ = 0, L0
T
Q = 0 and L00

T
Q = 0 in three-dimensional space with

LT = lTM = (l1; l2; 0; l3);

L0
T
= l0

T
M 0 = (l01c

1
1 + l02c

2
1; l

0

1c
1
2 + l02c

2
2; l

0

1c
1
3 + l02c

2
3; l

0

1v
01 + l02v

02 + l03);

L00
T
= l00

T
M 00 = (l001d

1
1 + l002d

2
1; l

00

1d
1
2 + l002d

2
2; l

00

1d
1
3 + l002d

2
3; l

00

1v
001 + l002v

002 + l003):

Since l, l0 and l00 are projections of the same three-dimensional line, the intersection

of L, L0 and L00 must degenerate to a line and

rank

0
BB@

l1 l01c
1
1 + l02c

2
1 l001d

1
1 + l002d

2
1

l2 l01c
1
2 + l02c

2
2 l001d

1
2 + l002d

2
2

0 l01c
1
3 + l02c

2
3 l001d

1
3 + l002d

2
3

l3 l01v
01 + l02v

02 + l03 l001v
01 + l002v

002 + l003

1
CCA = 2: (19)

All 3 � 3 minors must be zero, and deletion of the �rst, second and fourth rows,

respectively, results in the following relationships between l, l0 and l00:

l2 (c
j
3v
00k � dk3v

0j) l0jl
00

k � l3 (c
j
3d

k
2 � c

j
2d

k
3) l

0

jl
00

k = 0;

l1 (c
j
3v
00k � dk3v

0j) l0jl
00

k � l3 (c
j
3d

k
1 � c

j
1d

k
3) l

0

jl
00

k = 0;

l1 (c
j
2d

k
3 � c

j
3d

k
2) l

0

jl
00

k � l2 (c
j
1d

k
3 � c

j
3d

k
1) l

0

jl
00

k = 0;

(20)

where c3j = d3k = 0, v0
3
= v00

3
= 1 and only two of the relations are independent.

This treatment, which largely derives similar results as Torr [10] while using another

formalism, shows that point and line correspondences are captured by 16 coeÆcients.

Each point correspondence gives four equations, and each line correspondence two.

Thus, K point correspondences and L line correspondences are suÆcient to compute

this aÆne trifocal tensor (up to scale) if 4K + 2L � 15.

4 The centered aÆne camera and its relations to per-

spective

Structurally, there is a strong similarity between the relationships for the aÆne camera

and the corresponding relationships (11) and (14) for the perspective camera. Let us

make the following formal replacements between the aÆne camera model (15){(17)

and the perspective camera model (4){(6):
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� Interchange rows 3 and 4 in the coordinate vectors in the 3-D domain:

P = (x; y; 1; �)T ) Q = (x; y; �; 1)T ; (21)

� Interchange columns 3 and 4 in the camera matrices:

0
@ a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34

1
A =

0
@ a11 a12 a13 u0

1

a21 a22 a23 u0
2

a31 a32 a33 u0
3

1
A =

0
@ c11 c12 v0

1
c13

c21 c22 v0
2

c23
0 0 1 0

1
A ;

0
@ b11 b12 b13 b14

b21 b22 b23 b24
b31 b32 b33 b34

1
A =

0
@ b11 b12 b13 u00

1

b21 b22 b23 u00
2

b31 b32 b33 u00
3

1
A =

0
@ d11 d12 v00

1
d13

d21 d22 v00
2

d23
0 0 1 0

1
A :(22)

Then, the algebraic structure between corresponding points and lines will be the same

for the two projection models. This implies that the relations between point and line

correspondences for three aÆne cameras can be expressed on the form (11) and (14)

with the aÆne trifocal tensor de�ned by

T jk
i = a

j
i b
k
4 � bki a

j
4 = a

j
iu

00k � bki u
0j = f(22)g = c

j
id

k
3 � dki c

j
3 (23)

where a and b are de�ned as in (22).

Let us next consider the case when image coordinates in the aÆne camera are

measured relative to the center of gravity of a point con�guration. This centered

aÆne camera is obtained by setting (v0
1
; v0

2
) = (v00

1
; v00

2
) = (0; 0) in (16) and (17)

and corresponds to disregarding the translational motion. Written out explicitly, the

components of the corresponding centered aÆne trifocal tensor T jk
i are given by

T
11

1
= c1

1
d1
3
� d1

1
c1
3
; T

12

1
= c1

1
d2
3
� d2

1
c1
3
; T

13

1
= c1

1
d3
3
� d3

1
c1
3

= 0;

T
21

1
= c2

1
d1
3
� d1

1
c2
3
; T

22

1
= c2

1
d2
3
� d2

1
c2
3
; T

23

1
= c2

1
d3
3
� d3

1
c2
3

= 0;

T
31

1
= c3

1
d1
3
� d1

1
c3
3

= 0; T
32

1
= c3

1
d2
3
� d2

1
c3
3

= 0; T
33

1
= c3

1
d3
3
� d3

1
c3
3

= 0;

T
11

2
= c1

2
d1
3
� d1

2
c1
3
; T

12

2
= c1

2
d2
3
� d2

2
c1
3
; T

13

2
= c1

2
d3
3
� d3

2
c1
3

= 0;

T
21

2
= c2

2
d1
3
� d1

2
c2
3
; T

22

2
= c2

2
d2
3
� d2

2
c2
3
; T

23

2
= c2

2
d3
3
� d3

2
c2
3

= 0;

T
31

2
= c3

2
d1
3
� d1

2
c3
3

= 0; T
32

2
= c3

2
d2
3
� d2

2
c3
3

= 0; T
33

2
= c3

2
d3
3
� d3

2
c3
3

= 0;

T
11

3
= v01d1

3
� v001c1

3
= 0; T

12

3
= v01d2

3
� v002c1

3
= 0; T

13

3
= v01d3

3
� v003c1

3
= �c1

3
;

T
21

3
= v02d1

3
� v001c2

3
= 0; T

22

3
= v02d2

3
� v002c2

3
= 0; T

23

3
= v02d3

3
� v003c2

3
= �c2

3
;

T
31

3
= v03d1

3
� v001c3

3
= d1

3
; T

32

3
= v03d2

3
� v002c3

3
= d2

3
; T

33

3
= v03d3

3
� v003c3

3
= 0; (24)

and the relations between point and line correspondences in (18) and (20) can be

written

T 13
3 x00 + T 31

3 x0 � T 11
1 x� T 11

2 y= 0;

T 13
3 y00 + T 32

3 x0 � T 12
1 x� T 12

2 y= 0;

T 23
3 x00 + T 31

3 y0 � T 21
1 x� T 21

2 y= 0;

T 23
3 y00 + T 32

3 y0 � T 22
1 x� T 22

2 y= 0; (25)
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l3(l
0

1l
00

1T
11
1 + l01l

00

2T
12
1 + l02l

00

1T
21
1 + l02l

00

2T
22
1 )� l1(l

0

1l
00

3T
13
3 + l02l

00

3T
23
3 + l03l

00

1T
31
3 + l03l

00

2T
32
3 )= 0;

l3(l
0

1l
00

1T
11
2 + l01l

00

2T
12
2 + l02l

00

1T
21
2 + l02l

00

2T
22
2 )� l2(l

0

1l
00

3T
13
3 + l02l

00

3T
23
3 + l03l

00

1T
31
3 + l03l

00

2T
32
3 )= 0;

l1(l
0

1l
00

1T
11
2 + l01l

00

2T
12
2 + l02l

00

1T
21
2 + l02l

00

2T
22
2 )� l2(l

0

1l
00

1T
11
1 + l01l

00

2T
12
1 + l02l

00

1T
21
1 + l02l

00

2T
22
1 )= 0:

(26)

In the generic case, only two of the three relations in (26) are independent. The third

relation is, however, needed, since the �rst two relations vanish when l3 = l03 = l003 = 0,

i.e., when the 3D line goes through the origin of the world coordinate system (in our

case is the center of gravity of the 3D point con�guration).

The centered aÆne trifocal tensor has 12 non-zero entries. Due to the centering of

the equations, one point correspondence is redundant. Thus,K point correspondences

and L line correspondences are (generically) suÆcient to compute T jk
i (up to scale)

provided that 4(K � 1) + 2L � 11.

5 Orientation from the centered aÆne trifocal tensor

To compute the camera parameters from the aÆne trifocal tensor, we largely follow

the approach that Hartley [22] uses for three perspective cameras. The calculations

can, however, be simpli�ed with aÆne cameras. From (24) we directly get

c13 = �T 13
3 ; d13 = T 31

3 ; c23= �T 23
3 ; d23= T 32

3 : (27)

Given these c
j
3 and dk3 , the remaining c

j
i and dki can be computed from (24) using

0
BBBBBBBBBB@

d13 �c13
d23 �c13

d13 �c23
d23 �c23

d13 �c13
d23 �c13

d13 �c23
d23 �c23

1
CCCCCCCCCCA

0
BBBBBBBBBB@

c11
c21
c12
c22
d11
d21
d12
d22

1
CCCCCCCCCCA

=

0
BBBBBBBBBB@

T 11
1

T 12
1

T 21
1

T 22
1

T 11
2

T 12
2

T 21
2

T 22
2

1
CCCCCCCCCCA
: (28)

The camera matrices are, however, not uniquely determined. The centered aÆne

trifocal tensor T jk
i in (23) is invariant under transformations of the type ~c

j
i = c

j
i+
i c

j
3

and ~dki = dki + 
i d
k
3 .

With N 0 and N 00 denoting the upper left 2� 3 submatrices of M 0 and M 00 respec-

tively, this ambiguity implies that both f ~N 0; ~N 00g and fN 0; N 00g are possible solutions
(with ~N 00 analogously)

~N 0 =

�
~c11 ~c12 ~c13
~c21 ~c22 ~c23

�
=

�
c11 c12 c13
c21 c22 c23

�0
@ 1

1


1 
2 
3

1
A = N 0 �: (29)

To determine �, let us assume that the aÆne camera model corresponds to scaled

orthographic projection, and that internal calibration is available. Then, the camera

matrices can be written (with ~N 00 analogously)

~N 0 = �0
�

1 0 0

0 1 0

�
R0 = �0

�
�0

1
1 �0

1
2 �0

1
3

�0
2
1 �0

2
2 �0

2
3

�
; (30)
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where �0
jT

= (�0
j
1; �

0j
2; �

0j
3) are the row vectors in the three-dimensional rotation ma-

trix R0, while �0 is a scaling factor. Since the rows of R0 are orthogonal, �0i
jT
�0i
k
= Æjk,

where Æjk is the Kronecker delta symbol, we have

~N 0 ~N 0
T
= N 0��TN 0T = (�0)2I2�2; (31)

where I2�2 represents a unit matrix of size 2� 2. With

��T =

0
@ 1 0 
1

1 0 
2

1 
2 
21 + 
22 + 
23

1
A =

0
@ 1 0 �

0 1 �

� � �

1
A (32)

we rewrite (31) as

0
BBBBBB@

2c11c
1
3 2c12c

1
3 (c13)

2 �1 0

c11c
2
3 + c13c

2
1 c12c

2
3 + c13c

2
2 c13c

2
3 0 0

2c21c
2
3 2c22c

2
3 (c23)

2 �1 0

2d11d
1
3 2d12d

1
3 (d13)

2 0 �1
d11d

2
3 + d13d

2
1 d12d

2
3 + d13d

2
2 d13d

2
3 0 0

2d21d
2
3 2d22d

2
3 (d23)

2 0 �1

1
CCCCCCA

0
BBBB@

�

�

�

(�0)2

(�00)2

1
CCCCA = �

0
BBBBBB@

(c11)
2 + (c12)

2

c11c
2
1 + c12c

2
2

(c21)
2 + (c22)

2

(d11)
2 + (d12)

2

d11d
2
1 + d12d

2
2

(d21)
2 + (d22)

2

1
CCCCCCA
:

(33)

Solving this system of equations in the least squares sense gives (�; �; �; (�0)2; (�00)2)

as function of c
j
i and dki determined from (27) and (28). Then, � is given by

� =

0
@ 1 0 0

0 1 0


1 
2 
3

1
A =

0
@ 1 0 0

0 1 0

� � �
p
� � �2 � �2

1
A ; (34)

and we estimate the �rst two rows of R0 in (30) by ~N 0 = �0N 0�. The third row is

then easily obtained as the cross product of the �rst two rows: �0
3
= �0

1 � �0
2
. The

ambiguity in the determination of 
3 in � corresponds to a sign change in the last

component of the �rst two rows of R0 and R00, and a corresponding sign change in

the last row, i.e., the following solutions:

� =

0
@ �11 �12 �13

�21 �22 �23
�31 �32 �33

1
A ; �� =

0
@ �11 �12 ��13

�21 �22 ��23
��31 ��32 �33

1
A : (35)

This ambiguity re
ects the fact that for scaled orthographic projection we cannot

distinguish between a positive rotation of a point in front of the center of rotation

and a negative rotation of a similar point behind the center of rotation. To choose

between the two possible solutions, we can either assume similarity between adjacent

rotations, or use the size variations of the tracked image features (see section 6.2).

The matrices obtained from (35) depend upon � and (�; �; �; (�0)2; (�00)2) and are

not guaranteed to be orthogonal matrices, since (�; �; �; (�0)2; (�00)2) is computed from

an overdetermined system of equations. Given an estimate � of the rotation matrix

R, a singular value decomposition is carried out of �, and R is determined from

� = U�V T , which gives R = UV T . This choice minimizes the di�erence between �

and R in the Frobenius norm.
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6 Joint factorization of point and line correspondences

The treatment so far shows how changes in the orientation of an unknown three-

dimensional point and line con�guration can be computed from three aÆne views.

To derive corresponding motion descriptors from time sequences, we shall in this

section develop a factorization approach, which treats point features and line features

together. In this way, we shall combine several of the ideas in the factorization

methods for either point features or line features (Tomasi and Kanade [14], Quan and

Kanade [16], Sturm and Triggs [17]). It should be noticed, however, that the main

intention here is not to separate the motion information from structural information

a priori as in Tomasi and Kanade [14]. The goal is to exploit the redundancy between

point features and line features over multiple frames, and to avoid the degenerate

cases that are likely to occur if we compute three-dimensional motion using image

triplets only.

Let us introduce a slightly di�erent notation (and do away with the Einstein

summation convention). The centered aÆne projection of a three-dimensional point

Pk = (Xk; Yk; Zk)
T in image n shall be written

�
xnk
ynk

�
=MnPk =

�
� �nT �

� �nT �

�0
@ Xk

Yk
Zk

1
A ; (36)

while the (centered) aÆne projection of a line Pl = (Xl;0; Yl;0; Z0;l)
T+�(Ul; Vl;Wl)

T =

Pl;0 + �Ql in image n shall be represented by the directional vector

�nl

�
unl
vnk

�
=MnQl =

�
� �nT �

� �nT �

�0
@ Ul

Vl
Wl

1
A ; (37)

where the suppression of (Xl;0; Yl;0; Z0;l)
T and the introduction of the scale factor �nl

account for the fact that the position of the line is unimportant, the length of (unl ; v
n
k )

is unknown, and only the orientation of the line is signi�cant. Given K point and

L line correspondences over N image frames, we model these measurements together

by a matrix G =MS according to

0
BBBBB@

x11 : : : x1K �11u
1
1 : : : �1Lu

1
L

y11 : : : y1K �11v
1
1 : : : �1Lv

1
L

...
...

...
...

xN1 : : : xNK �N1 u
N
1 : : : �NL u

N
L

yN1 : : : yNK �N1 v
N
1 : : : �NL v

N
L

1
CCCCCA

=

0
BBBBBB@

� �1T �

� �1T �
...

� �N
T

�

� �N
T

�

1
CCCCCCA

0
@ X1 : : : XK U1 : : : UL

Y1 : : : YK V1 : : : VL
Z1 : : : ZK W1 : : : WL

1
A : (38)

Since the rank of the matrices on the right hand side is maximally three, it follows that

any 4�4-minor must be zero, and we can, for example, form selections of k; k0; k00 2
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[1::K], l 2 [1::L] and n; n0 2 [1::N ], with

��������

xnk xnk0 xnk00 �nl u
n
l

ynk ynk0 ynk00 �nl v
n
l

xn
0

k xn
0

k0 xn
0

k00 �n
0

l u
n0

l

yn
0

k yn
0

k0 xn
0

k00 �n
0

l v
n0

l

��������
= 0: (39)

If we would have K � 4 point correspondences, this would give us up to
�
K
3

��
N
2

�
L lin-

ear relationships, out of which a subset could be selected for determining the scale fac-

tors �nl from an overdetermined system of homogeneous linear equations. Approaches

closely related to this have been applied to line features by Quan and Kanade [16]

and to point features by Sturm and Triggs [17].

Given only three points, however, these linear relationships degenerate, since any

minor with K = 3 point features is zero (due to centering, all the K points together

will be linearly dependent). The same thing happens when the points are coplanar,

see section 7.

To determine �nl (totally NL scaling factors) in this case, we instead apply the

aÆne trifocal tensor to a set of randomly selected triplets of image frames as a pre-

processing stage. In analogy with Quan and Kanade [16] let us for each such triplet

n; n0; n00 2 [1::N ], insert the following shape matrix

0
@ X1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

1
A =

0
@ 1 0 0

0 1 0

0 0 1

1
A (40)

into the projection equation (38) for K = 3 point features:

Hn;n0;n00

=

0
BBBBBBBB@

� �nT � �n1u
n
1 : : : �nLu

n
L

� �nT � �n1v
n
1 : : : �nLv

n
L

� �n
0T

� �n
0

1 u
n0

1 : : : �n
0

L u
n0

L

� �n
0T

� �n
0

1 v
n0

1 : : : �nLv
n0

L

� �n
00T

� �n
00

1 un
00

1 : : : �n
00

L un
00

L

� �n
00T

� �n
00

1 vn
00

1 : : : �nLv
n00

L

1
CCCCCCCCA
: (41)

Then, since the rank of the right hand side in (38) is maximally three, it follows

that any 4�4-minor of this matrix must be zero. For each line feature l 2 [1::L], we

consider three algebraically independent minors. Given three camera matrices Mn,

Mn0

and Mn00

, these minors de�ne three homogeneous linear relations between �nl ,

�n
0

l and �n
00

l for each l 2 [1::L]. The camera matrices for stating these relations are

determined by computing the trifocal tensor for the corresponding triplets of image

features as described in section 5.

From a set of such (randomly selected) triplets, we then for each l de�ne a homo-

geneous system of equations of the following type for determining �nl :

Dl�l =

0
B@

� : : : �
...

. . .
...

� : : : �

1
CA
0
B@

�1l
...

�Nl

1
CA =

0
B@

0
...

0

1
CA : (42)

Three consecutive rows in Dl correspond to one image triplet, and the entries in the

matrix Dl have just been indicated by '�' symbols. In practice, we let the number
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of triplets be substantially larger than the number of image frames (by a factor 4).

Moreover, the image triplets are ranked by sorting and thresholding with respect to

a condition number.

Then, �l is determined from the overconstrained system of equations using a

singular value decomposition of Dl = Ul�lV
T
l , which gives �l as the last row of

Vl. The �
n
l values are inserted into G in (38) and a singular value decomposition is

computed G = UG�GV
T
G . With sGi denoting the singular values of sG, all elements

except the three �rst ones in sG are set to zero to reduce the rank to three. In other

words, ~sG = diag(s1; s2; s3; 0; : : : ; 0) gives ~G = UG ~�GV
T
G . Finally, the ambiguity

in the separation of motion information from structure information G = MS =

M̂LL�1Ŝ is resolved in a similar fashion as in (Tomasi and Kanade [14], Quan and

Kanade [16]). In this way, re�ned estimates are obtained for the rotation matrices of

the motion as well as the structure of the object.

6.1 Structure estimation from point and line correspondences

The ambiguity ~G = MS = M̂LL�1Ŝ in the separation of the motion information

from the structure information in ~G is resolved by forming the matrix MMT =

(M̂L)(M̂L)T = M̂LLTM̂ , which according to (30) is of the following form

MMT = M̂LLTM̂ =

0
BBBBBBBB@

�2
1 0

0 �2
1

. . .

. . .

�2
N 0

0 �2
N

1
CCCCCCCCA
: (43)

With

Mn =

�
� �nT �

� �nT �

�
; M̂n =

�
� �̂nT �

� �̂nT �

�
and M̂nL =Mn (44)

where �nT�n = �nT�n = �2
n and �nT�n = 0, we obtain the following system of

equations

�
�̂nTLLT �̂n � �̂nTLLT �̂n = 0;

�̂nTLLT �̂n = 0:
(45)

After introducing

A = LLT =

0
@ a1 a2 a3

a2 a4 a5
a3 a5 a6

1
A and a = (a1; a2; a3; a4; a5; a6)

T (46)

let us write (45) as Ba = 0, where the components in B are obtained from �̂n and

�̂n in M̂n. This system of equations is solved by singular value decomposition of

B = UB�BV
T
B , and a is given by the last row in VB . The matrix A is formed from

the vector a, and assuming that this matrix is positive de�nite, it is diagonalized

A = C�AC
T = (C�

1=2
A )(C�

1=2
A )T (47)
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to give L = C�
1=2
A . This gives the camera matrix M = M̂(C�

1=2
A ) and the structure

matrix S = (C�
1=2
A )�1Ŝ. Since M is known, the scaling factors can be determined.

This procedure is a generalization of the factorization method in Tomasi and

Kanade [14] from orthographic projection to scaled orthographic projection, see also

Poelman and Kanade [15].

6.2 Resolving the ambiguity in the rotation estimates

As described in section 5, the aÆne projection model gives two possible solutions when

determining the rotation R according to (35). A corresponding ambiguity exists for

the structure S. These alternatives to the rotation R and the structure S correspond

to a mirroring in the z-plane and are denoted by �R and �S respectively.

This ambiguity is resolved as follows, using scale information from the scale-

space extrema in the multi-scale feature detection step [38] and the scaling factors

� associated with the camera matrices (according to the computational procedure

section 6.1). One choice of a rotation matrix R gives a structure for the entire point

con�guration according to section 6.1. Column number k in S, denoted Sk, gives

the structure sk for point number k. With R0 and R00 denoting the rotations at two

di�erent moments, the depths z0k and z00k of point k are given by

0
@ x0k

y0k
z0k

1
A = R0sk;

0
@ x00k

y00k
z00k

1
A = R00sk: (48)

Let t0k and t
00

k denote the scales of the corresponding point features, and let the scaling

factors of the camera matrices computed according to section 6.1 be �0 and �00. If

the depth z0k is greater that z
00

k , then the relative increase in scale between these two

images must be greater than the relative increase in scale of the entire con�guration.

In other words, one of the conditions

��
z00k > z0k

�
and

�
t00k
t0k

>
�00

�0

��
or

��
z00k < z0k

�
and

�
t00k
t0k

<
�00

�0

��
(49)

must be satis�ed if the structure S and the rotations R0 andR00 are correct. Otherwise,

we choose the other solution ( �S, �R0, �R00) corresponding to a simultaneous mirroring

of the structure and all rotations. These conditions are tested for each point in the

con�guration, and a voting over all points determines which rotation (and thereby

structure) should be selected.

6.3 Relative weighting of point and line constraints

In the scheme for structure and motion estimation, we solve overdetermined systems

of equations (i) when computing the aÆne trifocal tensor from the point and line

constraints (25) and (26), (ii) when determining the scale factors of the lines from (42)

and (iii) in the joint factorization of point and line measurements into structure and

motion information (38). When solving such overdetermined systems of equations,

it is of crucial importance that the equations are properly weighted. For example,

the SVD solution of a homogeneous system of equations is a maximum-likelihood-

solution if the noise in the components is independent and has an isotropic Gaussian

distribution.
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In our case, the equations we solve involve point and line coordinates of automat-

ically extracted image features. Unfortunately, we cannot assume the noise terms in

the coordinates and the relations to be independent, since they originate from highly

coupled measurements in the image domain. Our aim will therefore be to renormalize

the equations by weighting the components to have approximately the same variance,

see Shapiro [44], Kanatani [45] and M�uhlich and Mester [46] for related works with

similar aims.

As prerequisite for this analysis, we can observe that the (centered) 2D point coor-

dinates (x; y) will be in the range [��;�]. Concerning the line coordinates (l1; l2; l3),
we have chosen to normalize the directional vector (l1; l2) such that

p
l21 + l22 = 1.

Then, jl3j equals the orthogonal distance from the line to the origin and will be in the

range [0;
p
2 ��]. The assumptions we make about the data are that the variance of

the errors in x; y and l3 are of the same order of magnitude and that the errors in l1
and l2 have equal variance.

6.3.1 Computing the centered aÆne trifocal tensor

When computing the elements of the centered aÆne trifocal tensor from the four

point constraints (25) and the three line constraints (26), we solve a system of the

form Ax = 0. In the �rst two line constraints, the l3 components occurs once in each

term, while in the last constraint the l3 component does not occur at all. Motivated

by this risk for underweighting of the third line relation, and the fact that the four

point relations together contain 16 terms, while the third line relation contains 8

terms, we have chosen to reweight the third line relation such that

jjApjjFro
p
16P

=
jjAl3jjFrop

8L
; (50)

where Ap are the rows of A corresponding to the point relations, Al3 are the rows

corresponding to the third line relation, and P and L represent the numbers of points

and lines.

To demonstrate the importance of this reweighting, table 1 shows a synthetic

experiment with 3 equidistant points and 3 lines, distributed such that all features

were not in the same plane, while all the lines passed through the centroid of the

3 points. From a random initial pose, this con�guration was subjected to a rotation

around the vertical Y -axis. three orthographic projections of the con�guration were

selected, and the image features were perturbed in a similar way as previously. The

rotation was estimated using the centered aÆne trifocal tensor and measures of the

errors in the rotation angles were computed as averages over 10 experiments. In

this case, the reweighting decreases the error by one order of magnitude. A more

thorough normalization could involve a reweighting of point and line constraints,

based on covariance estimates of the image features.

6.3.2 Finding scale factors of lines prior to factorization

When computing the scale factors �l of the lines from (42), we can observe that the

left hand side matrix is sparse and some columns have few entries due to the random

selection of image triplets. The system is solved using SVD, �nding the eigenvec-

tor of DT
l Dl that corresponds to the smallest eigenvalue. Noisy data combined with

sparse entries of Dl could cause min jjDl�ljj2 to approximately equal the length of the

14



Rotation error (degrees) �� ��

Weighted 2.03 2.83

Unweighted 35.2 17.4

Table 1: Synthetic experiment with 3 points and 3 lines at noise level � = 0:01, showing the
accuracy in rotation estimates with and without the reweighting of the third line equation.
The results are averages over 10 experiments.

shortest column vector of Dl, thus enforcing a solution vector �l with one dominant

element. We avoid this selection of the shortest column vector by normalizing all

column vectors to have unit length prior to the SVD computation and afterwards

multiply the elements of the solution vector by the normalization factors. This treat-

ment clearly violates the assumptions of equal variance, but produces more stable

solutions.

6.3.3 Simultaneous factorization of points and lines

In the simultaneous factorization of points and lines, it is important to treat the

point and line data approximately equally. In order to obtain approximately the

same error distribution in all columns of the measurement matrix G in (38), we

divide the columns corresponding to the point features in G by a factor w,

w =

p
L � jjGpjjFrop
P � jjGLjjFro

(51)

where GP is the part of G holding the point feature coordinates, GL is the part

holding the direction of the line features and P and L are the number of points and

lines. After factorization into G =MS, we multiply the part of the structure matrix

S that holds the 3D positions of the point features by w. This gives the same l2 norm

of all columns.

To show the importance of this column weighting, we made synthetic experiments

where four random points and lines were rotated around the vertical Y -axis. Ortho-

graphic projections of these con�guration (of size about 200 pixels) were computed

with 4 degrees of rotation between each frame, and the image features were perturbed

as before. The rotation was estimated using the proposed factorization scheme and

the errors in the rotation after 30 frames are shown in table 2 as averages over 20

experiments. (Here, the scale factors of the lines were determined directly after 30

frames, and not in the iterative way that will be described later in section 8.1.) As

can be seen, the errors in this case decrease by a factor of 5.

Rotation error (degrees) �� ��

Weighted 1.24 2.24

Unweighted 6.89 6.73

Table 2: Synthetic experiment with 4 points and 4 lines at noise level � = 0:02, showing the
rotation errors with and without the proposed relative weighting of point and line columns.
The results are averages over 20 experiments.
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7 Degenerate situations

So far, we have assumed that all point and line con�gurations are generic. More

generally, one may ask what are the degenerate situations, i.e., the cases where not all

image features provide additional information to the structure and motion estimation.

The subject of this section is to analyse such degeneracies. The methodology we shall

follow is to consider the matrix G with measured point and line features according to

(38), factorized as the product G =MS of a matrix M with motion parameters and

a shape matrix S. Since the rank of any of these matrices is maximally three, we can

treat 3� 3-minors of lower rank as degenerate con�gurations.

7.1 Degenerate three-dimensional shapes

With respect to the structure matrix, we can thus distinguish four di�erent cases,

depending on the number of point and line features, respectively, we include when

forming 3� 3-minors:

Three points A minor with three points in three dimensions

������
X1 X2 X3

Y1 Y2 Y3
Z1 Z2 Z3

������ (52)

is degenerate if the plane through these three points contains the origin. Special cases

of this condition include when (i) one of the points is at the origin, (ii) all three points

are on the same line, (iii) two of the points are on a line through the origin, or (iv)

two or more points coincide.

The rationale for the special treatment of the origin is that under aÆne projec-

tion the motion of the center of gravity of a three-dimensional point con�guration is

given by the motion of the center of gravity of the two-dimensional image measure-

ments. Using centered coordinates, the center of gravity coincides with the origin,

and we can regard the origin as one measurement implicitly present with all the other

measurements.

Two points and one line A minor with two points and one line

������
X1 X2 U3

Y1 Y2 V3
Z1 Z2 W3

������ (53)

is degenerate if the line is contained in the plane through the two points and the origin.

Special cases of this condition (excluding previously listed degeneracies) include when:

(i) the line is parallel to the line through the two points, and (ii) the line is parallel

to the line through the origin and one of the points.

One point and two lines A minor with one point and two lines

������
X1 U2 U3

Y1 V2 V3
Z1 W2 W3

������ (54)
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is degenerate when the point is contained in the plane spanned by the two lines and

the origin. One special case of this is when the two lines are parallel.

Three lines A minor with three lines������
U1 U2 U3

V1 V2 V3
W1 W2 W3

������ (55)

is degenerate if the three lines are all in the same plane. For this situation, one could

at �rst expect analogous degeneracies as for the abovementioned situation with three

lines. The situation is di�erent for lines, however, for the following reasons: (i) the

length of each line is non-zero, (ii) the end points of three lines cannot be on the

same line if we assume that the lines are normalized to unit length, (iii) the end

points of two normalized lines are on a line through the origin only if they correspond

to opposite directions.

Remarks From an intuitive viewpoint, one would also expect that situations where

a line that goes through a feature point or two lines that intersect at a feature point

would be regarded as degenerate cases. These degeneracies are, however, not covered

by this analysis, since the aÆne projection model in (38) does not take the position of

the line into account. On one hand, the change in orientation of a line under an aÆne

deformation is independent of the position of the line, motivating the orientation

parameterization of the line features (37). On the other hand, lines do not reposition

themselves randomly when subject to aÆne deformations. The latter e�ect is not

explicitly modelled in the present factorization method, while the positions of the lines

are included (as the third coordinate of the line coordinates) in the point relations

arising from the aÆne trifocal tensor (26).

From this analysis, we can conclude that point and line features extracted from

man-made objects will often lead to a high level of degeneracy concerning the mu-

tual relations between point and line features. Hence, image measurements may not

contribute as much geometrically to the problem as one might expect from a generic

viewpoint. Nevertheless, such measurements can be expected to contribute statisti-

cally , in a similar manner as multiple measurements of the same physical structure

may reduce the e�ective noise level in the image measurements.

7.2 Degenerate three-dimensional motions

To determine degenerate motions, let us study 3 � 3 minors of the matrix M in

(38), keeping in mind that for scaled orthographic projection the camera matrix

corresponds to a rescaling of the �rst two rows of a rotation matrix.

For a pure rotation around the optical axis (the Z-axis), the third column of the

camera matrix will always be zero. This means that all the minors of M will be zero,

the assumption of G having rank three is violated, and we cannot recover the 3D

structure of the object.
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8 Experiments

When using the abovementioned methodology for estimating the structure and motion

of an unknown object, we can expect the convergence properties and the numerical

accuracy to be in
uenced by several factors: (i) the three-dimensional structure of the

object, (ii) its three-dimensional motion, (iii) the validity of the aÆne approximation

of the perspective mapping, and (iv) the localization errors of the image features.

Speci�cally, we can expect that the numerical accuracy will increase with the number

of available image features as well as how many independent views are seen. Moreover,

we can expect the performance to decrease as the perspective e�ects become larger

and if the localization errors are large compared to the interframe motions. Ideally,

one would like to have compact closed-form expressions that characterize how the

di�erent types of errors propagate from the input to the output. Since, however, we

can expect such a theoretical analysis to be rather complex, we will in this section

present a systematic experimental study, to determine empirical performance bounds

for each one of the abovementioned factors.

8.1 Experiments on synthetic test data

To investigate the properties of the abovementioned framework for computing struc-

ture and motion, we shall �rst carry out investigations on synthetic data, which are

generated by the following procedure: A three-dimensional point and line model is

generated. Two types of synthetic test objects will be considered: (i) random selec-

tion of K points and L lines from a Gaussian distribution, and (ii) a qualitative hand

model with four �ngers. The intention behind the �rst choice is to consider a large

number of di�erent shapes, such that the performance values will not be speci�cally

shape dependent. The second test object is selected because of the speci�c application

in vision-based human-computer interaction we are interested in.

The experimental protocol we will follow is to subject each test object to a smooth

three-dimensional rotation around a �xed axis. For each frame, a perspective projec-

tion is computed, and noise is added in the image domain. For point features, the

positions of the image features are perturbed by additive white Gaussian noise with

standard deviation �, determined to be proportional to the size of the object in the

image domain, measured as a factor � times the maximum distance between the point

features to the centroid of all the image points. For line features, the disturbances

are introduced by representing each line by two endpoints, and then disturbing the

two end points independently. All lines have the same length in three dimensions,

and the uncertainty will therefore be relatively higher for lines that are parallel to

the viewing direction.

Concerning the computation of the scale factors of the lines we will, unless oth-

erwise stated, use the tensor-based method described earlier. For each consecutive

frame, the set of equations is increased iteratively, by adding new equations derived

from new triplets of images, where each new triplet includes the present frame. In

this way, we can reuse equations and avoid the computation of a completely new set

of equations for each frame.
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8.1.1 Error measures

Motion estimates To quantify the errors in the estimated rotations, we measure

the angle �� between the real eigenvector u of the true rotation matrix and the real

eigenvector v of the estimated rotation matrix, as well as the di�erence �� between

the estimated and the real rotation around this rotation axis. In graphs, we usually

display the Euclidean sum of � and �, �' =
p
��2 +��2, which serves as an upper

bound on either �� or ��.

Structure estimates For points, we quantify errors in the structure estimates

by the Euclidean sum of the di�erence between the true and the estimated three-

dimensional points coordinates (Xk; Yk; Zk)
T , respectively,

dP (X̂;X) =








X̂1 �X1 : : : X̂K �XK

Ŷ1 � Y1 : : : ŶK � YK

Ẑ1 � Z1 : : : ẐK � ZK








2

; (56)

and for lines by the Euclidean sum of the di�erence between the true and the estimated

normalized line coordinates (Ul; Vl;Wl)
T with U2

l + V 2
l +W 2

l = 1,

dL(Û ; U) =








Û1 � U1 : : : ÛL � UL

V̂1 � V1 : : : V̂L � VL

Ŵ1 �W1 : : : ŴL �WL








2

: (57)

To make the structure errors invariant to scalings and rotations, the point structure

matrices are �rst normalized to unit Frobenius norm. Then, the estimated structure

is aligned to the true structure using the rotation that minimizes the above point

structure error measure. This normalization corresponds to introducing the following

relative error measures

�SP =
dP (X̂;X)

dP (X̂; 0)
; �SL =

dL(Û ; U)

dL(Û ; 0)
; (58)

which are less speci�cally dependent on the size of the object and the number of

object features than dP (X̂;X) and dL(Û ; U). In graphs, we shall often display the

composed structure error measure �SC = �SP + �SL.

8.1.2 In
uence of feature localization errors

To investigate the in
uence of noise on the convergence properties and the accuracy

of the structure and motion estimates, we �rst consider synthetic data generated

by an orthographic projection model. Four points and four lines were randomly

selected from a Gaussian distribution, this object was subject to a rotation around

the vertical Y -axis with a rotation of 4 degrees between successive frames. For each

frame, an orthographic projection was computed and noise was added to the image

features, with standard deviation proportional to the size of the object as described

above. Three di�erent noise levels � = 0:02, 0:05 and 0:10 were investigated, basically

corresponding to localization errors with standard deviations of 2 pixels, 5 pixels

and 10 pixels, respectively, if we assume that the object occupies 200 pixels in the

image domain. For a smaller size object occupying say 50 pixels, these noise levels
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correspond to localization errors of about half a pixel, one pixel and two pixels,

respectively.

For each noise level, this procedure was repeated for 10 randomly selected con-

�gurations, and �gure 2 shows the average rotation error measure �', the average

point structure error measure �SP and the average line structure error measure �SL
at each frame. As can be seen, the error measures decrease rapidly with the number

of image frames, re
ecting the fact that the motion and structure estimates become

more accurate as more views of the object have been seen. (To avoid the initial tran-

sient e�ects, the calculations were started only after 10 frames, when the object had

rotated totally 40 degrees.) Speci�cally, the rotation error measure decreases in a sim-

ilar way as the point structure measure. In view of the fact that the structure of the

object has lower degrees of freedom than all its rotation states, we can thus interpret

an accurate estimation of the object shape as a prerequisite for computing accurate

object pose. Moreover, the error measures reach an approximate steady-state after

about 25-30 frames, when the object has rotated by altogether 90-120 degrees. The

error measures in steady-state are roughly proportional to �.
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Figure 2: In
uence of noise in the image domain on rotation and structure estimates for
the orthographic projection of synthetic test objects with four points and lines. The error
measures are averages over 10 random selections of points and lines from a thresholded normal
distribution. The rotation is 4 degrees per frame. Note how the accuracy increases with the
object motion, and see the text for further explanations.

8.1.3 In
uence of number of image features

To investigate the in
uence of the number of image features, we then varied the num-

ber of image features and selected 4, 5, 7 and 10 random points and lines, respectively,

from a Gaussian distribution. In all other respects, the experimental conditions were

the same as in section 8.1.2. Figure 3 shows the results for the noise level � = 0:05.

As can be seen, the error measures decrease with the number of image features, in-

dicating that both the rotation and the structure estimates will be more accurate

as more image features are available and the overdeterminacy in the equations thus

increases. Speci�cally, the ability of the scheme to converge for highly noisy image

data is also higher when the number of image features is large.

8.1.4 In
uence of perspective e�ects

To investigate the in
uence of perspective e�ects, let us next replace the orthographic

projection model by perspective projection. Initially, we consider a test object with
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Figure 3: In
uence of the number of image features on rotation and structure estimates for
the orthographic projection of synthetic test objects at noise level � = 0:05.

4 points and 4 lines having a diameter rescaled to d = 10 cm, and viewed at distances

of D = 0:7 m, 1.2 m, 2.0 m and 4.0 m, respectively. (The focal length of the camera

is not important here, since the noise level is proportional to the size of the object in

the image.). The intention behind these viewing conditions is to consider an object

with the approximate size of a hand viewed by a computer equipped with a camera

in an oÆce environment. In all other respects, the experimental conditions are the

same as described in section 8.1.3.

Figure 4 shows results in the noise free case, showing how the errors in the rota-

tion and the structure estimates depend on the viewing distance D. Figure 5 shows

corresponding results at a �xed viewing distance of D = 1:2, while the noise level

assumes the values � = 0:0; 0:02; 0:05 and 0:10. As can be seen, the in
uence by

perspective e�ects is signi�cant at small viewing distances, while it decreases as the

distance to the object gets larger. When we add noise to the input, the errors are ini-

tially larger, while in steady-state the scheme reaches a level that roughly corresponds

to the maximum of the errors due to noise and perspective e�ects.
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Figure 4: In
uence of perspective e�ects on rotation and structure estimates for synthetic
test objects without noise. The distance to the object is 0.7, 1.2, 2.0 and 4.0 m.

8.1.5 In
uence of temporal sampling density

So far, the three-dimensional motion has been the same in all experiments | a

rotation of 4 degrees per frame around the Y -axis. To investigate the in
uence of

the temporal sampling density, we shall in this section simulate a change of temporal

sampling by changing the interframe motion to 2, 3 and 8 degrees. The results in

21



10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

frame

ro
ta

tio
n 

er
ro

r,
 p

hi
+

th
et

a 
(E

uc
lid

ea
n 

su
m

)

10 random configurations of

− noise 0

− noise 0.02

− noise 0.05

− noise 0.10

4 points,4 lines

10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

frame

po
in

t e
rr

or
 +

 li
ne

 e
rr

or

10 random configurations of

− noise 0

− noise 0.02

− noise 0.05

− noise 0.10

4 points,4 lines

Figure 5: In
uence of perspective e�ects on rotation and structure estimates for synthetic
test objects at di�erent noise levels. The distance to the object is 1.2 m, and the number of
image features is 4 points and 4 lines.

�gure 6 show that besides initial transient e�ects when the number of image frames

is small, the accuracy of the results is mainly determined by the total motion. Hence,

we can without serious loss of information expect to be able to use a rather coarse

temporal sampling to speed up the computations, once we have an accurate estimate

of the object shape. The convergence is, however, slightly faster when the temporal

sampling is dense, since more measurements are used in the least squares estimation.
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Figure 6: Errors in rotation and structure estimates when increasing and decreasing the inter-
frame motion, using a test object with 7 points and 7 lines under orthographic projection and
noise level � = 0:02.

8.2 Dependency on object shape

In the previous experiments, we randomly selected points and lines from a (thresh-

olded) normal distribution. By de�ning test objects from a random process, we

ensure that, with probability one, no degenerate situations occur, and that we cover

objects of a variety of di�erent shapes. Some con�gurations will, however, be close

to degenerate.

As mentioned in section 7, the general algorithm fails when all the points are in

the same plane and all the lines are parallel to this plane. With application to the

3-D hand mouse mentioned in sections 1{2, we have a special interest in investigating

under what circumstances the proposed method can estimate the rotation of a human

hand. When we hold a hand in a general position, it will often be the case that all

the �nger tips are in approximately the same plane. (Try this, by putting your �nger

tips against a table!) Thus, the point con�guration will be degenerate, and we cannot
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use the fast method for computing the scale factors of the lines.

In a �rst experiment, we want to compare the performance of the fast method

(which assumes that no triplet of 3-D points goes through center of gravity of the

point con�guration) with the more general method based on the aÆne trifocal tensor.

We choose an almost planar test object consisting of 4 points and 4 lines as shown

in �gure 7. The points are �rst equally distributed on a circle of diameter 1, thus

forming a square. Then, the fourth point is moved to height h above the plane

through this circle. The 4 lines go from each one of the 4 object points to a common

point of intersection, at the same distance from the points as the distance between

them. This object is randomly oriented in 3D before it is rotated around the vertical

Y -axis.
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Figure 7: Synthetic test object with a close to planar point-structure.

In a �rst experiment, we let h be 0.05 and 0.2, the noise level is set to 0.02 and

the orthographic projection model is used. Figure 8 shows the errors in the estimated

structure and rotation when using the two di�erent methods for determining the scale

factors of the lines. As we expect, the trifocal tensor-based method is superior when

the point-structure is closer to planar (h = 0:05), while the di�erence between the

errors of the two methods gets smaller when the point structure gets more non-planar

(h = 0:2).

In the second experiment, we want to investigate the in
uence of perspective

e�ects and noise and concentrate on close to planar point structures (h = 0:05)

using the trifocal tensor-based method for estimating the scale factors of the lines.

Figure 9 shows the errors in the rotation and structure estimates for the noise levels

� = 0:02, 0:05 and varying distances 0.7 m, 1.2 m and 2.0 m. At noise level � = 0:02

the perspective e�ects are clearly visible, while for � = 0:05 the e�ect of the noise

dominates over the perspective e�ects.
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Figure 8: Experiments with the close to planar point structure in �gure 7, using two di�erent
methods for computing the scale factors of the lines (see the text). The graphs show the errors
in rotation and structure estimates for h = 0:05 and 0:2. The projection is orthographic and
the noise level is � = 0:02.
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Figure 9: In
uence of noise and perspective e�ects for a synthetic test object with close to
planar point structure (h = 0:05). The graphs show errors in the rotation and structure
estimates for the noise levels � = 0:02 and 0:05 when the distance to the object is 0.7 m,
1.2 m and 2.0 m.
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8.3 Conclusions from the synthetic experiments

The goal of the previous section has been to investigate the in
uence of set of pa-

rameters on the performance of the proposed method for motion estimation from

point and line correspondences. From the experiments in �gure 6, we can �rst of

all conclude that the amount of rotation is crucial for the convergence, convergence

is reached after approximately the same amount of rotation, independently of the

inter-frame motion. As expected, the errors in the resulting structure and motion

estimates decrease with (i) decreasing noise level, (ii) decreasing perspective e�ects,

(iii) increasing rotation out of the image plane and (iv) increasing number of feature

correspondences.

Concerning quantitative numbers, one may ask what conditions must be met

for the hand mouse to reach a certain accuracy. By studying the experiments in

section 8.1.2 with random con�gurations, we see that 5 or more points and lines are

needed to get rotation errors below 10 degrees when � = 0:10 or below 5 degrees for

� = 0:05. If we want the rotation error caused by perspective e�ects to not exceed

5 degrees, the experiments show that the object should be at a distance of more than

10 times the size of the object.

For the speci�c test object, we can �rst conclude that the proposed fast method

for estimating the scale factors has severe problems. Therefore, the method based on

the aÆne trifocal tensor should be used. Concerning the convergence, we can note

that for the noise level � = 0:05, the rotation around the axis perpendicular to the

optical axis has to exceed 90-120 degrees before the rotation error becomes reasonable

stable, see �gure 9. If the perspective e�ects are small, and the noise level is less than

� = 0:05 (corresponding to feature localization errors of 5 pixels if the object size

in the image is 200 pixels), we can expect the error in the estimated rotation to be

below 5 degrees after convergence. A study of the minimal case with 3 points and

3 lines in appendix A.2 shows that we cannot expect a rotation error below 5 degrees

if the noise level is above � = 0:02. This indicates that a minimum of 4 points and

4 lines is preferable for the intended application.

8.4 Experiments on real image data

Our next step is to apply the proposed scheme for structure and motion estimation

to feature correspondences computed from real-world image data. As described in

section 2, we capture point features corresponding to the �nger tips by blob tracking

and line features corresponding to the �ngers by ridge tracking (see �gure 1). Moti-

vated by the results from the synthetic experiments, summarized in section 8.3, we

choose to estimate the three-dimensional rotations from the feature trajectories of

four �ngers and four �ngertips.

The left columns in �gure 10 show a few snapshots from an image sequence with

a hand moving at a distance of 1.0-1.5 m from the camera. Since no ground truth

was available in this case, we show the results by subjecting a synthetic cube to the

estimated rotations after convergence of the estimated structure. We can see how

the motion of the cube mimics the motion of the hand. This e�ect is more apparent

when the images are shown as a temporal sequence.
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Hand motion Estimated rotation Hand motion Estimated rotation

Figure 10: 3D rotations estimated from the motion of a human hand. The left column shows
the motion of the hand while the right column shows the result of computing changes in 3D
orientation using the joint factorization of point and line features detected and tracked in the
sequence. The results are illustrated by subjecting a three-dimensional cube to the estimated
rotations.

9 Summary and discussion

We have presented a framework for capturing point and line correspondences over

multiple aÆne views. This framework is closely connected to and builds upon several

previous works concerning the aÆne projection model, perspective point correspon-

dences and line correspondences as can be modelled by the trilinear tensor. It also

builds upon factorization approaches for aÆne and perspective projection.

We propose that the (centered) aÆne trifocal tensor constitutes a canonical tool

to model point and line correspondences in triplets of aÆne views (sections 3{4). This

extends the advances of previous works and we show how the trifocal aÆne tensor

relates to the perspective trilinear tensor. Indeed, the algebraic structure of the aÆne

trifocal tensor can be mapped to the algebraic structure of the perspective trilinear

tensor. The centered aÆne trifocal tensor makes it possible to explore sparse sets

of point and line features, since it contains 12 non-zero coeÆcients compared to the

27 coeÆcients in the trilinear tensor. The computation of motion parameters from

the aÆne trifocal sensor (section 5) is also more straightforward. Closely related

formulations of this aÆne trifocal tensor (Bretzner and Lindeberg [47]) have been

presented simultaneously and independently by Kahl and Heyden [48], Quan et al. [49]

and Mendonca and Cipolla [50]. More recently, Th�orhallsson and Murray [51] have
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presented an extension to the quadrifocal tensor for modelling aÆne projections in

four aÆne views, with a follow-up work by Hayman et al. [52].

To capture point and line correspondences in dense time sequences, we have also

applied a factorization approach (section 6), to which the aÆne trifocal tensor serves

as an important processing step for computing the scaling factors of line correspon-

dences when three or less point correspondences are available. When four or more

point correspondences are given, these scaling factors can be determined directly from

a system of linear equations. The performance of this factorization approach has been

investigated experimentally (section 8), and its degenerate con�gurations analysed

(section 7). This joint factorization of point and line features was �rst presented

in [47], and a similar approach was developed simultaneously and independently by

Kahl and Heyden [48, 53].

The abovementioned theory has been combined with a framework for feature

tracking with automatic scale selection (section 2), which has the attractive property

that it adapts the scale levels to the local image structure and allows image features

to be tracked over large size variations. The extended feature trajectories obtained in

this way allow for higher accuracy in the motion estimates, since the relative in
uence

of position errors decreases as the motion gets larger over time. The scale information

associated with the image features also resolves the inherent reversal ambiguity of

scaled orthographic projection.

Speci�cally, we have considered a problem in human-computer interaction of

transferring three-dimensional orientation to a computer using no other equipment

than the operator's own hand (section 2 and section 8.4). Contrary to the more com-

mon approach of using detailed geometric hand models, we have here illustrated how

changes in three-dimensional orientation can be computed using a qualitative model,

based on blob features and ridge features from three �ngers. Whereas a more detailed

model could possibly allow for higher accuracy in the motion estimates, the simplicity

and the generic nature of this module for motion estimation makes it straightforward

to implement and lends itself easily to extensions to other problems.

A Appendix

A.1 Algebraic constraints on the aÆne trifocal tensor

The centered aÆne trifocal tensor T jk
i de�ned in (23) and (24) contains 12 non-

zero elements. These elements, in turn, depend on 12 camera parameters c
j
i and d

j
i

according to (16) and (17), respectively. The mapping from the camera parameters

c
j
i and d

j
i to the aÆne trifocal tensor T jk

i is, however, not surjective. This can, for

example, be understood from the ambiguity (29) that arises when computing the

camera matrices from the aÆne trifocal tensor. Hence, given a set of 12 arbitrary

coeÆents, it is not necessarily the case that these coeÆcients constitute an aÆne tri-

focal tensor. In this section, we will derive two algebraic conditions that the elements

of the centered aÆne trifocal tensor must satisfy. Let us insert

c13 = �T 13
3 ; d13 = T 31

3 ; c23= �T 23
3 ; d23= T 32

3 ; (59)
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which we obtain from (24) into the other components of T jk
i in (24). This gives

T 11
1 = c11T

31
3 + d11T

13
3 ; T 12

1 = c11T
32
3 + d21T

13
3 ; (60)

T 21
1 = c21T

31
3 + d11T

23
3 ; T 22

1 = c21T
32
3 + d21T

23
3 (61)

T 11
2 = c12T

31
3 + d12T

13
3 ; T 12

2 = c12T
32
3 + d22T

13
3 ; (62)

T 21
2 = c22T

31
3 + d12T

23
3 ; T 22

2 = c22T
32
3 + d22T

23
3 : (63)

We can eliminate c
j
i from these expressions by forming

T 32
3 (60a) � T 31

3 (60b) ) T 11
1 T 32

3 � T 12
1 T 31

3 = d1T
13
3 T 32

3 � d21T
13
3 T 31

3 ; (64)

T 32
3 (61a) � T 31

3 (61b) ) T 21
1 T 32

3 � T 22
1 T 31

3 = d11T
23
3 T 32

3 � d21T
23
3 T 31

3 ; (65)

T 32
3 (62a) � T 31

3 (62b) ) T 11
2 T 32

3 � T 12
2 T 31

3 = d12T
13
3 T 32

3 � d22T
13
3 T 31

3 ; (66)

T 32
3 (63a) � T 31

3 (63b) ) T 21
2 T 32

3 � T 22
2 T 31

3 = d12T
23
3 T 32

3 � d22T
23
3 T 31

3 ; (67)

and further eliminate d
j
i by forming

T 23
3 (64) � T 13

3 (65) ) T 23
3 (T 11

1 T 32
3 � T 12

1 T 31
3 )� T 13

3 (T 21
1 T 32

3 � T 22
1 T 31

3 ) = 0; (68)

T 23
3 (66) � T 13

3 (66) ) T 23
3 (T 11

2 T 32
3 � T 12

2 T 31
3 )� T 13

3 (T 21
2 T 32

3 � T 22
2 T 31

3 ) = 0: (69)

These two relations will be referred to as the trilinear constraints on the centered

aÆne trifocal tensor.

A.2 Experimental investigation of a minimal case

One minimal set of points and line correspondences for computing the aÆne trifocal

tensor consists of 3 points and 3 lines (see section 3.2). Naturally, such a minimal

con�guration will be very sensitive to degenerate situations and that is the reason

why we did not study this case in the experiments in section 8.1 with random con�g-

urations of K points and L lines. However, if we choose the �rst 3 points and the �rst

3 lines of the synthetic test object in �gure 7, we get a minimal con�guration with

a non-degenerate structure. This con�guration was �rst given a random orientation

and was then subjected to a rotation as described in section 8.2. Figure 11 shows

the e�ect of noise on the structure and rotation estimates for orthographic projection
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Figure 11: In
uence of noise in the image domain for the synthetic test object 3 points and
3 lines described in the text. The graphs show errors in the rotation and structure estimates
for the noise levels � = 0:01; 0:02 and 0:05 with orthographic projection.

28



and noise levels � = 0:01, 0:02 and 0:05. As can be seen, the errors in the rotation

and structure estimates are clearly larger than the corresponding errors for the object

with 4 points and 4 lines shown in �gure 9, even without perspective e�ects.
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