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Abstract

This paper presents an automatic system for steel quality assessment, by mea-
suring textural properties of carbide distributions. In current steel inspection,
specially etched and polished steel specimen surfaces are classified manually un-
der a light microscope, by comparisons with a standard chart. This procedure is
basically two-dimensional, reflecting the size of the carbide agglomerations and
their directional distribution.

To capture these textural properties in terms of image features, we first apply
a rich set of image processing operations, including mathematical morphology,
multi-channel Gabor filtering, and the computation of texture measures with au-
tomatic scale selection in linear scale-space. Then, a feature selector is applied to
a 40-dimensional feature space, and a classification scheme is defined, which on
a sample set of more than 400 images has classification performance values com-
parable to those of human metallographers. Finally, a fully automatic inspection
system is designed, which actively selects the most salient carbide structure on
the specimen surface for subsequent classification.

The feasibility of the overall approach for future use in the production process
is demonstrated by a prototype system. It is also shown how the presented
classification scheme allows for the definition of a new reference chart in terms
of quantitative measures.

Keywords: multi-scale analysis, automatic scale selection, multi-channel tex-
ture analysis, active inspection system, carbide classification.
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1 Introduction

In the production of high speed steel, the rolling affects the micro-structure of the
steel, which in turn influences the mechanical properties (Fischmeister, Paul & Karagoz
1988, Beiss & Wihling 1989). Specifically, the distribution of carbide is essential, since
cracks propagate within the carbide agglomerations. In current quality control, the
properties of the steel are assessed manually by comparison with a standard chart
(figure 2), containing representative patterns for each steel class. These classifications
as well as the standard chart itself, however, are not based on quantitative measures
but on the qualitative visual impression of the metallographers.

The standard technique for classifying these carbide distributions is two-dimensional,
where the first dimension, called degree, basically corresponds to scale (to the size of
the largest carbide agglomeration) and the second dimension, denoted type, basically
reflects the directional distribution (how strongly the net structure of carbide has
been stretched by rolling). Thus, this classification task deals with the problem of
how to characterize scaled textures, i.e. structures with scale and shape continuously
distributed over a certain range. The goal of this article is to present an integrated
prototype system, which performs this classification in a fully automatic manner, and
thus carries out inspection of high speed steel specimens according to their carbide
distribution.

To capture the textural properties mentioned above in terms of image features, we
first develop a rich repertoire of image processing tools, based on morphological oper-
ations (Serra 1982, Serra 1988), Gabor filtering (Bovik, Clark & Geisler 1990, Jain &
Bhattacharjee 1992) and scale-space methods (Witkin 1983, Koenderink 1984, Flo-
rack, ter Haar Romeny, Koenderink & Viergever 1992, Lindeberg 1994, Florack 1997).
In particular, to reliably estimate the size of the dominant structures in the im-
age, we explore recently developed techniques for automatic selection of signif-
icant scales (Lindeberg 1994, Lindeberg 19966, Lindeberg 1996a) and use this
scale information in the computation of textural descriptors (Bigiin, Granlund &
Wiklund 1991, Garding & Lindeberg 1996, Lindeberg & Garding 1993). For each
of these classes of image processing operations, a set of image features is pre-
sented, which capture size and shape information and altogether result in a 40-
dimensional feature space. To select discriminative features from this feature space,
and to reduce its dimensionality, we apply feature selection methods (Devijver &
Kittler 1982, Kittler 1986, Fukunaga 1990) before the subsequent parametric clas-
sification is carried out. Finally, an active inspection system is presented, which
integrates the presented algorithms and substantially improves the computational
speed, compared to a more traditional static analysis.

The paper is organized as follows: We start our presentation with a description
of the image material used (section 2. The first method, described in section 3.1, is
a data-specific scheme to extract a so-called characteristic structure of the carbide
agglomerations. This structure is used for capturing features corresponding to the
manually assessed properties and also serves as a reference for the subsequent scale
selection module. Based on two multi-scale techniques, multi-channel Gabor filtering
(section 3.2) and automatic scale selection in linear scale-space (section 3.3), features
are defined for estimating the scale and the shape of textures. In sections 3.4 and 3.5,
we describe the feature selection and classification approaches. Finally, we present



the results of scale and shape estimation (section 4.1) and of using the proposed
classification scheme (section 4.2), for constructing a fully automatic steel inspection
scheme (section 5) as well as for defining a new objectively defined reference chart
(section 6).

2 Material

To assess the carbide distribution of high speed steel, specimens of a few ¢m3

taken. The specimen surface is polished and etched to show the carbides. By means
of a light microscope and a standard CCD-camera, images are taken at a magnification
of 1:100, where the rolling direction of the specimens is always aligned horizontally,
which results in a horizontal preferential direction. Figure 1 shows such an image with
a medium-sized strongly stretched carbide distribution, where the carbide particles
are represented by white.!

are

Figure 1: A microscopic image of a medium-sized, strongly stretched carbide distribution at
a magnification of 1:100 (white pixels = carbides; 700x 500 pixels; 1 pixel ~ 1, 27um).

2.1 Standard chart for carbide distributions

The standard chart depicted in figure 2 shows the large variety of the appearance of
carbide distributions. It distinguishes the carbide distributions by their type (i.e. from
line-shaped to net-shaped) and by their degree (i.e. the size of their agglomerations).
The 4 different distribution types (increasing from top to bottom) and the 7 differ-
ent distribution degrees (increasing from left to right) are arranged in the rows and
columns of the standard chart. The forms of carbide distributions occurring in the
production are continuously distributed over the whole range of types and degrees.

It should be noted, however, that the reference images have been chosen based
on the qualitative expert knowledge to properly represent all forms of the carbide
distributions. This implies that there is no quantitative definition of the classes.
As described in section 6, our new automatic classification scheme, opens up the
possibility of defining such a reference chart by quantitative measures.

The images used throughout this work have a size of 700%500 pixel and cach pixel corresponds
to a surface area of 1.27 pmx 1.27 pm.
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2.2 Carbide distributions - a scaled texture

The degree of the carbide distribution mainly reflects the size of the largest carbide
distribution. Therefore, the standard chart can be interpreted as the representation
of 4 different textures at 7 discrete scales, where the type constitutes the different
texture types and the degree defines the scale of the texture. Figure 3 justifies this
interpretation by comparing a resized subwindow of reference image 22 with reference
image 23. It is obvious that the resized subimage shows a rather similar carbide
distribution except the spatial resolution. This property is one of the motivations for
using multi-scale techniques to characterize the carbide distributions.

(a) Reference image 22 with (b) Zoomed detail of image 22 (c) Reference image 23
zooming window

Figure 3: Scaled texture nature of the reference images. As can be seen, the zoomed detail (b)
of reference image 22 (a) shows a rather similar carbide distribution as the direct neighboring
reference image 23 (c).

2.3 Datasets

In addition to the reference images, a set of carbide distribution images has been
captured from high speed steel specimens at a magnification of 1:100. These 438
images have been independently classified by 4 metallographers according to the 28
reference classes of the standard chart. The number of identical classifications gives
a measure of the reliability of the manual classifications. Based on these manual
classifications, we define the most frequent classification as the ¢rue class used for the
classification experiments. For example, for an image manually classified as 23, 23,
24 and 33 by the 4 metallographers the true class is defined to be 23. In 9 cases, no
true class can be found due to 4 different manual classifications. These images are
omitted, yielding a dataset of 429 images to capture the expert knowledge.

correct classifications classifications within one-class-deviation
worst / mean / best [%] worst / mean / best [%]
degree 77/ 81/ 86 96 /97 / 99
type 85 /88 /92 100 / 100 / 100

Table 1: Worst, mean and best performance of the manual classifications of the metallogra-
phers, estimated by the deviation from the true class.

The reliability of the manual classifications is illustrated in table 1, where the
performance of each metallographer is estimated by the deviation from the true class.



Of course, this assessment is an overestimate of the reliability of the manual classifi-
cations, since the judgment of the true class is solely based on the 4 manual classi-
fications. For comparison, the performance values achieved by tolerating a one-class
deviation are listed as well.

3 Methods

The scale of the carbide distributions ranges from fine irregular structures, i.e. textures
with small texture primitives, to large structures, i.e. image-sized texture primitives.
Obviously, any analysis of these images has to explicitly or implicitly determine the
size of the operators to use. In the following sections, we present techniques to handle
the large scale and shape range of the carbide distribution images, based on multi-
channel texture analysis and automatic scale selection in linear scale-space. We start
by presenting a data-specific scheme to extract a so-called characteristic structure of
the images, which is used both for defining image features for classification and in a
verification module of the automatic scale selection step.

3.1 A characteristic structure of carbide distributions

In the manual classification of carbide distributions, the size and the shape of the
largest carbide agglomeration are the main factors that influence the classification. As
a first processing step, we shall capture this information in the form of characteristic
structure, by generating a characteristic binary carbide structure, basically by global
thresholding, a special filtering operation and a size-adapted morphological scheme.
The method is based on (Wiltschi, Pinz & Hackl 1995, Wiltschi, Pinz & Hackl 1996),
and the results are illustrated using the reference images of the standard chart. Tn
general, the parameters of the operations have been determined empirically, using the
images of the standard chart and of the carbide image dataset.

3.1.1 Segmentation

To extract the carbide agglomerations, a distinction between the carbide and back-
ground areas is necessary. Segmentation (Gonzalez & Woods 1992, chapter 7) based
on the detection of discontinuities does not work due to the punctuate nature of
the image data, whereby already slight smoothing previous to segmentation sup-
presses significant, structures in the fine carbide distribution images. Due to the
contrast of the carbide particles, however, a global thresholding can be applied to
properly segment the carbides. The unimodal histograms of the carbide distribution
images (figure 4.b) prevent the application of the classical optimal threshold detection
scheme (Gonzalez & Woods 1992, p. 447), based on the approximation of two peaks
in the histogram. Thus, we use a threshold detection based on the first derivative
of the histogram, by detecting a specific slope value. This slope value is determined
by empirically chosen parameters, which yield a reliable segmentation of all available
images, and is adapted to the brightness of the image. In figure 4.b, the detected
threshold is marked and figure 4.c shows the resulting binary image for reference
image 14.



Next, isolated points outside the carbide agglomerations are erased, which is im-
perative for two reasons. First of all, these points are ignored during the manual
inspection, and secondly, they turn out to disturb the robustness of the subsequent
morphological closing. Therefore, the number of white pixels in a 7x7 neighborhood
is computed for all pixels in the binary image. Based on the empirical mean value and
the maximum value of these numbers from the whole image, a threshold is determined
and all pixels with fewer white neighbors than this threshold are erased (figure 4.d).
Similar filtering operations can be found in (Haralick & Shapiro 1992).

The subsequent morphological closing (Serra 1982, Serra 1988) yields connected
regions for the dense carbide areas (Chermant, Coster & Gougedon 1989, Russ 1991,
Fischmeister et al. 1988). To connect the white pixels within the agglomerations
isotropically, which is especially important for net-shaped structures, we use a cir-
cular structuring element of 9 pixel diameter. The diameter has been determined
empirically to optimize the connectivity of the resulting regions. Figure 4.e shows the
result of this morphological closing. As can be seen, the dense carbide particle areas
form connected regions in the resulting closed binary image.

Figure 4: Generation of the characteristic binary structure illustrated for (a) reference im-
age 14; (b) smoothed histogram with marked threshold, (¢) resulting binary image, (d) filtered
binary image, (e) morphologically closed image and (f) characteristic structure. For compar-
ison (g)-(i) show the characteristic structures for reference images 17, 44 and 47.



3.1.2 Definition of the characteristic structure

After the abovementioned segmentation and morphological steps, a region labeling
algorithm is applied to separately locate each carbide cluster. Using this information,
we select a set of relevant clusters

CS = {(Ci|A(Cy) > doAmaz) N (A(Cs) > d1)}, (1)

where A(C;) denotes the area of cluster C}, i.e. the number of pixels, A4 is the
area of the largest cluster in the present image and in discussion with the experts we
have empirically chosen dy = 0.1,d; = 10 pixel to capture the significant informa-
tion. Subsequently, each cluster C; € C'S is morphologically closed with a circular
structuring element with a cluster-size dependent diameter. This size-adapted closing
yields a set of ‘smoothed’ clusters (figure 4.f), where insignificant details, like small
holes, are removed. The new set of clusters defines the characleristic structure of a
carbide distribution. For comparison, figures 4.g-i show the characteristic structures
of three other reference images.

3.1.3 Feature extraction

The properties assessed by the metallographers to determine the degree of the carbide
distribution can be approximated by features defined from the characteristic struc-
ture in the spatial domain. Some of the features that will be described subsequently
are based on the methods used in quantitative micro-structural analysis (Exner &
Hougardy 1990), such as linear projection values, whereas others are new approaches
to model the characteristic information, such as evaluations of skeletons. The ex-
traction of significant features for distinguishing between different types of carbide
distributions, however, turns out to more complicated, and we will therefore define
additional features in the frequency domain. In this presentation, we just describe
the more significant, of the altogether 32 features, we have used to arrive at the final
assessment scheme (see (Wiltschi 1998) for more details).

Shape features. The number of clusters in the characteristic structure is a feature
which clearly discriminates fine from medium-sized as well as coarse carbide distribu-
tions. An important feature for the determination of the carbide distribution degree
is the area of the largest cluster Amaz, Which is given by the number of pixels of the
largest cluster.

The Hotelling transform is used to determine the principal axes (eigenvectors)
and the corresponding eigenvalues of the scatter matrix for the largest cluster of the
characteristic structure. The direction of maximum spread and its perpendicular
direction are indicated by these axes and the corresponding eigenvalues give the vari-
ance in these directions. The smallest eigenvalue of the scaller malriz Ao estimates
the width of the carbide-lines and consequently increases with increasing degree. Ad-
ditionally, this feature tends to increase with increasing type, especially for coarse
carbide distributions. The largest eigenvalue of the scatter matriz A1 is also used as
a feature to capture the size information in the principal direction. The ratio be-
tween the smallest and the largest eigenvalues defines the eccentricity of the largest
cluster £ = Ao/ A1, which allows us to distinguish elongated from compact structures.



Figure 5: Features based on the characteristic structure; (a) area of the largest cluster A, qx
of reference image 25; the principal axes and the corresponding eigenvalues are shown by
the dark lines; (b) detection of ramifications in the carbide distribution structure; skeleton
(white) and the detected nodes (black) for reference image 44; (c) horizontal and vertical
linear projection of the characteristic structure of reference image 14; the distributions of the
number of structure segments per projection line are shown.

Figure 5.a illustrates these features extracted from the largest cluster of the charac-
teristic structure using reference image 25. In order to get a more reliable information
for fine carbide distributions, the mean values over all clusters of the characteristic
structure are calculated as well for the following features: smallest eigenvalue of the
scatter matrix Ao, largest eigenvalue of the scatter matrix A1 and eccentricity of the
largest cluster &£.

Skeleton of characteristic structure. To assess the net-shaped structure of a
carbide distribution, the skeleton of the characteristic structure is determined by
the classical skeleton algorithm from (Pavlidis 1982, section 9.2). Afterwards, we
locate the nodes of this skeleton by convolution with the 16 masks of 3x3 pixels
representing all possible forms of nodes in this skeleton. The number of these nodes
yields an approximation of the number of ramifications in the characteristic structure
and serves to evaluate the type. Moreover, we use the path length of the skelelon as a
feature, which is given by the number of pixels of the skeleton. Figure 5.b illustrates
this scheme for reference image 44. Due to the sensitivity of the skeleton algorithm
to details in the boundary of an object, not all nodes in the skeleton (figure 5.b)
correspond to a ramification of the carbide distribution.

Linear projections. As shown in figure 5.c, parallel, horizontal and vertical lines
with a constant distance are used to determine various features along these lines. This
linear projection scheme is used in quantitative micro-structural analysis (Exner &
Hougardy 1990) as well. In order to capture the extensions of the carbide agglomer-
ations, the length of agglomeration segments and the number of segments per line in
the characteristic structure are determined and the number of intersections per line
in the skeleton are calculated to assess the shape of the carbide distribution. The
distributions of these values are evaluated statistically, where the mazimum and mean
values of the number of vertical segments, length of vertical segments, length of hor-
izontal segments and number of vertical intersections turn out as features capturing
significant information for the characterization of the carbide distributions. Addition-



ally, the number of non-empty horizontal lines in the structure and in the skeleton
are used as features for the distinction of band-shaped and net-shaped structures.

(a) |F{I(z,y)}| (zoomed 1:2) (b) Radially summing up |F| (¢) Approximation with fg

Figure 6: Evaluation of the spectrum illustrated for reference image 14 (a); the spectrum
|F{I(x,y)}| (b) is summed up radially to get an directional energy distribution which is
approximated by a Gaussian function (c).

Frequency-based orientation estimate. The amount of stretching of the net-
shaped structure of carbides during the production process (rolling) determines the
type of the carbide distribution and can be described by the degree of orientation of
the structure. In order to assess the directional information of the carbide distribution
images, we sum up the Fourier spectrum |F{I(x,y)}| radially as illustrated in figure 6,
which yields an energy distribution over the angle of orientation from 0° to 180°. Such
techniques are also described in (Gonzalez & Woods 1992, p. 511ff). The flanks of
this distribution are erased, so that they cannot disturb the subsequent evaluation of
the degree of orientation of the preferential direction, which is always horizontal due
to the specimen preparation process. Afterwards, this directional energy distribution
is approximated by a Gaussian function f, parameterized by

N2
fg =p1 exp [—%(xpfgpz)} + P4, (2)
3

where p; reflects the amplitude, po the preferred direction, pg the width and ps the
energy offset of the energy distribution. Here, the parameter ps provides a signifi-
cant feature for the degree of orientation of the carbide distribution structure, which
increases with increasing type.

3.2 Multi-channel texture analysis

The multi-channel Gabor filtering technique, introduced by (Bovik et al. 1990, Jain

& Farrokhnia 1991, Bovik 1991, Jain & Bhattacharjee 1992) provides a frequency and

orientation selective image representation. In particular, the energy in the different

frequency and orientation channels yields an estimate of the amount of structure at

a specific scale and of a certain orientation.

The impulse response of a two-dimensional real even-symmetric Gabor filter is
given by R R
12 12

hres(x,y) = L exp [—l (x_{) + y_z)] cos(2nFx'), (3)

2T 0y 2\ oz Y



(a) Spatial domain represen- (b) Fourier domain represen- (¢) Multi-channel half-peak
tation tation support

Figure 7: Real even-symmetric Gabor filter (a) in the spatial and (b) in the Fourier domain
(F = 8V2 cpi, ¢ = 0°, By =1 octave and B, = 45°); (c) half-peak support of multi-channel
Gabor representation with F; = 1/2,2v/2, -- -, 64v/2 ¢pi, ¢ = 0°,45°, - -+, 135°, By = 1 octave
and By = 45°.

where the radial frequency F = U2 + V2 measured in ‘cycles per image’ (cpi) is
the frequency of a sinusoidal planar wave with orientation ¢ = arctan(V/U). The
standard deviations of the Gaussian enveloped along the principal axes are denoted
by oy and oy, and (2,9 YT denotes the coordinate system rotated by the angle ¢.
The representation in the frequency domain is

At =ow [ (LD D) | o[- (MEEE L 2]

2 o5 0 o5 o2

where 0y, = 1/(2705) and 0, = 1/(270,). (Figure 7.a-b shows such a filter in both the
spatial and the frequency domains.) The half-peak magnitude frequency bandwidth
By and the orientation bandwidth By of the Gabor filter defined by equation (3)
and (4) is given by

Foy++/In2/2 VIn2/2
B; = log, mFoy + yIn2/ and By = 2arctan L/ ) (5)
wlFoy —/In2/2 mFo,

where By is measured in octaves and By in degrees.

An almost complete multi-scale representation for an image with size 2V %2V
pixels can be constructed by filtering with a Gabor filter set using k = N — 1 radial
frequencies

F=FR2P FRy=v2 i=0,---k—1, (6)
and [ orientations (tuned to the orientation resolution needed)

with frequency bandwidth By = 1 octave and orientation bandwidth By, = 180°/1.
In the following, this representation is referred to as a multi-channel Gabor represen-
tation. The half-peak support of such a Gabor filter set is illustrated in figure 7.c.

10



3.2.1 Scale and shape estimation based on energy distributions

Let r(x,y) be the discrete single Gabor filter response of an input image i(x,y). The
energy E of this response r(x,y) yields a measure of the amount of structure in the
image i(x,y), which corresponds to the specified frequency channel with respect to
scale (frequency) and orientation. It is given by

E=Y IRuv)’ =) [ry)* (®)

x!y

Thus, for a multi-channel Gabor representation of an image, the distribution of the
energy F(F};,¢;) over all frequency channels F; and orientation channels ¢; can be
calculated. The energy distribution with respect to the frequency channels contains
information about the scale of the structures in the image, whereas the energy dis-
tribution with respect to the orientation channels explicitly shows the directional
information of the image (figure 8).
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(d) Reference image 42 (e) Er(F;i, ¢;) of image 42 (f) Eo(¢;, F;) of image 42
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Figure 8: Energy distributions of a multi-channel Gabor representation using 6 frequency
channels F; = Fy,2Fy,--+,32Fy (Fy = +/2 cpi) and 18 orientation channels o; =
0°,10°,---,170° with By = 1 and By = 10° calculated for (a) reference image 15 and (d)
image 42; (b) and (e) show the corresponding frequency energy distribution Er(F;, ¢;) and
(c) and (f) the corresponding orientation energy distribution Eo(¢;, F;).

The energy distribution E(F;, ¢;) is first ordered according to the frequency chan-
nels F;, where the energy values of the different orientation channels ¢; are arranged
according to ascending orientation within each frequency channel. This ordering is
referred to as frequency energy distribution Ep(F;,¢;). In the second arrangement
called orientation energy distribution, FEo(¢;, F;) the energy values are ordered ac-
cording to the orientation channels ¢; and within each of these channels the energy
values are arranged in ascending frequency order. Obviously, the frequency energy
distribution shows large energy values in frequency channels corresponding to the

11



scales of the structures in the images (figure 8.b and e). Furthermore, the orien-
tation energy distribution of a strongly oriented pattern like figure 8.a shows only
high energy values for the orientation channel corresponding to the orientation of the
structure (figure 8.¢), whereas an almost isotropic pattern like figure 8.d yields a wide
distribution of the energy over all orientation channels (figure 8.f).

Based on these properties of the energy distribution, we derive the following fea-
tures to assess the scale corresponding to the degree and the shape reflecting the
type of the carbide distribution images. In order to reduce the influence of the high
energy values in the highest frequency channels for all orientations, we estimate the
scale with regard to dominant orientation, i.e. the degree estimate of maxrimum Gabor
energy Epp, is given by

pfm(i) :j:gl%}l{_lEF(Fiv(éi); i=0,---,k—1 (9)
k—1 . k—1
1 prm(i) . - .
Efm - E—1 Z E( m) (2 E(pfm) - prm(l) (10)
=0 pf =0

The directional information decisive for the type of the carbide distributions is the re-
lation between horizontal and non-horizontal structures. Structures with orientation
45° and 135° have the same impact on the type of the carbide distribution. Thus,
the orientation energy distribution is assessed between the orientations ¢ = 0° to 90°
by the reduced orientation energy distribution

/ . ) — EO(¢7E) lf jZO,
EO<¢”}Q)"{ 12 [Eo(dy ) + Eoldrj F)] if j=L---12. U

Analogously to the degree feature, the estimation of the type is performed scale-
adapted, i.e. with respect to the dominant frequency channels to only assess the
directional information for significant scales. Using the dominant frequency channel
Fy determined by the value of Ey,,, we define the lype eslimale of mazimum Gabor
enerqy Eom by

s+1 I 1 if d=0,
pom(D) = Y Eo(éjF); =005, s=¢d i 0<d<k (12)
i=s—1 k—1 if d=k,
9 /2 p/ (j) /2
Do () = Pom () = min por(r),  Eom =5 > =250 ji S(pl,) = > Do () (13)
r=0,1/2 l = Z(phm) =

3.3 Automatic scale selection in linear scale-space

To handle the inherent multi-scale nature of image data, the notion of scale-space
theory has been developed (Witkin 1983, Koenderink 1984, Lindeberg 1994, Florack
1997). For any N-dimensional image f:R" — R, its scale-space representation L :
RN x R, — R is defined by

L(:5t) = g(+5t) * f(+) (14)

12



where g : RY x R — R denotes the N-dimensional Gaussian kernel:

1 7(1‘%4’""‘1’1‘%\7)

. t — — 2t 15

and the variance | € RT of the Gaussian kernel is referred to as the scale parameter.
Based on this representation, scale space derivatives are defined by

Lya(:5t) = 001 pon L(51) = (9,01, ,on g(51)) * f(1) (16)
with corresponding normalized derivatives given by
Ogp = 112 Dy (17)

Several feature detectors can be formulated as (linear or non-linear) combinations of
partial derivatives. Specifically, scale levels for feature detection can be selected by de-
tecting local extrema over scales of such differential geometric descriptors (Lindeberg
1993, Lindeberg 1994, Lindeberg 19960, Lindeberg 1996a). Here, we shall use this
framework for constructing feature detectors for evaluating the degree of the carbide
distributions, which basically corresponds to the size of the carbide agglomerations.
Furthermore, we shall compute directional information from scale-tuned second mo-
ment descriptors, using the scale information from the scale selection module. In
the following, a methodology is described for reliable extraction of characteristic fea-
tures for estimating the degree and type of carbide distributions (based on (Wiltschi,
Lindeberg & Pinz 1997a, Wiltschi, Lindeberg & Pinz 1997b)).

3.3.1 Determining the significant scale

Since the agglomerations mainly form blob- or ridge-like structures, (see figure 2), we
use a ridge detector to capture these image features. Building upon earlier methods
for ridge detection (Haralick 1983, Eberly, Gardner, Morse, Pizer & Scharlach 1994,
Koenderink & van Doorn 1994) it is defined as follows (Lindeberg 1996a): Introduce a
local (p, g)-coordinate system at each image point, defined by the mixed second-order
derivative being zero (i.e. L,y = 0). Then, we can detect (possibly elongated, bright)
blob features from points which are simultaneously maximal with respect to space
and scales in

_[/pp,norm == —t T/pp, (]8)

where L,,, is the principal curvature having the largest absolute value.

To rank features detected by means of equation (18) on significance, we weight
the normalized response Ly, norm at each scale-space extremum by V1, which gives
the significance measure

S(E) = *\/ZLpp,norm(xv Y). (19)

An intuitive motivation for this weighting is that the width of the ridge feature can
be expected to be proportional to v/%.
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Certain image structures give rise to multiple responses. To suppress overlaps, a
scale-space maximum A is rejected if there exists another maximum B and

(center(A) € support region(B)) A
(center(B) € support region(4)) A (20)
(ta/tp € [L,a]; (a>1)) A (S(A) < S(B))

with o = 4 corresponding to a ratio of 2 between the blob radii. Figure 9.a shows the
result of applying these operations to reference image 33, where the detected ridges
are marked by their elliptical support region Se (equations (21)-(24)).

(a) Elliptical ~ support (10 (b) Characteristic structure (¢) Euclidean distance map
most significant extrema) within largest ellipse

oot

(d) Local extrema in distance (e) Non-overlapping largest (f) Verified structures (10
map (c) circular background most  significant  scale-
regions for (¢) space extrema)

Figure 9: Verification of the most significant scale-space extrema using the characteristic
structure.

To suppress spurious responses from the feature detection module (false alarms),
we use the following verification mechanism, which is based on the morphologically
constructed characteristic structure of the carbide distributions (section 3.1.2). An
elliptical half-peak support region Se is associated with each scale-space extremum
E, detected at scale t, based on the two principal curvatures Ly, norm/Lqgnorm a8
well as the orientation of the ridge. Using an idealized two-dimensional elliptical blob
model

1 z2 1 y?
Bez,y; t1,ts) = ——=exp| — | —=exp | —=— 21
ell( s Y5 U1, 2) \/27T—7fl p( 2f1> \/m p< oy 5 ( )
the ratio of the principal curvature values in dependence on the scale ¢ is given by

Lpp,norm _ t+1o
qu,norm t+ tl

(22)
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for {1 < ts. The local extremum over scale for the idealized blob B.; occurs at

(Lindeberg 1996a)

1 1
tideal = 7 (t1 —t2) & \/— (t1 — t2)? + tilo (23)
4 16
Then, the ratio {5/t; corresponding to the major and the minor axis of the ellipse
can be estimated as
‘2_1(3%&1)’ (24)
tq 2 qu,norm

where we set ¢ := {, and use an upper bound of {5/t; < 4 to prevent overestimation
of the support region.

Within each elliptical support region Sz, the binary characteristic structure (fig-
ure 9.b) is used to determine the ‘largest non-overlapping circular background re-
gions’. This concept is illustrated by figure 9.c-e for the largest ellipse in figure 9.a.
A Euclidean distance map (distance r from the characteristic structure) is built (fig-
ure 9.c), local maxima in r; are detected (figure 9.d) and are used to draw circular
background regions. In cases of overlaps, the smaller circles are eliminated, yield-
ing the ‘non-overlapping’ map of n remaining circles (figure 9.e). Then, the areas
A= rl-27r of these background regions are used to suppress feature responses with in-
terfering substructures. This suppression is performed by multiplying the significance
measure S(E) of equation (19) by

m

C
W — m ) (25)
+ Asey

where the area Ag,, of the elliptical support region S is related to a measure

Aoy = Y _ A (26)

and ¢ = 0.5 and m = 2 are constants. The parameter values occurring here were
chosen to maximize the classification performance of the resulting size description
features Rger and Age (Sepp) according to the degree of the carbide distribution. Fig-
ure 9.f shows the most significant structures after this verification procedure.

After the transformation (25) of the significance values S(FE), the k& most signifi-
cant scale-space extrema are selected. The largest of these extrema is the most sig-
nificant blob and its radius Ry and the area of its elliptical support region Age: (Seyr)
are used as size description features for the classification of the carbide distribution
according to the degree, i.e.

Ryt = \/21lger log2;  with  {ge = .mlaxk(ti), (27)

1 L norm
Aget(Sey) = mr R3,, with x = \/— <3 LA LL 1), (28)

2 qu,norm

where x < 2 according to the upper bound used in the support region estimation
and k& = 10 proved to be a reliable choice to detect the manually determined largest
agglomerations.
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3.3.2 Assessing the texture shape

To represent directional distributions, the second moment matrix is a useful texture
descriptor (Bigiin et al. 1991, Garding & Lindeberg 1996, Lindeberg & Garding 1993).
Given a symmetric normalized window function w, the windowed second moment
matriz can be defined by

prla) = [ (VEG(VEG) wla = ds, (29)

where L : R? — R denotes the image brightness and VL = (L, L,)" its gradient.
Denoting the windowing operation by E,, equation (29) can be written as

wio = (0w ) o ()
= E,(VL)(VL)"), (30)
and from the components of py, the following descriptors can be defined
P=E(L}+L}), C=FE/(L;—L}), S=2E(L.L),). (31)

P is a measure for the strength of the operator response, C' and S contain directional
information, which can be summarized in two anisotropy measures

Q=vVC>+ 5, Q=Q/P. (32)

The normalized anisotropy Q € [0;1] is zero, if and only if E,(L2) = Eq(Lg) and
E (LyL,) = 0 and Q = 1 if and only if E,(L,L,) = E (L2)E,(L). A rotationally

symmetric gray-level pattern has () = 0 and a translationally symmetric pattern has
Q=1.

When computing this descriptor in practice, the gradient vectors are calculated
at local scale 1; and we use a Gaussian window function g with ¢ntegration scale t;
(Lindeberg 1994, chap. 14) to define the multi-scale windowed second moment matriz
Hr as

prlatit) = [ (VEG(VEG) gla—xits) d. ()
X

The directional distribution (lype) of the carbide distribution can be modeled by
evaluating pr(q;1;,1;) based on the scale information of the scale selection scheme
described in section 3.3.1. The normalized anisotropy Q is calculated for

1 = Y1 * et (34)

where v; = 0.5 is chosen to maximize the classification performance of the resulting
shape description feature Q according to the (ype.

Assuming a globally valid significant scale for each image, the integration scale is
set to the size of the image. Global values of P,C and § are computed by summing
up the corresponding gradient. expressions over the whole image and determining
global values of Q and Q afterwards. This vields a shape description feature Q g for
classifying carbide distributions according to their type given by

Qaet = Qpr (@, y; 1y, image size)). (35)
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3.4 Feature selection

To combine the size and shape information derived from the multi-scale techniques
(sections 3.2 and 3.3) with the features modeling the manual assessment of the carbide
distribution (section 3.1), we form a normalized feature vector of altogether 40 fea-
tures. To evaluate the quality of each feature and to find the best feature subset,
we applied suboptimal feature selection algorithms (Devijver & Kittler 1982, Kittler
1986, Fukunaga 1990).

One reason for the need for feature selection is the so-called curse of dimensional-
ity or peaking phenomenon, which means the effect that the classification error for a
finite number of training samples assumes a minimum for a certain optimal number
of features and increases if further features are added (Raudys & Jain 1991, Devijver
& Kittler 1982). Another advantage of feature selection is that the reduction of the
dimensionality of a classification process improves the generalizalion abilily of the
designed classifier. In finite-sample-size situations, the parameter estimation errors
increase rapidly with dimensionality and the classifier becomes finely tuned to the
data used for learning. Therefore, feature selection improves the classification per-
formance on unknown samples by trading off error probability for estimation errors.
Additionally, the computational efficiency is improved by calculating only significant
features.

As one would already expect from the results in (Pudil, Novovicovd & Kittler
1994, Zongker & Jain 1996), the floating sequential algorithms yield better results
on the present data than the simple sequential methods and the plus ! take away r
algorithm. The branch and bound algorithm is not applicable to the problem, because
the criterion used for class separability does not guarantee the requested monotony
and a brute-force calculation of optimal subsets is prohibited by the computational
effort for this large number of features. Hence, we used sequential floating algorithms
in our experiments. As a criterion of class separability, we measured the performance
of the applied classifier. To get a good estimation of the classification performance, we
used a rotation scheme with three disjunct sample subsets of all images. The samples
of each class are evenly distributed over the three subsets. The feature selection is
performed three times using two-thirds of the dataset and a leave-one-out estimate.
Furthermore, a test performance is calculated on the remaining third of the dataset.
The final classification performance values of both steps — the selection and the test
classification — are the average values over the three sample subsets.

3.5 Classification approaches

Carbide distributions occur continuously distributed over the degree axis and the
type axis of the standard chart (figure 2). Features reflecting the corresponding size
and/or shape information of the carbide distribution naturally show a unimodal class
distribution. Furthermore, non-parametric classification methods need more samples
to yield good estimates of the probability distributions of the present problem than
parametric ones. Thus, parametric classification algorithms are more appropriate
to model the continuum of the appearances of carbide distributions. Additionally,
the expert knowledge is directly introduced into the automatic classification process
using a training set for parametric classifiers, where the true class is given by the
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classifications of the metallographers (see section 2.3). Unfortunately, the application
of the Mahalanobis distance classifier is prevented by the fact that class covariance
matrices become singular for n; samples in a class w; using a dataset with D features,
if n; < D (Duin 1995, Hoffbeck & Landgrebe 1996). Obviously, this is the case for the
present dataset. Thus, our experiments are mainly based on the minimum distance
classifier.

In order to independently investigate the scale and the shape estimation of the
carbide distributions, the classification is performed separately for the degree of the
carbide distributions (degree classification) and according to the type (type classifi-
calion). This is achieved by combining all reference classes from one column (row) of
the standard chart to form one new class yielding 7 degree classes (4 type classes).

4 Results

In the following, we illustrate that the degree and type features described in chap-
ter 3.2 and 3.3 model the scaled texture nature of the carbide distribution by captur-
ing the size and shape information. Furthermore, the performance of the proposed
classification scheme is described (section 3.5) using the best found feature subsets.

4.1 Scale and shape estimation

In our experiments we use a multi-channel representation with the radial frequencies
F, = /2,2v/2,---,32y/2 cpi (i = 0,---,5), the orientations ¢; = jB4(j = 0,---,17),
the frequency bandwidth By = 1 octave and the orientation bandwidth B, = 10°.
These small orientation channels have to be used to capture the fine differences con-
cerning the directional information of the carbide distributions. The highest frequency
channels Fy = 64v/2 and F;, = 128/2 cpi proved to contain no significant informa-
tion of the carbide distribution. This filter configuration has been found by deter-
mining the best classification performance of the resulting degree and type features
for By = 5°,10° and 20°. Figure 10 shows all reference images with type 2 filtered
with the Gabor channel corresponding to the dominant frequency given by E,,. Ob-
viously, the radial frequency values of the selected Gabor filter do approximate the
scale of the dominant structure in the images.

Figure 10: Filter response of Gabor filter corresponding to Ey,, for all reference images with
type 2.

The size information assessed by the degree feature Ager(Sey) derived from auto-
matic scale selection (section 3.3) is illustrated in figure 11. The elliptical support
region corresponding to the area of the most significant blob Age(Ser) is shown for
all reference images of type 4. One can clearly recognize that the scale of the largest
structure in the carbide images is captured by this descriptor. The shape feature Qges
is calculated using this scale information to define the pre-smoothing of the image.
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Figure 11: Elliptical support region corresponding to Aget(Ser) for all reference images with
type 4.

The selection of a local scale {; = 0.5{4, for the calculation of the fine normalized
global anisotropy Qdet(w = 0.5) maximizes the classification performance according
to the type of the carbide distribution.

The discriminative information of the scale features F,,, Aget(Ser) and the shape
features Eyp,, Qget(vi = 0.5) is further illustrated in figure 12, where the mean and
the standard deviation of the features from all samples of one class are shown for the
7 degree and the 4 type classes, respectively. The scale feature Age(Seyr) has contimi-
ously increasing mean values with increasing degree and E,, shows mean values with
inverse tendency, except for degree 7. The shape features E,,, and Qdet(’w = 0.5)
show decreasing mean values with increasing type, except for type 1. In general, the
deviation of the scale features is smaller than the deviation of the shape features. In
the case of E,,,, this is mainly due to the fact that the finest carbide distributions
have a wide distribution of the energy over all orientation channels irrespective of the
type. The fact that almost no anisotropic (band-, or line-like) structures occur in the
very fine-scale carbide structures (figure 2) results in a low anisotropy value, as for
the net-shaped structures. This yields a large variance of the values of Qdet(% =0.5)
for type 1.

0.70, *+ 100 + 1.00 1.0
i ' iz =
ety 1R H - Ju f*+ [ H
jeo RRIR I AR R I b e {
:3: oL ’+ 0.50 00
[\] 2 o‘;’“ 6 B8 [} 2 D.;r“ 6 8 o 1 21’”5 4 5 o 1 21’”5 4 5
(a‘) Efm (b) Adet(sell) (C) Eom (d) Qdet(”ﬂ = 0.5)

Figure 12: Discriminative power of the features (a) Efp, (b) Agei(Seur), (¢) Eom and (d)
Qaet(vi = 0.5); for all 7 degree and 4 type classes, respectively, the mean and the standard
deviation over all samples of the class is shown.

4.2 Classification performance

The results of the experiments using sequential floating selection for the degree and
type classification are shown in figure 13, where the x-axis represents the size of
the feature subsets and the y-axis shows the average performance values of the best
found subsets over the three dataset partitions. The well-known effect that fewer fea-
tures yields a better performance for finite sample sets (Raudys & Jain 1991) can be
seen from the diagrams. The performance values achieved with the forward and the
backward procedure are quite similar with slightly better results using the forward
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selection. In general, type classification requires more features than degree classifica-
tion to achieve optimal performance. The performance on the test data is about 5%
lower than the performance during the selection for medium-sized subsets, whereas
the performance values are approximately equal for small and for large subsets. On
the one hand, this illustrates the leave-one-out estimate yields realistic values and
on the other hand it shows that the selection leads to overtraining for medium-sized
subsets, i.e. the selected features are fitted to the finite data at hand.

Performance
Performance

0.5F X Feature Selection Result 1 0.5 X Feature Selection Result
O  Performance on Test Data o O Performance on Test Data
o — Cubic Spline Interpolation — Cubic Spline Interpolation
0.45 N T T T T T N N 0.45 N n n n n n N N
0 5 10 15 20 2% 30 35 40 0 5 10 15 20 25 30 35 40
Subset Size Subset Size
(a) degree classification (b) type classification

Figure 13: Results of sequential forward floating selection with a leave-one-out performance
estimation of a minimum distance classifier for the degree (a) and type (b) classification; the
performance values are averaged over three dataset partitions yielding a rotation estimate for
the test data.

Due to the deviation between the classifications of the four metallographers, which
the true class is based on (section 2.3), we also calculate the performance allowing a
one-class-deviation. Table 2 summarizes the achieved best average performance values
during selection and on the test data. Furthermore, the size values of the feature
subsets yielding the highest test performance are given. As described in section 3.4,
the Mahalanobis distance classifier is not applicable for the degree classification due
to the limited sample size. But the number of samples for the 4 type classes is large
enough for this classifier. The results of the sequential forward and backward floating
selection for the type classification using a Mahalanobis distance classifier illustrate
the potential improvement (approx. 10%) for the present dataset using this more
adaptive classifier. We achieved an average performance during selection of almost
80% and a test performance of more than 70%.

performance | selection [%] | test [%] | subset | test [%]
classification (exact) (exact) size | tolerant
degree (minimum dist.) 65 60 4 95
type (minimum dist.) 65 61 10 92
type (Mahalanobis dist.) 79 72 8 96

Table 2: Average performance values of minimum distance classifier with best feature subsets
found by sequential floating selection for degree and type classification - values for exact and
tolerant classification (allowing a one-class-deviation) and the corresponding feature subsets
size.

Due to the rotation estimate of the classification performance using 3 disjunct test
sample sets, 3 feature selection experiments have been performed for each floating
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algorithm as well. Using one selection algorithm for one classification approach yields
different results for different datasets. In order to finally define a ‘best’ subset for the
degree and type classification, we investigate the found feature sets of all 6 sequential
forward and backward selection experiments concerning the occurrence frequency of
the features. For this purpose the feature subset with size 4 for the degree and 10 for
the type classification are used. We select the most frequent features, which occurred
at least twice in these subsets, for the final ‘best’ feature subsets listed in table 3. In
case of highly correlated features, only one of them is chosen. The resulting ‘best’
feature sets of size 5 and 10 for the degree and type classification yield the same
performance values as for the best found subsets in the feature selection experiments.
Obviously, the feature selection improves the classification runtime, because only
at most 25% of the features must be calculated. Furthermore, the classification
performance for these feature sets is about 5% higher than using all features.

| feature name | degree | type |
number of clusters N4 N4
area of the largest cluster A,,qz Vv

smallest eigenvalue of the scatter matrix A;
eccentricity of the largest cluster £

mean eccentricity of clusters

mean length of vertical segments Vv
number of non—empty horizontal lines in structure
path length of the skeleton

mean number of vertical intersections

degree of orientation (Gaussian)

radius of the most significant blob Rge: Vv
fine normalized global anisotropy Que:(y; = 0.5)
degree estimate of maximum Gabor energy Fy,, Vv

OIS R

type estimate of maximum Gabor energy E,,,

Table 3: List of all 14 features contained in the final ‘best’ feature subsets for the degree and
type classification, where the presence in the subsets is marked by */".

5 Fully-automatic steel inspection

During the manual inspection of the carbide distribution of high speed steel, the
whole surface of the steel specimen is taken into account. The metallographer deter-
mines the most salient carbide distribution at a lower magnification and classifies this
focus-of-attention according to the standard chart at a magnification of 1:100. This
technique is modeled by a multi-resolution approach by actively controlling the mag-
nification of the microscope during the determination of the focus-of-atiention. The
approach follows the purposive active vision paradigm (Bajcsy 1988, Aloimonos 1990)
by controlling imaging parameters such as the view direction, the focus and the illu-
mination and by classifying only the representative most salient carbide distribution.

The automatic detection of the most salient carbide distribution starts scanning
the whole specimen surface at a magnification of 1:20 (figure 14.a) with an overlap of
10%, which corresponds to half the image size at a magnification of 1:100, to prevent

21



(a) Carbide distribution (b) Detected representative (¢) Detected most salient car-
(1:20) arca (1:50) bide distribution (1:100)

Figure 14: Tlustration of the focus-of-attention scheme to actively detect and zoom to the
most salient carbide distribution for classification on the steel specimen surface. The white
frames mark the detected representative areas, which are visible at the next higher magnifi-
cation

the system from missing the most salient area. After moving the specimen stage to
this position and raising the magnification to 1:50, the illumination and the focus
are adjusted to guarantee well defined imaging conditions. Then, the most salient
area is tracked by the same detection to ensure a more precise localization of this
area (figure 14.b), which is finally classified at 1:100 (figure 14.c). The most salient,
carbide distribution is detected by determining the largest agglomeration using the
morphological operations described in section 3.1.1. This focus-of-attention algorithm
leads to a selective evaluation of a specific area of the specimen surface, which is 16
times faster than taking images side by side (see also (Wiltschi & Pinz 1996)).

In order to automatically evaluate the carbide distribution of a high speed steel
specimen using this active vision scheme, we have set, up a prototype active inspection,
system. The system consists of a light microscope with a xyz-controllable specimen
stage, a switchable objective revolver, a controllable light source, a graphics worksta-
tion, a CCD-camera, and a control device connected to the workstation (figure 15.a).
Figure 15.b depicts a flow chart of the complete system, showing the main algorithmic
modules of the integrated inspection technique.

6 Quantitatively defined reference chart

To overcome the subjectivity of the qualitative definition of the currently used stan-
dard chart, we propose a new reference chart, based on the most significant, features
found by the feature selection experiments (table 3). To construct a new quantita-
tively defined reference chart of representative carbide distribution images in con-
sideration of the expert knowledge, the following scheme is applied to the present
carbide image dataset: Using the ‘best’ feature subset for the classification according
to the 28 reference classes of the standard chart, the most representative image within
each of the 28 classes is determined. This most representative image of class w; is
represented by a feature vector xﬂ , which has the minimal Fuclidean distance to the
class mean vector p;, i.e

0p(@,pyj) = min 6p(3], ), (36)

1=0,--,n;
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Active Detection of Most Salient Carbide Distribution
« Segmentation of largest carbide agglomeration
 Active Zoom to detected area

v

Segmentation of Characteristic Structure
¢ Automatic global thresholding
* Morphological operations

v

Spatial Feature Extraction
« Shape parameters
« Skeleton extraction
« Linear projections

Objective Revolver s +

ISpecimens —— e Multi-channel Texture analysis

« Gabor filtering

« Encrgy—based feature extraction

v

Automatic Scale Selection in Linear Scale-Space
« Scale estimation by detection of scale—space maxima
« Scale—tuned shape estimation

v

Supervised Statistical Parametric Classification
=> Carbide Classification for large steel surface area

(b) System flow chart

Figure 15: Active inspection system. (a) Prototype system setup and (b) flow chart of main
algorithmic modules.

where n; denotes the number of samples in class w; and 62E stands for the squared
Fuclidean distance. This scheme yields a new objectively determined reference chart
depicted in figure 16. In contrary to the original standard chart (figure 2) this set
of representative images is defined by quantitative features with regard to the expert
knowledge introduced by the manual classification.

7 Summary and conclusions

We have presented a scheme for computing scale and shape properties of textures
and applied it to steel quality inspection. Besides a data-specific method to extract
a characteristic structure of carbide distributions (section 3.1), which corresponds to
the manually assessed information, two modules capturing the scale and the shape
information of textures are described, based on multi-scale techniques.

A frequency- and orientation-selective multi-channel analysis using Gabor filters
(section 3.2) is used to derive a degree estimate of mazimum Gabor energy E ¢y, , which
estimates the global dominant scale based on the energy distribution over the chan-
nels. Using the information about the global directional distribution contained in the
energy distribution, a scale-adapted type estimate of mazximum Gabor energy FEom
is calculated. This feature estimates the shape of the texture relating the amount
of horizontal to non-horizontal structures captured by the three most dominant fre-
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quency channels, which can be seen as a coarse scale adaptation. The features Ey,,
and E,,, are based on the global significance of structures in the image.

On the other hand, the scale selection scheme described in section 3.3 represents
a well-founded scheme to detect locally significant structures of predefined shape
with respect to space and scale. Furthermore, the scale is directly related to the
parameters characterizing the extensions of the structure. Therefore, the area of the
most significant blob Age:(Sen) represents the extensions of the locally most significant
largest structure. The multi-scale windowed second moment matrix defines a scale-
space representation, which allows us to tune the local scale and the integration scale
according to the characteristics of an investigated texture. The gradient expressions
of the matrix only reflect variations of a size corresponding to the local scale t;.
Therefore, the fine normalized global anisotropy Qdet(w = 0.5) is a measure for the
global ratio of translational and rotational structures of scale ¢;. In the case of carbide
distributions, the natural correspondence of the definition of E,,, to the manual
type classification scheme compared to Q and the restriction to a single scale for the
calculation of Q leads to a better type classification performance of E,,,. Nevertheless,
the Gabor and scale-space features show a relatively high correlation of approx. 75%
and an almost, equal degree classification performance. This is mainly due to the fact
that in the carbide distribution images, the locally most significant largest structure
generally determines the global dominant scale as well. Thus, both approaches are
convenient for the present application.

We have set up a prototype active inspection system including the presented classi-
fication scheme for carbide distributions and the focus-of-attention module (section 5)
to detect the most salient carbide distribution. The system is capable of classifying
the carbide distribution of a whole steel specimen and demonstrates the feasibility of
fully-automatic steel specimen inspection concerning their carbide distribution based
on the presented scale and shape estimation. The proposed automatic inspection
scheme possesses a potential applicability to several related quality control tasks. Es-
pecially, in the steel producing industry, several inspection problems are based on a
classification with regard to standard charts showing structures with a scaled texture
nature.

Currently, the steel producing company Bohler Edelstahl is implementing the
presented inspection technique on a system, which will be used in routine quality
control in the near future.
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