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Abstract

A fundamental problem in brain imaging concerns how to define functional areas
consisting of neurons which are activated together as populations. We propose
that this issue can be ideally addressed by a computer vision tool referred to as
the scale-space primal sketch. This concept has the attractive properties that it
allows for automatic and simultaneous extraction of the spatial extent and the
significance of regions with locally high activity. In addition, a hierarchical nested
tree structure of activated regions and subregions is obtained.

The subject in this article is to show how the scale-space primal sketch can
be used for automatic determination of the spatial extent and the significance of
rCBF changes. Experiments show the result of applying this approach to func-
tional PET data, including a preliminary comparison with two more traditional
clustering techniques. Compared to previous approaches, the method overcomes
the limitations of performing the analysis at a single scale or assuming specific
models of the data.

Keywords: brain activation, human brain mapping, functional region, scale-space,
primal sketch, scale selection, blob detection, multi-scale representation, com-
puter vision
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1 Introduction

In functional brain imaging, one studies how activity patterns arise in the brain when
subjects perform different types of tasks. A main purpose is to characterize functional
contributions of local neuronal assemblies, based on the tight spatial coupling between
regional synaptic activity and regional cerebral blood flow. The most common tech-
niques today consist of measuring the cerebral blood flow by PET analysis and by
measuring the blood oxygenation level detection (BOLD) by functional NMR. In this
way, three-dimensional image data are obtained, in which the voxel values represent
the degree of activity in corresponding regions.

A main assumption, which this overall approach relies upon, is that neurons in
the cerebral cortex change their biochemical activity in large distinct populations.
(This has been formalized as the cortical field activation hypothesis (Roland 1993).)
To determine automatically from a given PET, SPECT or fNMR image what should
be regarded as distinct populations of nerve cells (functional regions) has, however,
turned out to be a non-trivial problem. The high noise level in the data results in
complex hierarchical structures of blobs of different size and amplitude, in which a
key problem concerns how to determine which blobs should be regarded as significant
and which ones are due to noise.

Traditional approaches for analysing such data sets involve the computation of
statistical measures, thresholding and the detection of peaks or significant clusters
in the statistical parametric images so obtained (Friston et al. 1991, Friston et al.
1994, Worsley et al. 1992, Roland et al. 1993, Poline & Mazoyer 1993, Poline &
Mazoyer 1994, Friston et al. 1996, Frackowiak et al. 1996, Holmes et al. 1996, Ledberg
et al. 1998). Often these processing steps are combined with a spatial smoothing step
to suppress high frequency noise and other rapid intensity variations or to compensate
for anatomical misregistration (Poline & Mazoyer 1994, Worsley et al. 1996a, Worsley
et al. 1996b).

The need for spatial smoothing that arises here is closely related to a more general
multi-scale nature of real world data, which originates from the fact that objects in
the world may appear in different ways depending upon the scale of observation.
This inherent problem of analysing image data has been a main subject of research
during the last decades. Specifically, the approach of multi-scale analysis has been
developed, based on the idea that in the absence of any information about what
scales are appropriate for describing a given data set, the only reasonable approach
is to consider representations at all scales and to consider these scales simultaneously
(Koenderink 1984, Lindeberg 1994).

Most current methods for analysing brain activation data on the other hand use
a Gaussian filter of fixed size for smoothing. Such an approach favours blobs of size
corresponding to the filter size, and may suppress other significant information in
the image. (Poline & Mazoyer 1993, Poline & Mazoyer 1994) used a search over a
range of Gaussian filter widths, but did not compute unified significance limits for
the detected fields of blobs. A solution to this problem was proposed by (Worsley
et al. 1996b), however, at the price of stronger assumptions for detecting significant
peaks of activity.

The image structures we are interested in are regions of locally high activity cor-



2 Lindeberg, Lidberg and Roland

responding to peaks, or bright blobs, in the intensity landscape. Interestingly, this
problem of extracting of blob-like (i.e., peak-like) structures from image data and se-
lecting scales for these has been extensively studied in the field of computer vision, and
a number of different approaches have been developed (Ehrich & Lai 1978, Blostein
& Ahuja 1989, Lifshitz & Pizer 1990, Lindeberg 1993a, Lindeberg 1993c, Lindeberg
1994, Vincken et al. 1997). One such development, the scale-space primal sketch
(Lindeberg 1993a, Lindeberg 1994), carries no assumptions about the data structure,
but provides at the same time a unique detection of fields of increases and decreases at
all scales, as well as a description of the extent and volume and hierarchical structure
of the detected blobs and fields and finally a ranking of significant blobs and regions.

Concerning the usage of the “significance” in this article, it should, however, be
emphasized that the purpose of this article is not to present any statistical theory
for determining a significance level of the blobs in terms of a probability value for
false positives, α. The word significance as used here should only be taken to mean
significant in a scale-space sense (see section 2.2.2 for a precise definition). To develop
a statistical model giving α of single blobs is a larger project beyond the scope of this
article.

The subject of this article is to report the result of applying the scale-space primal
sketch for hierarchical clustering of blob-like patterns in brain activation data. It will
be shown that this computer vision tool has the attractive property that it allows
for the extraction of significantblobs corresponding to functional fields, including the
scales at which they occur, their spatial extent and their significance. Contrary to
fixed-scale approaches, the scale-space primal sketch handles blob-like structures at
all scales simultaneously and in a similar manner. Contrary to current statistical
approaches, this concept does not make specific assumptions about the properties of
the data.

The presentation will start with a brief review of two concepts the analysis will
be based on — the notion of scale-space representation and a description of the scale-
space primal sketch. Then, it will be shown how these tools are useful for automated
analysis of brain activation patterns. An extensive expose of relations to previous
work will be given later in section 5.

2 Theory

2.1 Scale-space theory: Brief review

To capture the abovementioned intrinsic multi-scale nature of image data, the no-
tion of scale-space representation is essential. For any given D-dimensional signal
f : RD → R, its scale-space representation L : RD × R+ → R is defined such that the
representation at zero scale is equal to the original signal

L(·; 0) = f(·), (1)

and the representations at coarser scales t > 0

L(·; t) = g(·; t) ∗ f(·) (2)
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are obtained by convolution with Gaussian kernels

g(x; t) =
1

(2πt)D/2
e−xT x/2t (3)

of increasing variance t. In terms of explicit integrals, the result of the convolution
operation ’∗’ can with x = (x1, . . . , xD)T ∈ RD equivalently be written

L(x; t) =
∫

ξ∈RD

g(ξ; t) f(x− ξ) dξ. (4)

Within the class of possible multi-scale representations constructed by linear opera-
tions, it can be shown that this concept of scale-space representation has a very special
role (Witkin 1983, Koenderink 1984, Babaud et al. 1986, Yuille & Poggio 1986, Koen-
derink & van Doorn 1987, Florack 1993, Lindeberg 1994). Based on natural symmetry
requirements on the first stages of a vision system (referred to as scale-space axioms),
several arguments can be presented showing that Gaussian kernels and their deriva-
tives constitute a canonical choice when constructing a multi-scale representation.

A fundamental and characteristic property of this scale-space representation is
that fine-scale structures will be successively suppressed when images are smoothed
to gradually coarser scales in scale-space. An example of this effect is illustrated in
the left column of figures 1(a)–(b), which show a detail of a brain activation pattern
subject to various amounts of Gaussian blurring. In the right columns of these figures,
a complementary illustration of this intensity is given by assigning an extremum
region to each local maximum in the intensity pattern (the construction is based on
the notion of grey-level blobs described next). As can be seen, the local maxima in the
intensity landscape at fine scales mainly respond to noise, whereas the local maxima
at coarser scales reflect image regions that we from an intuitive viewpoint may regard
as natural clusters in the image data. A crucial problem in this context, however,
concerns how to determine what structures should be regarded as significant and how
to select appropriate scale levels for those. Specifically, there is a need to make such
decisions automatically, without need for operator intervention. These are the main
subjects that will be addressed next.

2.2 The scale-space primal sketch: A brief review

When computing a scale-space representation from an image, the information is only
implicit in the intensity values. There is no explicit information about primitive image
structures or the relations between image structures at different scales. The aim of the
scale-space primal sketch is to build a representation which makes this information
explicit, that is directly available, with emphasis on blob-like image structures.

2.2.1 Grey-level blob

The scale-space primal sketch is a tree-like representation of blobs (local extrema
with extent) at all scales in scale-space. The most basic image primitive in this rep-
resentation is a grey-level structure referred to as a grey-level blob. At each scale
level, a (bright) grey-level blob is defined from each local maximum in the scale-space
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Scale-space representation Extracted grey-level blobs

t = 0

t = 1

t = 2

t = 4

Figure 1: (a): (left column) Scale-space representation of a brain activation patterns at scale
levels t = 0, 1, 2 and 4. (right column) The result of extracting grey-level blobs from the
image data in the left column. Essentially each dark region corresponds to a local maximum
in the smoothed intensity landscape.
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Scale-space representation Extracted grey-level blobs

t = 16

t = 32

t = 64

t = 128

Figure 1:(b): (left column) Scale-space representation of a brain activation patterns at scale
levels t = 16, 32, 64 and 128. (right column) The result of extracting grey-level blobs from the
image data in the left column. Essentially each dark region corresponds to a local maximum
in the smoothed intensity landscape.
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representation at that scale, and is associated with a spatial region with its extent
delimited from the level curve through its delimiting saddle point as illustrated in
figure 2 for the two-dimensional case.

Figure 2: Illustration of the definition of a grey-level blob in the two-dimensional case.

Intuitively, this construction can be visualized out as follows: Imagine the image
function as a flooded intensity landscape. If the water level sinks gradually, peaks will
appear. At some instances two different peaks become connected. The corresponding
elevation levels or intensity levels are called the base-levels of the blobs, and are used
for delimiting the spatial extent of the blobs. The support region of the blob is defined
to consist of those points that have an intensity exceeding the base-level and can be
reached from the local maximum point without descending below the base-level of
the blob. Finally, the grey-level blob consists of the (here, three-dimensional) volume
bounded by the intensity surface and the level surface through the base level.

z

x

Figure 3: (left) A high-contrast large peak with two superimposed low-contrast fine scale
peaks will not be detected as a grey-level blob if the signal is considered at one scale only.
(right) A single noise spike can also substantially affect the relational tree.

By proceeding this water level analogy further, the successive merges of grey-level
blobs leads to a grey-level blob tree with hierarchical relations defined between blobs
of different size and amplitude (Ehrich & Lai 1978, Lindeberg 1994); see figure 3. b
Corresponding constructions can be carried out for signals of arbitrary dimension, and
for a D-dimensional signal, the grey-level blob will be a (D + 1)-dimensional entity
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with extent in the D spatial dimensions as well the intensity dimension. A precise
mathematical definition of this concept, including the case with discrete data, is given
in appendix A.1. An algorithmic description of how to extract grey-level blobs from
image data can be found in section 9.1 in (Lindeberg 1994).

2.2.2 Scale-space blob

The concept of a grey-level blob at a single scale is extremely noise sensitive, as is the
detection of local extrema. For example, after a distortion of a large peak by a few
superimposed local extrema, the large scale peak will not be detected as one unit;
only the fine scale blobs will be found. Also the grey-level blob tree will be noise
sensitive when considered at a single level of scale, since the hierarchical relations
between different blobs are determined directly by the intensity levels in the valleys
of the original signal (see figure 3).

A powerful approach to obtain more stable image features is by examining the
behaviour of grey-level blobs in scale-space. In general, for every grey-level blob ex-
isting at a certain scale in scale-space, there will be corresponding grey-level blobs
at slightly coarser and finer scales. By linking such grey-level blobs across scales,
one obtains scale-space blobs. In our case with three-dimensional image data, these
scale-space blobs will be five-dimensional entities with extent in the three spatial
dimensions, the intensity dimension as well as the scale dimension. An implicit as-
sumption behind this approach is that significance should be reflected by stability in
scale-space.

d)c)b)

a)

Figure 4: Generic blob events in scale-space: (a) annihilation, (b) merge, (c) split, (d) creation.

Formally, the linking is performed by considering trajectories of local maxima
across scales, which are referred to as extremum paths (whose existence can be estab-
lished by using the implicit function theorem; see section 8.2 in (Lindeberg 1994)).
The extent of the scale-space blob in the scale direction is delimited by so-called
catastrophes, where either the local maximum or the delimiting saddle point partici-
pate in a bifurcation event . By the use of singularity theory (Poston & Stewart 1978),
it can be shown that there are only four possible types of generic bifurcation events
(Lindeberg 1994, section 8.4)

• annihilation: a blob disappears,

• merge: two blobs merge into one,
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• split: one blob splits into two,

• creation: a new blob appears.

In the scale-space primal sketch, these bifurcation events define hierarchical relations
between scale-space blobs at different scales, as illustrated in figure 4.

A formal definition of a scale-space blob as well as a more detailed description of
the bifurcation events can be found in the appendix.

2.2.3 Measuring the significance of scale-space blobs

The basic idea for extracting significant image structures of a D-dimensional sig-
nal using the scale-space primal sketch is to rank scale-space blobs on significance
based on the scale-space blob volumes they occupy in (D +1)-dimensional (here, five-
dimensional) scale-space. The motivations for this approach are that the following
components are natural to include in a significance measure (Lindeberg 1993a):

• spatial extent x: in the absence of further information, a grey-level blob having
large spatial extent may be treated as more significant than a similar grey-level
blob with smaller extent,

• contrast z: in the absence of further information, a grey-level blob having a
high contrast may be treated as more significant than a similar grey-level blob
with lower contrast,

• lifetime t: in the absence of further information, a grey-level blob having a
long lifetime in scale-space may be treated as more significant than a similar
grey-level blob having a shorter lifetime.

Then, for each scale-space blob, the scale is selected at which the (normalized) grey-
level blob volume assumes its maximum over scales.

By construction, the relative ranking of blobs obtained in this way, in decreasing
order of significance, will be invariant to translations, rotations and uniform rescalings
in the spatial domain, as well as affine transformations of the intensity values.

In a similar way, the selected scale levels are invariant under translations and
rotations of the spatial domain, as well as affine transformations of the intensity
domain, whereas under rescalings of the spatial domain, the selected scale levels are
transformed with a similar scaling factor as the spatial rescaling.

2.2.4 Normalization of the scale-space blob volume

When measuring the scale-space blob volume, it is of crucial importance that this
volume is measured in appropriate units, such that the significance of image structures
at different scales can be compared without bias to structures at fine or coarse scales.

Measuring the scale parameter. Concerning the scale dimension, a natural re-
quirement is that the expected lifetime of a scale-space blob should not vary over
scales. This leads to a transformation function of the form (Lindeberg 1993b)

τeff(t) = C1 + C2 log(p(t)) (5)
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where

p(t) = {expected density of extrema at scale t}, (6)

and C1 and C2 are constants, and C1 without loss of generality can be set to zero. For
a large class of continuous signals, it holds that the number of local extrema decreases
with scale approximately as t−α (α > 0). This gives

τeff(t) = −C2 α log(t), (7)

where we can further without loss of generality set C2 = −1/α.
In practice all brain images are discrete and of finite extent. At fine scales, this

leads to interference with the inner scale of the signal given by its sampling density,
and at coarse scales there will be interference with the outer scale of the signal given
by its finite size. Then, an appropriate transformation function for discrete signals
can be obtained by

τeff(t) = log
(

pref(0)
pref(t)

)
, (8)

where pref(t) denotes the average density of local extrema as function of scale t
(Lindeberg 1993b). Figure 5 shows an example of a transformation function defined
in this way, based on simulation results from three-dimensional white Gaussian noise.
Alternative choices of reference data will be in section 3.1.
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Figure 5: The density of local extrema as function of the scale parameter t accumulated for
220 white noise pictures of size 128×128×128 pixels: (left) mean value pref(t), (right) standard
deviation pσ(t).

Measuring the grey-level blob volume. Similarly, the grey-level blob volumes
need to be transformed. A straightforward approach to normalization is to subtract
the expected mean value Vm(t) from the grey-level blob volume Gvol and to divide
by the expected standard deviation Vσ(t):

Vprel =
Gvol − Vm(t)

Vσ(t)
. (9)
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Here, the reference functions Vm(t) and Vσ(t) should again be measured from reference
data, which should have similar properties as the image data that is to be analyzed.
Figure 6 shows experimental results based on white noise. Other choices of reference
data are described in section 3.1.
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Figure 6: Expected grey-level blob volume as function of the scale parameter t as accumulated
over 220 white noise pictures of size 128×128×128: (left) mean value Vm(t), (right) standard
deviation Vσ(t).

When computing the scale-space blob volume, however, it should be noted that
the entity Vprel(t) in (9) is not suitable for integration, since it can take negative
values. A normalization that empirically has given reasonable results is to let

Veff =

{
1 + Vprel if Vprel ≥ 0,
eVprel otherwise.

(10)

In order to adapt the amplitude of the signal to the reference data, Vm and Vσ are
rescaled linearly from a least-squares fit between the actual and the expected behavior
of these entities.

Computing the scale-space blob volume. Given the transformed entities τeff

and Veff , the scale-space blob volume is then defined by

Svol =
∫ tdisappear

tappear

Veff(t) dτeff (t) (11)

where tappear and tdisappear are the appearance and disappearance scales of the scale-
space blob, respectively.

2.2.5 Computing the scale-space primal sketch

When computing the scale-space primal sketch for a given image, the following algo-
rithmic steps are involved:

• Sample a given scale interval uniformly in effective scale.

• Extract grey-level blobs at each scale.
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• Match grey-level blobs between scales.

– This matching is based on overlap and inclusion of extrema in the blob
support regions. For generic image data, it can be shown that there are
five types of matching relations (see figure 7). If this is not the case, then
the scale sampling is refined and a new matching step is initiated.

• Build a hierarchical data structure based on the matching relations between
blobs at different scales.

• Rank structures on significance based on the scale-space blob volumes, and
select the scales at which the blob responses are maximal with respect to scale.

For a detailed algorithmic description, the reader is referred to (Lindeberg 1994, ch. 9).

(e)(d)(c)(b)(a)

Figure 7: Elementary matching situations between blobs at adjacent scales; (a) plain link, (b)
annihilation, (c) merge, (d) split, and (e) creation.

2.3 Proposed tool for analysing brain activation patterns

As an image representation, the scale-space primal sketch is computed under ex-
tremely weak conditions about the signal, and with no strong assumptions about the
specific shape of the image features. There are essentially no parameters to tune, and
the only parameter to adjust is how many regions should be returned or alternatively
a threshold on the significance. The main assumption is that the image structures
should be blob-like.

In earlier work (Lindeberg 1993a, Lindeberg 1994), it has been shown that the
scale-space primal sketch allows coarse segmentations to be generated in the sense
that the localization of boundaries can be poor due to the natural shape distortion
occurring in scale-space. Such segmentations will, however, be safe in the sense that
the regions, which are given by scale-space blobs with high significance, really are use-
ful as landmarks for significant structures. Specifically, the scale-space blobs obtained
from the scale-space primal sketch give information about:

• the approximate location and extent of relevant regions in the images,

• appropriate scales for treating these regions in further processing.

The main subject of this article is to show how such descriptors and the principles
behind their construction are useful for analysing functional brain images.

It will be shown that scale-space blobs extracted from the scale-space primal
sketch allows for simultaneous determination of the significance and the extent of
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activated region. In addition, a hierarchical description is obtained of activated regions
at multiple scales.

Support for the proposed approach will be presented by an experimental study on
real PET experiments, as well as a comparison with two statistical techniques, showing
that the highest ranked blobs in two examples correspond to intuitively reasonable
and biologically meaningful regions. In contrast to other methods, this approach does
not depend upon strong (unrealistic) statistical assumptions about the data.

3 Methods

3.1 Choice of reference data for normalization

When ranking image structures on significance based on the scale-space blob volume,
it is of crucial issue that all scale levels are treated in a uniform manner. In the orig-
inal work on the scale-space primal sketch (Lindeberg 1993a, Lindeberg 1994), the
normalization was based on the conservative approach of using white noise reference
data i.e., image data without correlation between disjunct image regions. The mo-
tivation for using this approach was to compensate for the rate to which accidental
groupings may occur in scale-space.

For the image data we obtain from PET analysis (details of image acquisition
will be given later), the situation is different in the sense that we can expect the
input data to be highly correlated in the spatial domain. In particular, the common
use of low-pass filtering as a pre-processing step to the analysis introduces a bias to
structures at a certain range of scale. For this reason, it is of interest to consider other
choices of image data for normalization, and in this work we will study the following
approaches:

• uncorrelated white Gaussian noise as described previously,

• real difference images obtained from the same camera as the data to be analysed,

• real Student-t images obtained by summing up difference values and dividing
by the standard deviation voxel by voxel,

• simulated Student-t images obtained by the following procedure:

– the autocorrelation function is estimated from difference images from real
PET experiments,

– a linear filter is computed, such that convolution of white noise with this
filter gives an image with a similar correlation function,

– a Student-t image is obtained by summing up a fixed number of such
noise images and dividing by the number of images as well as the standard
deviation.

Figure 8 and figure 9 show calibration curves for the density of local extrema pref(t)
as well as the average grey-level blob volume Vm(t) and its standard deviation Vσ(t)
computed at different scales.
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Figure 8: Experimental results showing the density of local extrema as function of (effective)
scale, τ , for four types of image data.
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Figure 9: Experimental results showing the grey-level blob volume as function of (effective)
scale, τ , for four different types of image data: (a) mean value Vm(t), (b) standard deviation
Vσ(t).

Note the large difference between normalization based on white Gaussian noise and
correlated PET data. It is of particular interest to observe the significant difference
between the results from the real and the simulated t-images (see the dashed and
the dot-dashed curves). Ideally, if the PET data would have been generated from
a simultaneous normal distribution (implying that not only the individual voxels
have a 1-D normal distribution, but any set of K voxels constitutes a K-dimensional
normal distribution), then the shape of the auto-correlation function would have been
sufficient to specify the statistical properties of the data. The difference in scale-space
behaviour between the real and synthetic images on the other hand suggests that are
limitations in using the autocorrelation function as the only statistical descriptor for
simulation analysis as is the case for certain approaches.
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3.2 Brain activation data

The image data we have used for normalizing and testing the scale-space primal sketch
algorithm have been obtained from two data sets.

The first data set was obtained from an experiment of tactile-visual matching of
shape in eight normal male volunteers (Hadjikhani & Roland 1998). The subjects
matched ellipsoids drawn from two identical sets of 15 ellipsoids all having the same
volume, surface properties and weight (Roland & Mortensen 1987). One ellipsoid was
presented to the right hand and while this was tactually explored, the subject was
looking at an ellipsoid which was either identical or slightly different in shape from
the one felt by the hand. The task being to decide by a two-alternative false choice
whether the ellipsoids were identical or different. A control condition was obtained
also, during which the subject looked at the little shelf on which the ellipsoid was
visually presented, but without any ellipsoid to see. During the control, the subjects
moved their right hand as if they were exploring an ellipsoid, however no ellipsoid was
present in the right hand. From these eight subjects, a Student’ t statistical image was
made showing the differences between the control and the tactile-visual matching.

In this first experiment, the regional cerebral blood flow (rCBF) was measured
in 3-D acquisition mode with an ECAT-EXACT-HR PET scanner (Wienhard et al.
1994) with 15 mCi of 15O-labelled butanol. The sinograms were reconstructed with
a ramp filter having a cut-off frequency of 0.5 cycles, the reconstructed image was
subsequently filtered with a 4.2 mm full width half maximum 3-D isotropic Gaus-
sian filter. The rCBF was calculated by an autoradiographic procedure, based on the
frames between 0 and 60 seconds (Meyer 1989). Individual magnetic resonance im-
ages of each of the subjects and the corresponding rCBF images were standardized
anatomically by the Human Brain Atlas (Roland et al. 1994). To reduce the variance,
the global blood flow was normalized to 50 ml/100 g/min. Each condition (of test and
control) was repeated three times in each subject. By a pairwise subtraction of con-
trol and tactile visual matching, images for the first, second and third repetition and
mean subtraction image of tactile-visual (TV) minus control rCBF were calculated.
Subsequently, these intra-subject mean subtraction images were used to calculated a
descriptive Student-t image (Roland 1993).

The second data set was from a reaction time task with nine participating male
subjects. A 2 mm in diameter stylus suddenly protruded through a hole and indented
the tip of the right index finger. This occurred at random intervals such that the
subjects could not predict when exactly this was going to happen. Their task was
to, as soon as possible, press a response key with help in the right hand. During the
experiment, the subjects had their eyes open and fixated a small circular light source.
The control was a rest during which the subjects had their eyes closed.

In the second experiment, the rCBF was measured with an eight ring (15-slice)
PET camera (PC 2048-15B Scanditronics) having an in-plane spatial resolution of
4.5 mm and an interslice distance of 6.75 mm. 70 mCi of 15O-butanol was injected,
and the rCBF was calculated as before. The sinograms were reconstructed with a
4 mm Hanning filter, but no further filtering was done. The rCBF of rest condition was
subtracted from that of the reaction time condition. The resulting subtraction images
were anatomically standardised as described above. Subsequently, these intersubject
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subtraction’s images were used to calculate a descriptive Student t-image (Roland
1993).

In addition, a set of noise data was computed from the visual-tactile crossmodality
experiment by permuting the matching repetitions images and subtracting the rCBF
of the matching from the repetition, i.e. repetition 1 from repetition 2, etc. In this
way, based on these subtraction images, 20 Student’s t-images were computed, which
were used as reference data for the abovementioned normalization of the scale-space
data for the tactile-visual matching. Similarly, a set of noise data was computed from
the reaction time experiment, by permuting the order of the reaction time images and
the control images for subtraction. In this way, 20 Student’s t-images were computed,
which were used as reference for the normalization of the reaction time scale-space
data.

4 Results

4.1 Experiments with synthetic image data

As a first illustration and as a validation of the approach, we applied the scale-
space primal sketch to synthetic two-dimensional image data generated from the
superposition of Gaussian blobs with randomly selected position, size and amplitude.

Figure 10(a) shows such a grey-level image with 10 Gaussian blobs to which white
Gaussian noise has been added. In figure 10(b) the 10 strongest blob responses are
displayed after suppression of multiple responses to the same Gaussian blob. Each blob
is represented by the boundary of the blob support region at the representative scale of
the scale-space blob, and the boundaries of the 10 strongest blobs are superimposed on
a bright copy of the grey-level image. Figure 10(c) shows the intensity data before the
noise was been added, and in figure 10(d) the blob boundaries have been superimposed
on this data set.

Table 1 lists basic data about the 10 synthetic Gaussian blobs, including their
position, size (given as the scale parameter of the Gaussian blob), and volume (the
mass of the Gaussian blob). As can be seen from this table, the six Gaussian blobs
with indices 1–6 have grey-level volumes (mass) significantly larger than the grey-
level volumes of the four other ones. These blobs are also the blobs that stand out
visually, after the noise has been added. Table 2 lists corresponding data for the
10 most significant scale-space blobs extracted by the scale-space primal sketch, after
the suppression of multiple scale-space blob responses to the same Gaussian blob.

As can be seen, the six most dominant Gaussian blobs in the grey-level image give
rise to corresponding scale-space blobs, which are all among the six strongest scale-
space blob responses. The ranking of the four other blobs, of smaller size, volume and
subjective visibility, is on the other hand strongly influenced by spurious structures
in the noise pattern. For the six dominant blobs, we see that the spatial extents of
the support regions of the scale-space blobs conform quite well to the visual extents
of the superimposed Gaussian blobs, and that the extremum points of the grey-level
blobs correspond well to the center points of the Gaussian blobs. In these respects,
the qualitative behaviour of the method is intuitively reasonable.
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Noisy blob image Scale-space blob boundaries overlayed

Noise free blob image Scale-space blob boundaries overlayed

Figure 10: The result of applying the scale-space primal sketch to a synthetic two-dimensional
image with 10 Gaussian blobs (with randomly selected position, size and amplitude) to which
white Gaussian noise has been added. (a) grey-level image, (b) boundaries of the 10 most
significant blobs overlayed on a bright copy of the grey-level image, (c) grey-level image
without noise, (b) boundaries of the 10 most significant blobs overlayed on a bright copy of
the grey-level image before the noise was added.
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Synthetic Gaussian blobs
Index Center Size Volume Ranking

1 205, 210 79.2 767.1 5
2 114, 53 51.7 594.1 2
3 222, 42 45.6 568.5 1
4 100, 225 33.4 334.7 6
5 59, 61 23.2 267.8 3
6 82, 159 11.0 133.0 4
7 208, 121 4.8 57.5 >10
8 22, 94 1.9 21.1 >10
9 11, 30 1.8 18.1 >10
10 164, 159 1.1 11.6 9

Table 1: Positions, scale values and grey-level volumes of the 10 synthetic Gaussian blobs in
figure 10, sorted in decreasing order of their grey-level volumes. The last columns gives the
significance ranking of the blob, as induced by the scale-space blob volume of a corresponding
scale-space blob detected by the scale-space primal sketch.

Scale-space blobs from synthetic Gaussian blob image
Ranking Significance Scale Area Extremum Index

1 23.0 5.9 871 222, 41 3
2 20.3 8.9 988 115, 54 2
3 14.8 8.9 521 59, 61 5
4 10.0 4.2 264 82, 159 6
5 9.9 29.3 2097 205, 210 1
6 9.9 18.2 1264 99, 225 4
7 5.8 2.0 54 69, 255 -
8 4.9 1.4 41 145, 228 -
9 4.8 0.8 27 164, 159 10
10 4.8 3.2 85 143, 3 -

Table 2: The 10 most significant scale-space blobs extracted from the synthetic image in
figure 10, as ranked according to their scale-space blob volumes. The columns show from
left to right; the blob ranking, the scale-space blob volume, the selected scale, the area of the
support region of the grey-level blob at the selected scale, the spatial position of the maximum
at the selected scale, and the index of the Gaussian blob in table 1.
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4.2 Experiments with 3-D PET images

The scale-space primal sketch algorithm was then tested on two real data sets. The
first was obtained from a study in which subjects matched the shapes of tactically felt
ellipsoids with visually presented ellipsoids (Hadjikhani & Roland 1998). From that
experiment a descriptive Student’s-t image of tactile-visual “matching – control” (see
section 3) was subjected to scale-space analysis. The normalization of the scale-space
blob volume was based on the set of difference images of “matching – matching”.

Figure 11 shows the 100 most significant blobs isolated in the descriptive Student’s-
t image of tactile-visual “matching – control”. Figure 12 shows a ”corner plot” ob-
tained by exposing the three orthogonal planes through the center of the most sig-
nificant scale-space blob. In this picture also the 49 lower ranked blobs are apparent.
Figure 13 and figure 14 show corresponding results for the second and third most
significant scale-space blobs, respectively. It is obvious that the scale-space primal
sketch algorithm captures the visual and somatosensory areas expected to be en-
gaged in the somatosensory—visual cross-modality matching of shape (Roland &
Larsen 1976, Seitz et al. 1991, Gulyás & Roland 1994, Logothetis et al. 1995). The
third most significant scale-space blob is located in the insula claustrum, also known to
be engaged in cross modal matching (Shindy et al. 1994, Hadjikhani & Roland 1998).
Table 3 gives a summary of the significance values, the selected scale levels as well as
the physiological brain regions corresponding to the 12 strongest blob responses.

In Figures 15(a)–(e) a comparison is done between the results of the 50 most
significant blobs from the scale-space primal sketch and the statistical cluster anal-
ysis method of (Roland et al. 1993). The left column shows the boundaries of the
scale-space blobs overlayed on the intensity image, whereas in the right column these
boundaries have been overlayed upon a cluster image, in which each connected region
of Student-t values above the statistical significance threshold has been assigned a
unique colour.

The significance level was set such that there was an overall probability of less
than 0.05 of finding one or more false positive clusters within the space of the brain
(Roland et al. 1993, Roland & Gulyás 1996). As can be seen from Figures 15(a)–(e),
the scale-space primal sketch algorithm captures the clusters in the somatosensory,
visual and frontal cortex. In addition, the scale-space primal sketch also generates
responses at coarser scales and shows the hierarchical structure of the activations,
such that the broad support regions for the focal activations are also seen.

13 clusters were found with the method of (Roland et al. 1993), based on 2000 sim-
ulations of noise images generated from the image data from the eight subjects doing
cross-modal matching. The scale-space primal sketch algorithm captured 11 of these
clusters within the 12 highest ranked blobs (Table 3). Clusters #12 and #13 were
not significant according to normal conventions, since p > 0.05. However, even clus-
ters of doubtful statistical significance were included to illustrate the correspondence
between the ranking of blobs and clusters. The blob ranked as number three did not
correspond to any significant cluster (p > 0.8). However, the underlying Student-t
image contained two clusters of 230 mm3 and 75 mm3 with average t-values of 3.2
each and situated closely together corresponding to the location of blob #3. Clusters
ranked #5, #6, #7 and #10 by the (Roland et al. 1993) method were all captured
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z = −10 z = 30

z = 10 z = 50

z = 20 z = 57

Figure 11: The result of applying the scale-space primal sketch to a three-dimensional
Students-t image image from the visual-tactile crossmodality experiment. The results are
displayed as six horizontal slices though the data volume with the boundaries of the 100 most
significant scale-space blobs overlayed.
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Corner plot Coronal slice

Horizontal slice Sagittal slice

Figure 12: Three-dimensional illustration of scale-space blob number 1 from the visual-tactile
cross-modality matching task. The figure shows the intersection of the center of the scale-space
blob with three orthogonal planes.
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Corner plot Coronal slice

Horizontal slice Sagittal slice

Figure 13: Three-dimensional illustration of scale-space blob number 2 from the visual-tactile
cross-modality matching task. The figure shows the intersection of the center of the scale-space
blob with three orthogonal planes.
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Corner plot Coronal slice

Horizontal slice Sagittal slice

Figure 14: Three-dimensional illustration of scale-space blob number 3 from the visual-tactile
cross-modality matching task. The figure shows the intersection of the center of the scale-space
blob with three orthogonal planes.
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the scale-space primal sketch thresholding on statistical measure

z = −35

z = −18

z = −12

Figure 15: (a): Comparison between the results obtained from scale-space primal sketch and
a standard technique for analysing PET activation patterns. The left column shows three hor-
izontal slices through the data volume and the boundaries of the 50 strongest blob responses.
In the right column, these boundaries have been overlayed upon a cluster image, in which
each connected region of Student-t values above the significance threshold has been assigned
a unique colour.
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the scale-space primal sketch thresholding on statistical measure

z = −3

z = 4

z = 15

Figure 15: (b): Comparison between the results obtained from scale-space primal sketch and a
standard technique for analysing PET activation patterns. The left column shows three hori-
zontal slices through the data volume and the boundaries of the 50 strongest blob responses.
In the right column, these boundaries have been overlayed upon a cluster image, in which
each connected region of Student-t values above the significance threshold has been assigned
a unique colour.
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the scale-space primal sketch thresholding on statistical measure

z = 35

z = 42

z = 50

Figure 15: (c): Comparison between the results obtained from scale-space primal sketch and a
standard technique for analysing PET activation patterns. The left column shows three hori-
zontal slices through the data volume and the boundaries of the 50 strongest blob responses.
In the right column, these boundaries have been overlayed upon a cluster image, in which
each connected region of Student-t values above the significance threshold has been assigned
a unique colour.
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the scale-space primal sketch thresholding on statistical measure

z = 57

Figure 15: (d): Comparison between the results obtained from scale-space primal sketch and a
standard technique for analysing PET activation patterns. The left column shows three hori-
zontal slices through the data volume and the boundaries of the 50 strongest blob responses.
In the right column, these boundaries have been overlayed upon a cluster image, in which
each connected region of Student-t values above the significance threshold has been assigned
a unique colour.

z = 32

Figure 15: (e): Alternative illustration of the cross-section at z = 32 with the boundaries of
the 100 strongest scale-space blobs drawn instead of the 50 strongest ones.
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within larger size blobs, i.e., blob #1 and #2. These clusters were also captured as
smaller blobs at finer scales, but of lower rank, albeit within the 100 highest ranked
blobs. The cluster ranked as #9 by the cluster method was not captured within the
100 highest ranked blobs. The cluster ranked as #12 appeared as blob ranked as #52.

From these data it is apparent that the scale-space algorithm picks out relevant
regions which are found statistically significant, one exception being the left anterior
insula and claustrum. The insula-claustrum has, however, been found significant in
another comparison (Hadjikhani & Roland 1998). Sometimes the cluster and the scale-
space blob do not exactly cover the same volume. At large scales, several clusters,
for example located within the visual cortex, are encompassed in a large scale-space
blob, and the large scale-space blob has a hierarchical substructure (see for example,
blobs ranked #1, #4 and #7).

A second test of the scale-space primal sketch was made on the PET data from
the tactile reaction time experiment. Figures 16–18 show corner plots through the
centers of the three most significant scale-space blobs after the suppression of a mul-
tiple response (#3) to a region (#1) already detected. The strongest blob responses
occured in the left sensory motor hand region, the right supra-marginal gyrus and the
supplementary and cingulate motor areas, all known to be engaged in sensory motor
activities (Roland & Zilles 1996). For the detection of significant clusters, we did 7500
simulations to generate noise images from the nine subjects doing the somatosensory
reaction time task. Four clusters appeared significant at p < 0.06, and were captured
by the scale-space primal sketch (Table 4). The cluster ranked as #3 was included
in blob #2. However, even clusters of lower rank and of less statistical significance
are listed in Table 4. From these results it can be seen that all the 10 highest ranked
clusters were captured by the 12 highest ranked blobs (cluster #6 was included in
the blob #5). Again, however, blobs were detected at different scales, subdividing
the image structure into hierarchical regions which are not apparent from the cluster
analysis. One of the blobs ranked just below the 12 highest ones was the cluster of
the mid-brain reticular formation, previously shown to be important for this type of
task (Kinomura et al. 1996).

In the tables, the p-values of the clusters signify the the probability that the cluster
of a particular volume is a false positive. Generally, the blob volumes are larger than
the volumes of the corresponding clusters. This is not surprising, since most the scale-
space blobs are usually detected at much coarser scales than the inner scale1 of image
at which the cluster analysis is performed.

In summary, activations were found in the following areas for the PET data from
the reaction time experiment: the left somatosensory and motor region for the right
hand, the right and left supplementary motor area and adjacent parts of the mesial
prefrontal cortex, the left middle frontal gyrus, the right middle frontal gyrus and
the left premotor cortex and the left angular gyrus. These domains of the cortex are
either engaged in the motor control of the right hand or in the perception of the
somatosensory signals or the regulation of the attention.

1As a common pre-processing stage to both the scale-space analysis and the cluster analysis, all
PET images were pre-filtered with filters of 4.2 and 5 mm full width half maximum, respectively.
This pre-smoothing stage defines the inner scale of the data.
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Corner plot Coronal slice

Horizontal slice Sagittal slice

Figure 16: Three-dimensional illustration of scale-space blob number 1 from the tactile reac-
tion time task. The figure shows the intersection of the center of the scale-space blob with
three orthogonal planes.
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Corner plot Coronal slice

Horizontal slice Sagittal slice

Figure 17: Three-dimensional illustration of scale-space blob number 2 from the tactile reac-
tion time task. The figure shows the intersection of the center of the scale-space blob with
three orthogonal planes.
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Corner plot Coronal slice

Horizontal slice Sagittal slice

Figure 18: Three-dimensional illustration of scale-space blob number 3 from the tactile reac-
tion time task. The figure shows the intersection of the center of the scale-space blob with
three orthogonal planes.
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5 Summary and discussion

The scale-space primal sketch provides an unambiguous mathematical tool, for the
analysis of signals in 3-D images in the presence of noise. The scale-space primal
sketch allows the detection of the localization, volume and hierarchical structure of
any blob-like entity in the image. In addition, the scale-space primal sketch algorithm
automatically selects optimal scales for detecting individual blobs and it provides a
ranking of the blobs detected. The algorithm works without problems on synthetic
data in the presence of added noise, and it has been tested on real PET data from
which it was able to detect and rank all the clusters considered statistically significant.

The scale-space primal sketch is computed from image data almost entirely with-
out specific assumptions about the structures to be analysed. This is in contrast to all
existing methods of quantitative brain activation analysis except (Holmes et al. 1996).
The only prerequisites are that the structures to be detected are blob-like, and that
normalization can be performed on reference data.

Concerning limitations of this approach, one might envisage structures in the
brain which are not blob-like and which could be activated, for example thin unfolded
gray matter structures. One such structure is the claustrum. To be able to capture
such elongated structures, explicit focus on more specialized methods for detecting
ridge-like image features (Pizer et al. 1994, Eberly et al. 1994, Koenderink & van
Doorn 1994, Lindeberg 1996) would probably be beneficial.

The ranking of blobs is dependent on the images used for normalization. The den-
sity of local extrema as a function of the scale-space parameter t can be sensitive to
the choice of normalization data. Using real difference images seemed to give the best
solution. This also has the advantage that one is free from assumptions about the
statistical structure of the image data. Provided that the assumption of a simulta-
neous normal distribution is satisfied, simulated Student’s t-images could be used as
reference. Our experiments, however, indicate that this assumption may not be fully
satisfied. Images obtained from simulation experiments seem to deviate from the real
data, especially at finer scales (cf, Figures 8 and 9).

The scale-space primal sketch was compared to two statistical methods of cluster
analysis in 3-D images (Roland et al. 1993, Ledberg & Roland 1996). The comparison
shows that the results of the scale-space primal sketch are to a large extent compatible
with the results of the cluster based method, although the results also suggest that
the scale-space primal sketch may be more sensitive. It may seem natural to use a
method sensitive to the extent of functional activations as a comparison with this
extent and localization of the blobs. It is, however, beyond the scope of the present
article to compare the scale-space primal sketch to all currently used methods for the
detection of statistically significant functional activations. Such comparisons can only
be roughly indicative of the performance of the primal sketch. A major difference is
that the current methods all rely on statistical assumptions of stationarity, and some
on many additional assumptions. Also whereas the current methods are relatively
efficient in controlling for the probability of false positives, alpha, the sensitivity of
the current methods can only be estimated under strong assumptions. We plan to
address these issues in future work, including the statistical foundations of the scale-
space primal sketch.
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Clearly, an approach such as cluster analysis is sub-optimal compared to the scale-
space primal sketch, since it only considers data at a certain level of scale. Conse-
quently, one cannot expect to find 100 % concordance between the two methods. The
3-D cluster analysis cannot, at the level of filtering used, detect the large blobs of the
visual or somatosensory cortex. These might have been detected if the input data had
been filtered with a large Gaussian filter, but at the expense of detecting the smaller
focal activations. This is exactly the dilemma of current statistical methods (Friston
et al. 1991, Friston et al. 1994, Friston et al. 1996, Worsley et al. 1992). Moreover,
all current statistical methods with the exception of (Worsley et al. 1996b) employ
thresholding of statistical images. Consequently, the extent of the detected clusters
depend on the level of thresholding. The scale-space primal sketch on the contrary
depends on the mathematical description and delimitation of functional activated
fields. Finally, some currently methods are dependent on a certain filter size for the
theoretical assumptions underlying the methods be valid. This excludes the detection
of smaller blobs, for example confined to sub-cortical structures. Specifically, the ap-
proach of detecting connected components in thresholded statistical data introduces
a certain degree of arbitrariness, since the global connectivity between clusters can
be influenced by a small number of local pixel values. The scale-space primal sketch
in contrast detects blobs no matter of the scale in which these blobs occur.

A natural question concerns which blobs represent true increases of rCBF and
whether all blobs having a significance value above a certain threshold are biologically
meaningful. This issue can be separated into a statistical question of which blobs are
due to noise and the question of whether blobs at all scales are biologically meaningful.
The large scale blobs in the real PET data from the first experiment comprised the
visual areas and the somatosensory areas. With respect to the particular task of
matching somatosensory and visual shape information, the engagement of (many)
somatosensory and visual areas is expected. Furthermore, such large activations are
sometimes seen in data which have been heavily smoothed, for example (Dupont
et al. 1993, Grasby et al. 1994, Shallice et al. 1994, Kapur et al. 1995). The large
blobs provide support regions for smaller and more focal activations located at places
expected to be engaged in the representation and perception of objects (Hadjikhani
& Roland 1998).

The scale-space primal sketch algorithm is automatic and there are no parameters
to tune. The only free parameter is the number of blobs to be extracted from the
image. This number has here been set arbitrarily and without statistical testing of the
number and sizes of blobs that may be noise blobs. There are four current statistical
approaches, which bear some resemblance to the scale-space primal sketch. (Poline
& Mazoyer 1993) used a search over a range of Gaussian filter widths for signals in
Student’s t-images. For each filter size, one or more blobs could be extracted from
an image slice. Blobs detected at a small scale were removed from the sample to
prevent them being detected again at coarser levels of scale-space, and a hierarchical
structure of nested regions was defined at each scale (Poline & Mazoyer 1994). The
significance level was then subsequently determined from Monte-Carlo simulations.
(Worsley et al. 1996a) used a model for PET activations, in which it was assumed
that the signal consisted of just one peak and that its shape was Gaussian and that
the PET data can be described as a Gaussian field. An extension of the latter method
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(Worsley et al. 1996b) also permits a calculation of a unified p-value for 4-D local
maxima.

There are close relationships between these approaches and the scale-space primal
sketch. The hierarchical decomposition used by (Poline & Mazoyer 1994) is similar
to the grey-level blob tree defined at each scale; the main difference appears to be
how grey-level blob volumes are defined at each level. The scale-space primal sketch
does not suffer from the problems of analysing data at a single scale, which gives a
preference to regions of a specific size and limits fixed-scale methods such as those
proposed by (Worsley et al. 1996a) and (Roland et al. 1993). Our method analyses
all scales simultaneously, while the method proposed by (Poline & Mazoyer 1994)
only combines the results obtained from applying a detection method at each single
scale. The idea in (Worsley et al. 1996b) to detect 4-D maxima with respect to scale
and space bears very close relationship to approaches for automatic scale selection
in the computer vision literature (Lindeberg 1994). In the scale-space primal sketch,
scale levels are selected from the scales at which the normalized grey-level blob vol-
ume assumes maxima with respect to scale (with complementary selection of spatial
points along the extremum paths). A more general methodology for scale selection
for feature detection developed in (Lindeberg 1993c)(Lindeberg 1994, chapter 13)
is based on the joint maximization of normalized responses to differential operators
with respect to scale and space. In these respects, the scale-space primal sketch uni-
fies components of the approaches by (Poline & Mazoyer 1994, Worsley et al. 1996b)
into a common framework. Three main differences are that the scale-space primal
sketch, in addition, (i) involves a linking of topologically similar image structures
over scales, (ii) makes the hierarchical relations explicit between image structures at
different scales, and (iii) includes the stability of image structures across scales into
the significance measure. Both of the approaches by (Poline & Mazoyer 1994) and
(Worsley et al. 1996b) carry further assumptions. In contrast, the scale-space primal
sketch carries no assumptions on the structure of the image data or the shape of the
signals. The signals are detected and ranked automatically on the basis of both peak
amplitude and extent simultaneously at all scales, and the scale-space primal sketch
gives rules for subdividing regional activations into a hierarchy of unambiguously de-
fined parts. Its drawback is that, at the present stage, no p-value is attached to each
blob. Such a value could, in principle, be defined and we will address this issue in our
future work.
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A Appendix

A.1 Definition of grey-level blob

A precise mathematical definition of the grey-level blob concept can be stated as
follows (Lindeberg 1994, section 7.1.2): Consider the case with bright blobs on dark
background, and assume a continuous generic (non-degenerate)2 grey-level function
f : RD → R at a fixed level of scale. Consider a local maximum A ∈ RD. For any
grey-level z < f(A) let

X(A)
z =

{
the connected component of {(x; ζ) ∈ RD × R :
z ≤ ζ ≤ f(x)} that contains (A, f(A))} ,

(12)

and define the sets G
(A)
z and H

(A)
z as follows: A point (B, ζ0) ∈ X

(A)
z belongs to G

(A)
z

(H(A)
z ) if and only if there exists a path p(A,f(A)),(B,ζ0) from (A, f(A)) to (B, ζ0) such

that (i) every point on the path belongs to X
(A)
z , and (ii) the derivative of ζ along

this path ζ|′p(A,f(A)),(B,ζ0)
< 0 (ζ|′p(A,f(A)),(B,ζ0)

≤ 0). The base-level of the blob zbase(A)
is then defined as the maximum value of z such that

zbase(A) = max
z<f(A)

z : G
(A)
z 6= H(A)

z , (13)

where the notation C stands for the closure of a set C. zbase(A) is the grey-level value
of the delimiting saddle point S = Sdelimit(A) associated with A. The grey-level blob
associated with the local maximum A is the set of points

Gblob(A) = G
(A)
zbase(A), (14)

with the (three-dimensional) grey-level blob volume

Gvol(A) =
∫

(x; z)∈Gblob(A)
dx dz. (15)

The projection of this region onto the spatial plane is called the support region,

Dsupp(A) = {x ∈ RD : (x; ζ) ∈ Gblob(A) for some ζ}, (16)

and the difference in grey-level between the extremum point and the base-level gives
the blob contrast

Cblob(A) = f(A)− zbase(A). (17)

It is worth stressing that the grey-level blob is treated as an object with extent both
in space and grey-level. Whereas the definition is expressed in terms of signals defined
on a continuous domain, it can be extended to discrete signals by replacement of RD

by ZD, and by letting the paths be given by a suitable connectivity concept (e.g.,
eight-connectivity for a two-dimensional square grid and 26-connectivity on a three-
dimensional rectangular grid). In the discrete case, the derivative condition f |′pA,B

< 0
is replaced by a difference condition f(x(k+1))− f(x(k)) < 0 along the path {x(k)}.

2Unless otherwise stated, the signals are throughout assumed to be Morse, i.e., all critical points
are assumed to be non-degenerate, and all critical values are assumed to be distinct.
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A.2 Definition of scale-space blob

A.2.1 Extremum path and saddle path

Consider a critical point (a local maximum, a local minimum or a saddle point)
x0 ∈ RD at some scale t0 ∈ R+ in the scale-space representation of a D-dimensional
signal. The critical point is given by

∇L|(x0; t0) = {∂xiL}|(x0; t0) = 0. (18)

The implicit function theorem ensures that if the Hessian matrix

HL|(x0; t0) =
{
∂xixjL

}∣∣
(x0; t0)

(19)

is non-singular at this point, then there exists some smooth function r0 : It0 → RD

x = r0(t) (20)

such that x0 = r0(t0), and for every t in some neighbourhood It0 of t0 the point
(r0(t); t) is a critical point for the mapping x 7→ L(x; t).

By continuation, such local paths can be extended to curves as long as the Hessian
matrix remains non-singular. It can be easily shown that the type of critical point
remains the same as long the Hessian matrix is non-singular.

In other words, if (x0; t0) is a local maximum (minimum/saddle), then there exists
a curve through this point, such that every point on the curve is a local maximum
(minimum/saddle) at that scale. The curve is delimited by two scale levels tmin and
tmax, at which the Hessian matrix degenerates (except for the boundary cases tmin = 0
or tmax = ∞). At all interior points the extremum point is non-degenerate. Such a
curve r0 : [tmin, tmax] → RD is is called an extremum path (saddle path) (Lindeberg
1994, section 8.1).

A.2.2 Scale-space blob

Concerning grey-level blobs, this result means that a unique linking of grey-level blobs
across scales can be performed as long as both the extremum point and the saddle
point determining the extent of the grey-level blob remain non-singular. In summary,
a scale-space blob is defined as the union of all grey-level blobs associated with the
extremum points along a segment of an extremum path where such a unique linking
can be performed.

To express this statement precisely, let [t′min, t′max] ∈ [tmin, tmax] be a (maximal)
subset of an extremum path, along which the delimiting saddle point Sdelimit(r0(t))
associated with the extremum point r0(t) is always non-degenerate. At some distinct
scales it may happen that the delimiting saddle point jumps from one saddle path
to another. In such non-Morse3 situations, when two saddle points have the same
grey-level, both saddle points are required to be non-degenerate. At the end points,
either of r(t′min) and Sdelimitr(t′min) and also either of r(t′max) and Sdelimitr(t′max) are
degenerate critical points (unless tmin = 0 or tmax = ∞).

3Generically, these events occur at isolated scales, and then only two different critical points have
the same critical values.
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Then, the scale-space blob associated with this segment r′0 : [t′min, t′max] → RD is
the set

Sblob(r′0) = {(x; z; t) ∈ RD × R× R+ : (t′min < t < t′max) ∧ ((x; z) ∈ Gblob(r′0(t)))},
(21)

where Gblob(r′0(t)) is the grey-level blob associated with the extremum point r′0(t) in
the scale-space representation L at scale t (Lindeberg 1994, section 8.1.2).

A.3 Scale-space blob events

The implicit function theorem used in previous appendix section guarantees that
linking of non-degenerate critical points is a well-defined operation. When the Hessian
matrix becomes singular, bifurcations may occur. In summary, the following result
holds at such singularities (Koenderink & van Doorn 1986, Lifshitz & Pizer 1990,
Lindeberg 1992, Johansen 1994, Damon 1996): In D ≥ 2 dimensions, the only generic
(structurally stable) bifurcations are annihilations and creations of pairs consisting
of one extremum point and one saddle point. A canonical model of this so-called fold
singularity is for a local maximum in D dimensions given by the polynomial

x3
1 + 3x1(t− t0)−

D∑
i=2

(x2
i + t− t0). (22)

The positions of the critical points are given by

(x1(t), x2(t), . . . , xD(t)) = ±(
√

t0 − t, 0, . . . , 0) (t ≤ t0) (23)

i.e. the critical points merge along a parabola. Concerning scale-space blobs, this
classification means that two distinct types of cases can be distinguished, depending
on whether the saddle point involved in the bifurcation is part of one or two grey-level
blobs. A saddle point delimiting the extent of only one grey-level blob is said to be
non-shared, while a saddle point belonging to two grey-level blobs is said to be shared.
Hence, in the generic case, there are four following cases are possible at a structurally
stable bifurcation (Lindeberg 1994, section 8.4.2) (see Figure 4 for an illustration):

• blob annihilation — annihilation of an extremum-saddle pair where the saddle
path is non-shared before the bifurcation,

• blob merge — annihilation of an extremum-saddle pair where the saddle path
is shared with another scale-space blob before the bifurcation,

• blob split — creation of an extremum-saddle pair where the saddle path is shared
with another scale-space blob after the bifurcation,

• blob creation — creation of an extremum-saddle pair where the saddle path is
non-shared after the bifurcation.
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A.4 Scale-space for discrete signals

Given a discrete signal f : ZD → R, its separable discrete scale-space representation
L : ZD × R+ → R is defined as the result of convolving f by the D-dimensional
discrete Gaussian kernel (Lindeberg 1990, Lindeberg 1994)

TD(ξ; t) =
D∏

i=1

T1(ξi; t), (24)

where ξ = (ξ1, ..., ξD), T1 : Z × R+ → R is the one-dimensional discrete analogue of
the Gaussian kernel, T1(n; t) = e−tIn(t) and In is the modified Bessel function of
integer order (Abramowitz & Stegun 1964).

Equivalently, this scale-space family can be obtained as the solution to the semi-
discretized diffusion equation

∂tL =
1
2
∇2

2N+1L, (25)

where

(∇2
2D+1L)(x; t) =

D∑
i=1

L(x + ei; t)− 2L(x; t) + L(x− ei; t), (26)

and ei denotes the unit vector in the ith coordinate direction. This is the scale-space
concept that underlies all the implementations described in this presentation.
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