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Abstract

In the production of high speed steel, the rolling a�ects the micro-structure
of the steel, which in turn in
uences the mechanical properties. Speci�-
cally, the distribution of carbide is essential, since cracks propagate within
the carbide agglomerations. In current quality control, the properties of
the steel are assessed manually by comparison with a standard chart, con-
taining representative patterns for each steel class.

Interestingly, the standard technique for classifying carbide distribu-
tions is two-dimensional, where the �rst dimension basically corresponds
to scale (\degree" | the size of the largest carbide agglomeration) and the
the second dimension basically re
ects the directional distribution (\type"
| how strongly the net structure of carbide has been stretched).

In this paper, we present an automatic method for such classi�cation
based on scale-space operations, in which the size information is measured
using recently developed techniques for feature detection with automatic
scale selection and the directional information is computed from second-
moment descriptors (Lindeberg 1994). Combined with a morphological
veri�cation scheme, a pattern classi�er is proposed, which shares large
similarities with current manual techniques.

Compared to previous work (Wiltschi, Pinz & Hackl 1995), the pro-
posed scheme has the advantage that the signi�cant scale of the carbide
agglomeration is calculated explicitly, and the method is much less sensi-
tive to the variance of spatial connectivity than a morphological approach.

From a theoretical viewpoint, the proposed scheme also has the attrac-
tive property that it is based on similar visual-front-end operations as a
large class of computer vision modules.

Keywords: scale, scale-space, scale selection, feature detection, second
moment matrix, carbide classi�cation, high speed steel.
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1 Introduction

The classi�cation of carbide distributions is an important task in the quality
control of high speed steel. Currently, specially skilled metallographers classify
the carbide distributions (at a magni�cation of 100:1) using a light microscope
and assigning them to a standard chart of 28 images, arranged in 4 rows and
7 columns as shown in Figure 1.

Figure 1: The microscopic standard chart for characterizing carbide distributions of
high speed steels. The �rst number of the class (the row index) denotes the type of
the distribution, which corresponds to the shape of the agglomerations. The second
number (the column index) describes the degree, basically re
ecting the size of the
agglomerations. (The carbide particles are white in all images.)

This standard chart distinguishes carbide distributions according to visually
captured features, referred to as the 'size' and 'shape' of the (white) carbide
agglomerations. In each row, the 'size' of the agglomerations increases from
left to right (the degree of the distribution), whereas in each column the 'shape'
ranges from band-shaped to net-shaped structures from top to bottom (the type
of the distribution), caused by the stretching of originally net-shaped structures
during the rolling process. In this respect, the standard chart can be interpreted
as categorizing the carbide distributions into 4 � 7 classes according to the
`shape' and the 'size' of the carbide agglomerations.

The subject of this article is to present a method which performs this classi�-
cation automatically based on recently developed computer vision tools for fea-
ture detection with automatic scale selection (Lindeberg 1994, Lindeberg 1996b,
Lindeberg 1996a) combined with texture descriptors derived from second mo-
ment descriptors (Big�un, Granlund & Wiklund 1991, Lindeberg 1994, G�arding
& Lindeberg 1996). The image descriptors obtained in this way will then be ver-
i�ed by a morphological scheme (Wiltschi 1995, Wiltschi et al. 1995). Compared
to this previous work, it will be shown that the robustness of the classi�cation
is improved by the inclusion of grey-level based image descriptors and explicit
handling of the scale information based on scale-space operations.



2 Classi�cation of Carbide Distributions using Scale-Space Methods

(a) Reference image 22 with dominant

small band-like carbide agglomera-
tions.

(b) Reference image 35, containing dom-

inant large net-like structures.

Figure 2: Enlargements of two images from the standard chart; carbides are white.

2 Scale selection module

To handle the inherent multi-scale nature of image data, the notion of scale-
space theory (Witkin 1983, Koenderink 1984, Lindeberg 1990, Florack, ter
Haar Romeny, Koenderink & Viergever 1992, Lindeberg 1994) has been de-
veloped by the computer vision community. For any N -dimensional image
f :RN ! R, its scale-space representation L : RN � R+ ! R is de�ned by

L(�; t) = g(�; t) � f(�) (1)

where g : RN � R+ ! R denotes the N -dimensional Gaussian kernel:

g(�; t) = 1

(2�t)N=2
e
�(x21+���+x

2
N )

2t (2)

and the variance t 2 R+ of the Gaussian kernel is referred to as the scale

parameter . Based on this representation, scale space derivatives are de�ned by

Lx�(�; t) = @x�11 ���x
�N
N
L(�; t) = (@x�11 ���x

�N
N
g(�; t)) � f(�) (3)

with corresponding normalized derivatives given by

@�ni = tn=2 @xni (4)

where � represents the normalized coordinate corresponding to the variable x
and n denotes the order of di�erentiation.

In terms of this framework, a large number of feature detectors can be for-
mulated as (linear and non-linear) combinations of partial derivatives. Speci�-
cally, scale levels for feature detection can be selected by detecting local extrema
over scales of such di�erential geometric descriptors (Lindeberg 1993, Lindeberg
1994, Lindeberg 1996b, Lindeberg 1996a).
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2.1 Detection and ranking of signi�cant image structures

In the manual classi�cation procedure, the \size" of the largest agglomerations
in each image constitutes a primary cue. Since the agglomerations mainly
form blob- or ridge-like structures (see Figure 2 for two examples), we have
decided to use a ridge detector , which builds upon the earlier methods for
ridge detection described in (Haralick 1983, Eberly, Gardner, Morse, Pizer &
Scharlach 1994, Koenderink & van Doorn 1994, Pizer, Burbeck, Coggins, Fritsch
& Morse 1994) and is de�ned as follows (Lindeberg 1996a):

Introduce a local (p; q)-coordinate system at each image point, de�ned by
the mixed second-order derivative being zero (i.e., Lpq = 0). Then, we can
detect (possibly elongated, bright) blob features from points which are simul-
taneously maximal with respect to space and scales in

�Lpp;norm = �t Lpp (5)

where Lpp is the principal curvature having the largest absolute value.
To rank these features on signi�cance, we multiply the normalized response

Lpp;norm at each scale-space maximum by a factor of
p
t, which gives the fol-

lowing signi�cance measure1 S(A) for each scale-space extremum

S(A) = �
p
t Lpp;norm(x; y): (6)

Figure 3(a) shows the result of applying this operation to one of the reference
images in the chart (image 33).

(a) The 30 most signi�cant responses. (b) The 10 strongest responses after

overlap suppression.

Figure 3: The most signi�cant ridge features detected from (5) and (6). Each response
is illustrated by a circle with the radius proportional to the selected scale. The intensity
of the circles are also coded such that brighter values indicate more signi�cant features.

As can be seen from the example, certain image structures give rise to
multiple responses. To suppress overlapping features, any scale-space maximum
A is rejected if there exists any scale-space extremum B such that

1An intuitive motivation for this weighting is that the width of the ridge feature can be
expected to be proportional to

p
t.
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center(A) 2 support region(B) ^
center(B) 2 support region(A) ^ (7)

tA=tB 2
�
1
� ; �

�
; � > 1

S(A) < S(B)

where we have chosen � = 4, corresponding to a ratio of 2 between the blob
radii.

2.2 Veri�cation of detected image features

To suppress spurious responses from the feature detection module (\false alarms"),
we use the following veri�cation mechanism, which constitutes an extension of
a previously developed morphological module for perceptual grouping of sub-
structures (Wiltschi et al. 1995, Wiltschi 1995):

1. An elliptical support region is associated with each detected scale-space
maximum based on the two principal curvatures Lpp;norm=Lqq;norm as well
as the orientation of the ridge. Starting from an idealized two-dimensional
elliptical blob model de�ned by

g(x; y; t1; t2) =
1p
2�t1

e
�x2

2t1
1p
2�t2

e
�y2

2t2 ; (8)

the ratio t2=t1 between the major and the minor axis of the ellipse can be
estimated as (see Appendix A.2 for a derivation; (Lindeberg 1996a))

t2
t1

=
1

2

�
3
Lpp;norm

Lqq;norm
� 1

�
; (9)

where an upper bound of t2=t1 � 2 is used to prevent overestimation of
the support region.

Within each such support region the following veri�cation scheme is applied:

2. A binary mask of the characteristic structure in the image is gener-
ated using previously developed segmentation algorithm (Wiltschi et al.
1995). This processing step essentially corresponds to adaptive thresh-
olding followed by morphological opening and closing yielding a binary
image showing connected components for the carbide agglomerations (see
Figure 4(b)).

3. By determining the area of these components, the characteristic structure

is de�ned to contain only agglomerations with an area larger than 10% of
the area of the largest agglomeration in this image

After this operation, the largest non-overlapping circular opposite re-
gions in the support region are computed from a Euclidean distance map
(Fig. 4(c)) in which local extrema are detected (Fig. 4(d)).
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(a) Elliptical support region (10 most

signi�cant extrema).

(b) Binary mask with characteristic
structure.

(c) Euclidean distance map

within support of large
scale extremum.

(d) Local extrema in distance
map.

(e) Non-overlapping largest

opposite circular regions.

(f) Veri�ed structures (10 most signi�-

cant extrema).

Figure 4: Veri�cation of the most signi�cant entities using elliptical support regions,
in which the largest non-overlapping circular opposite regions of the characteristic
structure are determined. (This is reference image 33; and in all images brighter means
higher signi�cance.)
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4. Then, the sizes Ai of these opposite regions are used for suppressing fea-
ture responses with interfering substructures. This suppression is per-
formed by multiplying the signi�cance measure by

W =

0
@ C

C +
Aopposite

Asupport

1
A

m

; (10)

where the area Asupport of the characteristic structure is related to a mea-
sure Aopposite of the areas of all n largest blobs of opposite polarity con-
tained in the elliptic support region (Fig. 4(e))

Aopposite =
nX
i=1

Ai (11)

and C = 0:5 and m = 2 are constants. The parameter values occurring
here were chosen to maximize the classi�cation performance of the result-
ing size description feature Rdetect according to the degree of the carbide
distribution (see section 4).

Figure 4(f) shows the most signi�cant structures after this veri�cation
step (and thus the composed veri�cation procedure).

5. Finally, after the transformation (10) of the signi�cance values, the k
most signi�cant extrema are selected, and the radius Rdetect of the largest
extremum is used as a size description feature for the classi�cation of the
carbide distribution according to the degree, i.e.

Rdetect =
p
2 tdetect log 2; tdetect = max(t1; : : : ; tk) (12)

where k = 10.

This size descriptor is illustrated in Figure 5, where the largest detected
structures are marked (the length of the minor axes of the ellipse is equal
to Rdetect) for two neighboring reference images in two di�erent rows.
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(a) Reference image 21 (b) Reference image 22

(c) Reference image 34 (d) Reference image 35

Figure 5: The largest structures obtained by applying composed detection/veri�cation
procedure to two neighboring rows and columns in the reference chart.
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3 Shape estimation

3.1 The multi-scale windowed second moment matrix

To represent directional distributions, the second moment matrix is a useful
texture descriptor (Big�un et al. 1991, G�arding & Lindeberg 1996, Lindeberg &
G�arding 1993). Given a symmetric normalized window function w, the win-

dowed second moment matrix can be de�ned by

�L(q) =

Z
x2R2

(rL(x))(rL(x))Tw(q � x)dx; (13)

where L : R2 ! R denotes the image brightness and rL = (Lx; Ly)
T its gra-

dient. Denoting the windowing operation by Eq, Equation (13) can be written
as

�L(q) =

�
�11 �12
�21 �22

�
= Eq

�
L2
x LxLy

LxLy L2
y

�
= Eq((rL)(rL)T ) (14)

and from the components of �L, the following descriptors can be de�ned

P = Eq(L
2
x + L2

y); C = Eq(L
2
x � L2

y); S = 2Eq(LxLy): (15)

Here, P is a measure for the strength of the operator response, whereas C and
S contains directional information, which can be summarized in two anisotropy
measures

Q =
p
C2 + S2; ~Q = Q=P: (16)

The normalized anisotropy ~Q 2 [0; 1] is zero, if and only if Eq(L
2
x) = Eq(L

2
y) and

Eq(LxLy) = 0 and ~Q = 1 if and only if Eq(LxLy) = Eq(L
2
x)Eq(L

2
y). A rotation-

ally symmetric gray-level pattern has ~Q = 0 and a translationally symmetric
pattern has ~Q = 1.

When computing this descriptor in practice, the gradient vectors are de�ned
at local scale tl and we use a Gaussian window function g with integration scale

ti (Lindeberg 1994, chap. 14). Therefore, the multi-scale windowed second

moment matrix �L is de�ned as

�L(q; tl; ti) =

Z
x2R2

(rL(x))(rL(x))T g(q � x; ti)dx: (17)

3.2 Scale selection for computing anisotropy

In the manual classi�cation procedure, the directional distribution of the car-
bide agglomerations is evaluated to estimate the \shape" (type) of the carbide
distribution. This estimation can be modeled by evaluating the multi-scale

second moment matrix �L(q; tl; ti) based on the scale information of the scale
selection scheme described in section 2. Therefore, the normalized anisotropy
~Q is calculated for

tl = 
l � tdetect; (18)

where the parameter value 
l = 0:5 has been chosen to maximize the classi�ca-
tion performance of the shape descriptor ~Q according to the type (see section 4).
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Under the assumption that the image has a globally valid signi�cant scale2

for computing shape descriptors of the carbide distribution, the integration
scale is set to the size of the image. In other words, global values of P;C and
S are computed by summing up the corresponding gradient expressions over
the whole image and determining global values of Q and ~Q afterwards. This
yields a shape description feature for classifying carbide distributions according
to their type (see section 4):

~Qdetect = ~Q(�L(x; y; tl; image size)) (19)

4 Classi�cation results

To evaluate the size and shape descriptors obtained from the composed feature
detection scheme, we evaluated the methodology on a reference data base con-
sisting of 429 images, in which each sample has been classi�ed independently
by 4 metallographers. For each sample, the most frequent classi�cation was
used as the `true' class. In this data, all four classi�cations agreed on 33% of
the data, three of them in 39% of the cases, and two of them in remaining 28%
of the data. This dataset was then split up into a training set of 290 carbide
distributions and a disjunct test set with 139 images. The performance of the
image features extracted from the data was evaluated by a minimum distance
classi�er.

To assess the performance of the size descriptor Rdetect governing the de-
termination of the degree (size) of the carbide distribution, all images of the
same degree were combined into one class, yielding 7 degree classes. In a similar
manner, we produced 4 type classes to evaluate the performance of the shape
feature ~Qdetect determining the type (shape) of the carbide distribution. Due
to the non-quantitative de�nition of the standard chart, the in-class variances
will be increased by this combination, which in turn decreases the performance
of the classi�er.

The classi�cation rates of the resulting minimum distance classi�ers for the
degree and the type, respectively, are shown in table 1. Here, the value in the
right column shows the percentage of images classi�ed to the correct or to a
directly neighboring class (i.e. allowing a one step class deviation, which is also
common in the visual classi�cation from the metallographers). 3

Figure 6 shows the mean and standard deviation of the features for the
whole sample set of 429 images versus the degree and type. The large vari-
ance in the values of ~Qdetect for type 1 is mainly due to fact that almost no
anisotropic (band-, or line-like) structures occur in the very �ne-scale carbide
structures (see �g. 1), which results in a low anisotropy value, as for the net-
shaped structures. This drawback of low discrimination for the lowest degrees

2A detailed investigation of using local anisotropy measures computed using di�erent scal-
ing relations between the detected image features and the integration as well as local scales
showed that in terms of successful classi�cation rates, the global anisotropy measure outper-
forms local anisotropy over a reasonable range of size variations.

3If the data set used for training and evaluating the classi�er is narrowed down to include
only samples for which at least three of the metallographers agree on the same classi�cation,
then the performance of degree classi�er increases to about 60% correctly classi�ed samples.
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correct [%] one class deviation [%]

Rdetect (degree) 50 93
~Qdetect (type) 45 80

Table 1: Minimum distance classi�cation performance according to the degree (using
Rdetect) and to the type (using ~Qdetect), respectively (percentage of correct classi�ca-
tions and one class deviation)

will be eliminated by including selected features from previous work (Wiltschi
et al. 1995).

(a) size feature Rdetect (b) shape feature ~Qdetect

Figure 6: Mean and standard deviation of features in 7 degree and 4 type classes,
respectively.

5 Conclusions

We have presented a characterization of carbide distributions, based on a scale
selection mechanism, which leads to an intuitively reasonable result, and which
is at the same time gives precise estimates of the visually captured `size' and
`shape' information.

The `size' (degree) of the carbide distribution is estimated by detecting sig-
ni�cant blobs and ridges, using a scale selection scheme based on normalized
derivatives in linear scale-space. The structures so detected, are then veri-
�ed within an elliptical support region, by evaluating the characteristic struc-

ture, which is generated by a previously developed morphological segmentation
scheme. After this set of processing steps, the scale of the largest signi�cant and
veri�ed structure is used as a measure of the degree of the carbide distributions.

Then, the `shape' (type) of the carbide distribution is estimated by a scale-
tuned local texture descriptor, themulti-scale windowed second moment matrix ,
tuned by the scale information extracted in the �rst step. The evaluation of
the anisotropy calculated from this directional information gives a measure of
the type of the carbide distribution.

In our future work, the size and shape description features obtained from
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the proposed scheme will be combined with a set of features derived from the
earlier mentioned characteristic structure of the carbide distributions (Wiltschi
et al. 1995) and be used as input to a feature selection algorithm, such as
those reported by (Devijver & Kittler 1982, Pudil, Novovicov�a & Kittler 1994).
Furthermore, the composed classi�cation procedure will be integrated with the
active inspection system described in (Wiltschi & Pinz 1996).

A Appendix

A.1 Radius of the half peak support region of circular blobs

The half peak support region of an idealized blob

g(x; y; t) =
1

2�t
e
(x2+y2)

2t (20)

is given by a circle of radius

R =
p
2t log 2: (21)

A.2 Estimation of the elliptical blob support region

Based on an idealized elliptical blob model

g(x; y; t1; t2) =
1p
2�t1

e
x2

2t1
1p
2�t2

e
y2

2t2 (22)

for t1 < t2, the ratio of the principal curvature

Lpp;norm

Lqq;norm
=
t+ t2
t+ t1

(23)

and with the scale textremum, at which the local extremum over scale occurs,

textremum =
1

4
(t1 � t2)�

r
1

16
(t1 � t2)2 + t1t2 (24)

the ratio of the axes of the elliptical blob can be estimated by

t2
t1

=
1

2

�
3
Lpp;norm

Lqq;norm
� 1

�
; (25)

where for an extremum detected at scale tdetect we used

t1 := tdetect: (26)

A.3 Scale selection results for the standard chart

For the images of the standard chart the 10 most signi�cant extrema after the
complete veri�cation procedure are shown in �gure 7. Furthermore, the size
feature Rdetect is illustrated by the largest most signi�cant extremum for the
reference images in �gure 8.
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Figure 7: The 10 most signi�cant extrema for the images in the reference chart (after
completing the veri�cation stage).
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Figure 8: The most signi�cant extremum extracted from each image in the reference
chart.
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