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Abstract. This paper outlines a general framework for automatic se-
lection in temporal scale-space representations, and shows how the sug-
gested theory applies to motion detection and motion estimation.

1 Introduction

A fundamental constraint on the design of a vision system originates from the
fact that image structures are perceived as meaningful entities only over certain
ranges of scale. In general situations, it is hardly ever possible to know in advance
at what scales interesting structures can be expected to appear. For this reason,
an image representation that explicitly incorporates the notion of scale is a
crucially important tool when dealing with sensory data, such as images.

A multi-scale representation by itself, however, contains no explicit infor-
mation about what image structures should be regarded as signi�cant or what
scales are appropriate for treating those. Early work addressing these problems
for blob-like image structures was presented in (Lindeberg 1993a), leading to
the notion of a scale-space primal sketch. Then, in (Lindeberg 1993b, 1996b) an
extension to other aspects of image structures was presented by selecting scales
for di�erential feature detectors (such as blobs, corners, edges and ridges) from
maxima over scales of normalized di�erential entities.

The subject of this article is to address the problem of scale selection in
the temporal domain, in order to deal with image data over time. Whereas, it
is now rather generally accepted that some kind of \smoothing over time" is
necessary when processing time-varying images, most current work on motion
analysis is still carried out at a single temporal scale (see, e.g., (Barron et al.
1994; Beauchemin and Barron 1995)).

A main argument which will be advocated in this article, is that in analogy
to earlier advances on spatial domains, the performance and robustness of algo-
rithms operating over time can be improved substantially, if the spatio-temporal
image data are considered at several temporal scales simultaneously , and if we
incorporate explicit mechanisms for automatic selection of temporal scales .
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To form the basis of a theory for temporal scale selection, we will start by
showing how time-causal normalized scale-space derivatives can be de�ned for
di�erent types of time-causal scale-space concepts. Then, an adaptation of a pre-
viously proposed heuristic principle will presented, stating that in the absence of
further information, important clues for spatio-temporal scale selection can be
obtained from the scales at which (possibly non-linear) combinations of normal-
ized spatio-temporal derivatives assume maxima over scales . Speci�cally, it will
be shown how this approach applies to motion detection and velocity estimation.

2 Spatial and temporal scale-space: Overview

Traditionally, most work on scale-space representation has been concerned with
the spatial domain, in which the values of the input signal are available in all
coordinate directions. Given any D-dimensional signal f : IRD ! IR, its (spatial)
scale-space representation L : IRD � IR+ ! IR is de�ned by convolution

L(�; s) = g(�; s) � f (1)

with the (rotationally symmetric) Gaussian kernel

g(x; s) =
1

(2�s)N=2
e�x

Tx=2s (2)

and scale-space derivatives are de�ned from this representation by Lx�(�; s) =
@x�L(�; s) where s 2 IR+ is the scale parameter and � = (�1; : : : ; �D) represents
the order of di�erentiation. As has been shown by several authors (Witkin 1983;
Koenderink 1984; Yuille and Poggio 1986; Koenderink and van Doorn 1992;
Florack 1993; Lindeberg 1994; Pauwels et al. 1995), the choice of the Gaussian
kernel and its derivatives is basically a unique choice, given natural assumptions
on a visual front-end (scale-space axioms).

This scale-space concept, however, cannot be directly applied to temporal
data, since in a real-time situation it is essential that image operators do not
extend into the future. One suggestion for how to deal with this problem was
given by (Koenderink 1988), who proposed to transform the time axis so as to
map the present moment to the unreachable in�nity. In the transformed domain,
he then applied the traditional scale-space concept given by (1) and (2). Based
on a classi�cation of scale-space kernels in the continuous and discrete domains,
which guarantee non-creation of local extrema and respect the time direction as
causal (Lindeberg 1990; Lindeberg and Fagerstr�om 1996; Lindeberg 1997), three
other types of temporal scale-space approaches can be distinguished:

Continuous time and discrete scale parameter: For continuous time, it turns out
that all time-causal scale-space kernels can be decomposed into convolution with
primitive truncated exponential kernels

hprim(t; �) =
1

�
e�t=� (t � 0) (3)



having (possibly di�erent) time constants �. For each such primitive �lter, the
mean is � and the variance �2. Hence, if we couple k such �lters in cascade, the
equivalent convolution kernel will have a Laplace transform of the form

Hcomposed(s; �) =

Z 1

t=�1

��ki=1hprim(t; �i)
�
e�st dt =

kY
i=1

1

1 + �is
; (4)

with mean (time delay)
Pk

i=1 �i and variance (e�ective integration time)
Pk

i=1 �
2
i .

Discrete time with discrete scale parameter. The discrete correspondence to the
truncated exponential �lters are �rst-order geometric moving average �lters cor-
responding to the recurrence relation

fout(t)� fout(t� 1) =
1

1 + �
(fin(t)� fout(t� 1)): (5)

Such a primitive �lter has mean � and variance �2 + �. Coupling k such �lters
in cascade, gives a �lter with generating function of the form

Hcomposed(z) =
1X

n=�1

hcomposed(n) z
n =

kY
i=1

1

1� �i (z � 1)
; (6)

with mean
Pk

i=1 �i and variance
Pk

i=1(�
2
i + �i). In the case of discrete time,

also time-shifted binomial kernels satisfy temporal causality, and in this respect,
discrete time allows for more degrees of freedom.

Discrete time with continuous scale parameter. The case of discrete time is spe-
cial also in the sense that in this case, and only in this case, there is a non-trivial
semi-group structure of scale-space kernels compatible with temporal causality.
It corresponds to convolution with Poisson kernels

p(n; �) = e��
�n

n!
(7)

which have mean �, variance � and generating function P (z; �) = e�(z�1).
Intuitively, this �lter can be interpreted as the limit case of repeated convolution
of geometric moving average �lters (6) having time constants � = �=m

lim
m!1

�
Hgeom(z;

�

m
)

�m

= lim
m!1

1

(1� �
m (z � 1))m

= P (z; �): (8)

For small values of the �, these kernels are highly non-symmetric, whereas for
large � they approach Gaussian kernels (having the same mean and variance).

This temporal scale-space concept can be regarded as the canonical time-
causal scale-space model , since it is the only time-causal scale-space concept
having a semi-group structure with a continuous time-scale parameter and guar-
anteeing non-creation of local extrema with increasing scales.



Special properties of time-causal scale-spaces: A fundamental di�erence between
the temporal scale-space concepts and the spatial multi-scale representations
is that the convolution kernels are non-symmetric. Each temporal channel is
associated with an inherent time delay, re
ecting the fact that there is no way
to access real-world data at the very present moment. Any measurement requires
a �nite amount of energy, and hence integration over a certain time interval. This,
implies computations over non-zero time-scales, and non-zero time delays.

3 Automatic scale selection: A general principle

The presentation so far provides a theoretical framework for representing image
data at di�erent spatial and temporal scales. When to use it in practice, ba-
sic problems concern how to determine what structures should be regarded as
signi�cant and what scales are appropriate for handling those.

A general principle for scale selection for feature detectors de�ned in a spa-
tial scale-space representation has been proposed in (Lindeberg 1993b, 1994,
1996b). It is formulated in terms of the evolution properties over scales of image
descriptors expressed in terms of 
-normalized derivatives de�ned by

@� = s
=2 @x; (9)

where s 2 IR+ denotes the scale parameter, 
 > 0 is a free parameter and �
represents the 
-normalized coordinate of the (here, 1-D) variable x.

For an rth-order Gaussian derivative operator g�r (�; s) normalized in this
way, it can be shown that the evolution over scales of its Lp-norm is given by

kg�r(�; s)kp =
p
s
jrj (
�1)+D(1=p�1)kg�r(�; 1)kp: (10)

Hence, this normalization corresponds to the Lp-norm of the equivalent normal-
ized Gaussian derivative kernels @r�g(x; s) being constant over scales, i�

p =
1

1 + jrj
D (1� 
)

: (11)

The basic idea of the scale selection method is that in the absence of further
evidence, the scale levels at which some (possibly non-linear) combination of such
normalized derivatives assume maxima over scales can be treated as re
ecting
characteristic lengths of corresponding structures in the data. As support for
this approach, the following evidence can be presented (Lindeberg 1996b):

{ A general theoretical analysis showing that for large classes of di�erential
invariants, local maxima over scales of such normalized di�erential entities
will be preserved under rescalings of the input pattern.

{ Theoretical analysis of model signals for which closed-form analysis is tractable.

{ Simulation results for real-world and synthetic images.



The �rst works on this scale selection methodology (Lindeberg 1993b, 1994)
were concerned with the case 
 = 1, and it was shown that for this value of

, the scale selection methodology commutes with size variations of the input
pattern. More generally, from the transformation property of these 
-normalized
derivatives under a rescaling of the input f(x) = f 0(sx) by a factor s

@r�L(x; s) = sr (1�
) @r�0L
0(x0; s0); (12)

it is rather straightforward to show that homogeneous polynomial di�erential
expressions scale according to a power law under size variations of the input,
implying that local maxima of over scales (as well as in space) will be preserved.

Conversely, given the idea that scale selection should be performed in an
analogous way as image features are computed on a spatial domain | from
local spatial maxima of operator responses | one may then ask how responses
from operators of di�erent size should be normalized. Indeed, it can be shown
(Lindeberg 1996b) that the 
-normalized derivative concept arises by necessity ,
given the following natural assumptions:

{ local maxima over scales should be preserved under rescalings of any (non-
trivial) image pattern,

{ the only additional source of information that could be used for normalizing
the operation is the scale parameter,

{ at any scale, the spatial maxima should be preserved for feature detectors
expressed as homogeneous di�erential expressions.

Hence, the 
-normalized derivative concept spans the class of reasonable nor-
malizations for a scale selection procedure based on local maxima over scales.

4 Dense frequency estimation based on quasi quadrature

The scale selection methodology presented in previous section has mainly been
applied to the detection of sparse image features , such as blobs, corners, edges
and ridges. In many situations, however, we are also interested in the computa-
tion of dense image descriptors, such as texture descriptors and optic 
ow.

An obvious problem that arises if a scale selection mechanism is to be based
on a linear combination of partial derivatives, such as the Laplacian operator,
is that there could be large spatial variations in the operator response. In signal
processing, a common methodology for reducing this so-called phase dependency
is by using quadrature �lter pairs , de�ned (from a Hilbert transform) in such a
way that the Euclidean sum of the �lter responses will be phase independent for
any sine wave. The Hilbert transform of a Gaussian derivative kernel is, however,
not within the Gaussian derivative family, and we are here interested in operators
of small support which can be expressed within the scale-space framework.

Given the normalized derivative concept, there is a straightforward way of
combining Gaussian derivatives into an entity that gives an approximately con-
stant operator response at the scale given by the scale selection mechanism. At



any scale t in the scale-space representation L of a one-dimensional signal f ,
de�ne the following quasi quadrature entity in terms of normalized derivatives
based on 
 = 11 by

QL = L2
� + C L2

�� = sL2
x + C s2 L2

xx; (13)

where C is a free parameter (to be determined). This approach bears close rela-
tionship to the idea by (Koenderink and van Doorn 1987) to regard derivatives
of odd and even order as local sine and cosine functions. Speci�cally, for any sine
wave f(x) = sin!0x, we have

(QL)(x; s) = s !2
0 e
�!2

0s
�
1 + (C s!2

0 � 1) sin2 !0x
�
: (14)

As can be seen, the spatial variations in QL will be large when s !2
0 is either

much smaller or much larger than one, whereas the relative spatial oscillations
decrease to zero when s approaches 1=(C !2

0).
To obtain an intuitive understanding of how the choice of C a�ects local

maxima of QL over scales, let us di�erentiate (14):

sQL(x) =
1

!2
0

0
@1 + 2C sin2(!0x)

cos2(!0x) +
q
cos4(!0x) + 4C2 sin4(!0x)

1
A :

(15)

1 Since the di�erential expression QL is inhomogeneous, we must require 
 = 1 for
the scale selection procedure to commute with size variations in the input pattern.
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Fig. 1. Spatial variation of the selected scale levels when maximizing the quasi quadra-
ture entity (13) over scales for di�erent values of the free parameter C using a one-
dimensional sine wave of unit frequency as input pattern. Observe that C = 2=3 (equa-
tion (16)) gives rise to the most symmetric variations in the selected scale values.
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Fig. 2. Spatial variation of the maximum value over scales of the quasi quadrature
entity (13) computed for di�erent values of the free parameter C for a one-dimensional
sine wave of unit frequency. As can be seen, the smallest spatial variations in the
amplitude of the maximum response are obtained for C = e=4 (equation (17)).



Notably, the extreme values sQLj!0x=0 = 1
!2
0
and sQLj!0x=

�
2
= 2

!2
0
are inde-

pendent of C, and graphs showing the spatial variation for a few values of C
are displayed in �gure 1. Given the form of these curves, a natural symmetry
requirement can be stated as

sQLj!0x=
�
4
=

1

2

�
sQLj!0x=0 + sQLj!0x=

�
2

�
) C =

2

3
� 0:6667:

(16)

In this respect, C = 2
3 gives the most symmetric variation of selected scales

w.r.t. the information contents in the �rst-order and second-order derivatives.

Another interesting factor to analyse is the variation in magnitude at the
selected scales. Insertion of the scale values according to (15) into the quasi
quadrature measure (13) gives spatial variations of as displayed in �gure 2. To
determine C, a simple minimum-ripple condition is to require that

QLj!0x = 0
s = sQ;0

= QLj!0x = �
2

s = sQ; �
2

) C =
e

4
� 0:6796: (17)

In other words, also a determination of C based on small spatial variations in
the magnitude measure computed at the selected scales gives rise to an approx-
imately similar value of C as the abovementioned symmetry requirement.

Moreover, note that C = e=4 corresponds to normalizing the �rst- and
second-order Gaussian derivative kernels to having the same L1-norm.

5 Normalized time-causal scale-space derivatives

The theory for automatic scale selection in section 3 applies to a scale-space on a
continuous domain having a continuous scale parameter. Notably, however, the
temporal scale-space concepts given by (4), (6) and (7) imply that either time or
time-scale have to be discretized. Hence, a fundamental problem concerns how
to normalize the derivative (or derivative approximation) responses over scales.
Given the basic properties in section 3, natural constructions to consider are:

{ multiply the derivative/di�erence operator by the variance of the smoothing
kernel raised to the order of di�erentiation (in analogy with (9)),

{ normalize the equivalent derivative/di�erence kernels to constant Lp-norm
(or discrete lp-norm) over scales (in analogy with (11)).

In this section, we shall describe properties of these approaches for the Poisson-
type scale-space given by (7). A corresponding analysis for the two other tem-
poral scale-space concepts is given in (Lindeberg 1996d).

To simplify the calculations, let us restrict ourselves to 
 = 1, corresponding
to normalization to constant L1/l1-norm for any order of di�erentiation.



Normalized di�erences in the Poisson-type scale-space. For the �rst-order back-
ward di�erence of the Poisson kernel

(Ætp)(n; �) = p(t; �)� p(t� 1; �) = �
�
t

�
� 1

�
p(t; �); (18)

we can use the fact that p(n; �) assumes a local maximum at n = [�] to compute

k (Ætp)(�; �) k1=
1X

n=�1

jp(n; �)� p(n� 1; �)j = 2 p([�]; �) =
2 e���[�]

[�]!
:

For small � (� < 1), we have k (Ætp)(�; �) k1= 2 e�� = 2 (1��+O(�2)), whereas
for large � Stirlings formula n! = nne�n

p
2�n (1 + 1

12n +O( 1
n2 )) gives

k (Ætp)(�; �) k1= 2p
2�[�]

�
1� (�� [�])2

2 [�]
� 1

12 [�]
+O( 1

[�]2
)

�
:

(19)

Concerning the second-order di�erences, we can use the in
exion points at n1;2 =
�+ 1

2 � (� + 1
4 )

1=2 to reduce the result to �rst-order di�erences (18)

k (Ættp)(�; �) k1= 2

n2X
n=n1

j(Ættp)(n; �)j = 2 ((Ætp)([n1]; �) � (Ætp)([n2]; �)):

Unfortunately, it is hard to simplify this expression. For small �, however,
k Ættp(�; �) k1= �Ætp(1; �) = (1� �)e�� = 1� 2�+O(�2), and for large �

k (Ættp)(�; �) k1� 4p
2�e

1

�
: (20)

As could be anticipated, variance-based normalization and normalization to con-
stant l1-norm approach each other2 with increasing temporal scales (and decreas-
ing e�ects of grid sampling). For small �, on the other hand, where the sampling
e�ects may be strong, the results di�er signi�cantly.

6 Selection of temporal scales: Intuitive ideas

To understand the consequences of selecting local maxima over scales of normal-
ized temporal derivatives (derivative approximations), let us �rst consider the
response properties for a (phase shifted) sine wave, which has been used as an
illustrative example in the early developments of the scale selection methodology:

f(n) = cos(�n+ ') (n 2 ZZ): (21)

2 Recall that for the L1-norms of the �rst- and second-order normalized Gaussian
derivatives, we have k g�(�; s) k1= (2=�)1=2 and k g�2(�; s) k1= (8=(� e))1=2.



The Fourier transform of the Poisson kernel isF(p)(!; �) =P1
n=�1 p(n; �) e�in! =

P (e�i!; �) = e��(1�cos!) ei� sin! and for the r:th order backward di�erence

F(Ær�)(!) = (1� e�i!)r = (1� cos! + i sin!)r = (2 sin(!2 ))
reir(��!)=2:

Thus, the closed-form expression for the r:th order scale-space derivative of f is

(Æ(r)L)(n; �) = e��(1�cos �) (2 sin( �2 ))
r cos(n� + '+ � sin � + r ���2 )

and the amplitude varies according to L̂tr (�) = (2 sin( �2 ))
r e��(1�cos �).

Variance-based normalization. If we normalize the discrete derivative approxi-
mation operator based on the variance of the equivalent convolution kernel, this
corresponds to the normalized backward di�erence operator

Ær� = Ær�;norm = �r=2 Ær�; (22)

where � represents the temporal coordinate normalized with respect to temporal
scale. Hence, the response will �rst increase and then decrease with scale,

L̂�r(�) = (2 sin( �2 ))
r �r=2 e��(1�cos �); (23)

and there is a unique maximum over scales at

�L̂�r ;max =
r

4 sin2( �2 )
: (24)

Thus, in a agreement with the results from the spatial domain (Lindeberg 1993b,
1994), a local maximum over scales provides a qualitative measure of the approx-
imate range of scales over which temporal variations occur . If we insert the scale
value (24) into (23), we see that the maximum normalized response

L̂�r(�L̂�r ;max) =
�r
e

�r=2
(25)

is independent of �. Thus, all frequencies are treated in a uniform manner .
Moreover, there are strong similarities between the results from this construction
and their counterparts based on the Gaussian scale-space concept. For a sine
wave with frequency �, there is a unique maximum over scales at s = r=�2, and
the maximum normalized response over scales is of the same form as (25).

This similarity is, in fact, not surprising. If we rewrite the Fourier transform
of the Poisson kernel as F(p)(!; �) = exp(�� (2 sin !

2 )
2=2) exp(i� sin!), we

see that the magnitude of F(p)(!; �) is equal to the magnitude of the Fourier
transform of the Gaussian kernel F(g)(!; s) = exp(�s!2=2) with ! replaced
by 2 sin(!=2). Thus, disregarding the phase information, these kernels can be
(formally) mapped to each other by a simple frequency warping.



Normalization to constant l1-norm. To study the e�ect of normalization to con-
stant l1-norm, divide (22) by the l1-norm of the �rst-order di�erence of the
Poisson kernel (19). This gives a normalized response of the form

L̂tr;discrette(�) = sin( �2 ) [�]!
e� cos �

�[�]
: (26)

Clearly, this function decreases with � when cos � < 1, showing that a single
frequency with j�j � �=2 cannot give rise to a local maximum with � > 0. If
we insert this frequency into the continuous expression (24), we obtain a rule of
thumb saying that if we would like to compute a derivative of order r, the scale
level should preferably not be lower than �min(r) = r=2.

When [�] = 0, i.e., when � 2 [0; 1[, the normalized response increases with
� if j�j < �=2 (and decreases otherwise). If [�] = 1, i.e., when � 2 [1; 2[, there
is a local maximum at � = 1= cos� in this interval if cos � 2 [ 12 ; 1[. Similarly, if
[�] = 2, i.e., when � 2 [2; 3[, there is a local maximum at � = 2=(cos�) in this
interval if cos � 2 [ 23 ; 1[. This pattern shows how in the case of l1-normalization,
a single frequency may give rise to multiple responses over scales.

Cascade-coupled �rst-order integrators. If we couple k truncated exponential
�lters having equal time constants �i = � in cascade, and de�ne a variance-
based normalized derivative operator by

@r� = (k �2)r=2 @rt ; (27)

then the maximum over scales will be assumed in layer

kL̂�r ;max �
r

log(1 + �2�2)
=

r

�2�2

�
1 +O( 1

�2�2
)

�
(28)

corresponding to variance �L̂�r ;max = kL̂�r ;max �
2 of the equivalent convolution

kernel. The maximum normalized response is

L̂�r(�; kL̂�r ;max) =
�r
e

�r=2� �2�2

log(1 + �2�2)

�r=2

: (29)

Cascade-coupled �rst-order recursive �lters. If we in an analogous way couple k
geometric moving average �lters having equal time constants �i = � in cascade,
and de�ne a variance-based normalized di�erence operator by

Ær�;norm = (k (�2 + �))r=2 Ær�; (30)

the maximum over scales will be assumed in layer

kL̂�r ;max �
r

log(1 + 4 (�2 + �) sin2( �2 )
(31)

corresponding to variance �L̂�r ;max = kL̂�r ;max (�
2 + �) of the equivalent con-

volution kernel. The maximum normalized amplitude over scales is

L̂�r(�; kL̂�r ;max) =
�r
e

�r=2 4 (�2 + �) sin2( �2 )

log(1 + 4 (�2 + �) sin2( �2 )

!r=2

: (32)



Thus, local maxima over scales of these normalized derivative operators re
ect
similar properties as for the Poisson-type scale-space.

Scale invariance properties. Concerning the behaviour of the scale-selection
method under size variations of the input pattern, we cannot, of course, aim
at perfect scale invariance for the temporal scale-space concepts de�ned on dis-
crete grids. For the temporal scale-space for a continuous domain (4), on the
other hand, it can be shown that perfect scale invariance can be accomplished
if we allow the time constants in the discrete set of �lters to be variable.

7 Response properties for basic model patterns

To carry out closed-form analysis for signals having richer frequency contents,
consider the behaviour in the Poisson-type scale-space of the following signals

fblob(n) = p(n; �0); (33)

fedge(n) = 	(n; �0) =

nX
i=�1

p(i; �0): (34)

fblob can be interpreted as idealized models of a time pulse, while fedge models
the edge of a new object that enters or leaves the visual �eld. The temporal
extent of the pulse and the di�useness of the edge are determined by �0.

Descriptors based on the Poisson-type scale-space. From the semi-group property
p(�; �1) � p(�; �2) = p(�; �1 + �2), it follows that the Poisson-type scale-space
representations of these signals are given by

Lblob(n; �) = p(n; �+ �0) (35)

Ledge(n; �) = 	(n; �+ �0); (36)

and the �rst- and second-order normalized derivative approximations are

(Æ�Lblob)(n; �) =
p
� (Ætp)(n; �+ �0); (37)

(Æ��Lblob)(n; �) = � (Ættp)(n; �+ �0); (38)

(Æ�Ledge)(n; �) =
p
� p(n; �+ �0); (39)

(Æ��Ledge)(n; �) = � (Ætp)(n; �+ �0); (40)

with Ætp according to (18) and the second-order di�erences Ættp de�ned by

(Ættp)(n; �) = (Æ2i p)(n; �) =

�
n(n� 1)

�2
� 2n

�
+ 1

�
p(t; �): (41)

Figure 3{4 show Lblob(n; �) and Ledge(n; �) with their �rst- and second-order
normalized di�erences as grey-level functions of n and �. Figure 5 shows corre-
sponding results for a quadrature measure de�ned by

QL = L2
� + C L2

�� = �(ÆtL)
2 + C �2(ÆttL)

2; (42)
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Fig. 3. The zero-, �rst- and second-order normalized responses in the Poisson-type
scale-space representation of an idealized blob (time pulse) with a Poisson-shaped pro�le
with temporal extent given by �0 = 4. Observe the characteristic increase in the time
delay with increasing values of the scale parameter. Moreover, note that the scale at
which the maximum over scales is assumed increases with time and then decreases.
(Horizontal axis: time, vertical axis: temporal scale.)
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Fig. 4. The zero-, �rst- and second-order normalized responses in the Poisson-type
scale-space representation of an idealized edge (time ramp) with intensity pro�le cor-
responding to an integrated Poisson kernel with di�useness �0 = 4. Observe the char-
acteristic increase in the time delay with increasing values of the scale parameter.
Moreover, note that the scale at which the maximum over scales is assumed increases
monotonically with scale. (Horizontal axis: time, vertical axis: time-scale.)
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Fig. 5. The result of computing (the square root of) the quasi quadrature measure
QL = L2

� + C L2
�� in the Poisson-type scale-space representations of the idealized blob

signal in �gure 3 and for the idealized edge signal in �gure 4. Observe how this entity
is less sensitive to the local phase information, while the qualitative properties of the
scale selection are preserved. (Horizontal axis: time, vertical axis: time-scale.)



where L� and L�� represent normalized discrete derivative approximations. Since
for the non-symmetric backward di�erence operator, derivative approximation
operators of di�erent orders are associated with di�erent time delays, the sym-
metric time-shifted di�erence operator Æ0f(t) = (f(t)� f(t� 2))=2 was used for
computing the �rst-order derivative approximation. By this discretization, the
�rst- and second-order di�erence operators will have the same time delay.

Basic e�ects of the scale selection method. For both signals, we see that there is
a characteristic increase in the time delay when the scale parameter is increased.
For small t (compared to �0), the maximum over scales is assumed at �ne scales,
and this scale (as well as the maximummagnitude over scales) increase with time.
These results illustrate one of the basic properties of temporal scale-space|for
a new (isolated) object that enters the visual �eld, �ne scales will be selected
initially, since the object is only visible at the �nest temporal scales. Then,
with increasing time, this scale can be expected to increase, if we maximize a
di�erential entity such as Q over scales.

8 Spatio-temporal patterns and motion estimation

Let us now apply simultaneous selection of spatial scales and temporal scales
to the computation of spatio-temporal derivatives and analyse its implications
with respect to the analysis of motion data.

8.1 Motion of a one-dimensional sine wave

Consider �rst a one-dimensional sine wave moving with velocity c

f(x; t) = cos(�(x� ct)); (43)

and de�ne the separable spatio-temporal scale-space representation of this signal
as the tensor product of the spatial and temporal scale-space concepts. Moreover,
to obtain compact closed-form expressions for the results (with the discretization
aspects suppressed), let us �rst model the temporal scale-space representation
as the convolution with Gaussian kernels having the same mean and variance

g(x; �) =
1p
2��

e�(x��)2=(2�): (44)

Whereas this family does not satisfy temporal causality, it constitutes a reason-
able approximation of the behaviour at coarse temporal scales, and we obtain a
(two-parameter) spatio-temporal scale-space representation L of f of the form

L(x; t; s; �) = e��
2s=2e��

2c2�=2 cos(�(x � ct+ �)): (45)

If we independently select spatial and temporal scale levels from the maxima
over scales of the amplitude of the �rst-order normalized spatial and temporal



derivatives respectively, it follows that the selected spatial scale level will be
s = 1

�2 and the temporal scale level � = 1=(c2�2). In other words, the ratio
between the selected spatial and temporal scales re
ects the velocity

c =

r
s

�
: (46)

This behaviour bears close relationships to frequency-based motion approaches
(Adelson and Bergen 1985; Heeger 1988; Fleet 1992). (A fundamental di�erence,
however, is that there is no need for specifying frequencies manually, and the
velocity is obtained fully automatically.) Moreover, from straightforward di�er-
entiation (assuming that it Lx 6= 0), it follows that the velocity estimate is

ĉ = �Lt

Lx
= c =

r
s

�
; (47)

i.e., for this ideal and noise free signal the resulting velocity estimate is inde-
pendent of the scale parameters s and �.

To formulate an algorithm that allows for simultaneous determination of spa-
tial and temporal scales adapted to the scale levels at which dominant variations
occur in the signal, a straightforward approach is to extend the de�nition of the
quadrature measure (13) to the spatio-temporal domain

max
s;�

(Qprod(x;t)L)(x; t; s; �) = max
s;�

(L2
� + C L2

��) (L
2
� + C L2

��): (48)

and to maximize the entity over spatial as well as and temporal scales.
Figure 6 shows the result of computing this entity at di�erent spatio-temporal

scales for an arbitrary point (x; t) in space-time and for a few combinations of �
and c. (Here, the scale parameters have been parameterized by the e�ective spa-
tial scale se� = log2 s and the e�ective temporal scale �e� = log2 �=2.) Observe
how we in this way obtain information about the dominant spatial and temporal
frequencies around (x; t). Speci�cally, the ratio between these scale levels serves
as a direct estimate of the dominant motion of the �rst- and second-order image
structures at this spatio-temporal scale.

Figure 7 shows corresponding results for two superimposed sine waves, of
di�erent spatial frequencies �i, which move with di�erent velocities ci:

L(x; t; s; �) =e��
2
1s=2e��

2
1c

2
1�=2 cos(�1(x � c1t+ �)) (49)

+ e��
2
2s=2e��

2
2c

2
2�=2 cos(�2(x� c2t+ �)): (50)

Note how multiple responses over scales are obtained, indicating the ability of
this approach to capture multiple transparent motions.

8.2 Velocity estimation

A more traditional approach for computing velocity estimates is in terms of
spatio-temporal derivatives or other �lter outputs. Here, it will be illustrated
how the proposed scale selection methodology can be applied to such problems.



Consider the motion constraint equation (Horn and Schunck 1981) in the
case of a one-dimensional spatial domain, and di�erentiate this relation once:�

Lx + Lt = 0;
cLxx + Lxt = 0:

(51)

In terms of normalized spatio-temporal derivatives, we can write:�
L� +

p
s
� L� = 0;

cL�� +
p

s
� L�� = 0:

(52)

Ideally, these equations should lead to the same solution. On real-world data,
however, such consistency can hardly be expected. Therefore, let us solve them
in a least-squares sense using weights as imposed by the normalized derivatives:

min
c

(cL� +

r
s

�
L� )

2 + C (cL�� +

r
s

�
L�� )

2 = min
c

�c2 + 2�c+ 
:
(53)

� = 1=4, c = 1 � = 1=16, c = 1=2 � = 1=64, c = 1=4
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Fig. 6. �e� -se�-diagram showing the normalized spatio-temporal quasi quadrature
measure Pprod(x;t)L as function of e�ective temporal scale �e� = log2 �=2 (horizon-
tal axis) and e�ective spatial scale se� = log2 s=2 (vertical axis). Observe how the
dominant peak at (�; s) � 1=�2(1=c2; 1), serves as an indicator of the dominant spatial
frequency � as well as the velocity c.

�1 = 1=64; c1 = 1:
�2 = 1=4; c2 = 1=4:
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�2 = 1=16; c2 = 1:
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Fig. 7. Corresponding �e� -se�-diagram of Pprod(x;t)L for two superimposed sine waves
of frequencies �1 and �2 which move with velocities c1 and c2, respectively. Notably,
such transparent motion gives rise to multiple responses in spatio-temporal scale-space
provided that the di�erence in frequency and velocity is suÆciently large.



Di�erentiation with respect to c shows that the velocity estimate is given by

c = ��

�
= �

r
�

�

 
L�L� + L��L��

L2
� + L2

��

!
; (54)

where the di�erential expression within parentheses gives the velocity estimates
in units of current spatio-temporal scale. Insertion of this value into (53) gives
a residual of the form � = (�
 � �2)=�, and a normalized residual

�norm =
�

�c2
=

�
 � �2

�2c2
=

�


�2
� 1: (55)

In (Lindeberg 1996c), a scale selection methodology for stereo matching and 
ow
estimation was presented based on the region-based 
ow estimation scheme by
(Lukas and Kanade 1981; Bergen et al. 1992). The basic idea was to extend the
least-squares methodology by (Lukas and Kanade 1981; Bergen et al. 1992) for
computing the velocity estimates to the minimization of a normalized residual
over scales . Given the least-squares formulation in (53), we propose to express
a corresponding scale selection methodology for a point-based 
ow estimation
scheme, by minimizing the normalized residual (55) over scales.

Figure 8 show three examples of computing 
ow estimates with automatic
spatio-temporal scale selection in this way, from on a discrete separable temporal
scale-space representation based on the time-causal temporal scale-space model
in (Lindeberg and Fagerstr�om 1996; Lindeberg 1997). To allow for the handling of
two-dimensional image data, and to reduce the in
uence of the aperture problem,
the least-squares formulation in (53) was extended in the following ways:

{ from a one-dimensional to a two-dimensional spatial domain,
{ from spatial derivatives up to order two to derivatives up to order four,
{ the summation extended to nearest-neighbours (over a 3�3-neighbourhood)
to enforce spatial consistency of local motions at the pixel level.

Finally, at each point, the global minimum of a corresponding normalized resid-
ual has been selected, and the 
ow estimate computed at that point. Whereas
a more general scale selection methodology should also include a mechanism for
explicit handling of multiple minima over scales as well as a mechanism for ve-
locity adaptation (Lindeberg 1997), we can nevertheless notice that the following
e�ects arise as consequences of the scale selection methodology:

{ selection of larger scales with increasing size of image structures (compare
the results in column 1 and column 2),

{ selection of �ner spatial scales near 
ow discontinuities (see column 2).

This algorithm was tested on the image sequences used by (Barron et al. 1994)
and gave results which by visual inspection looked at least comparable to those
reported in the evaluation. (One example is shown in third column.) A more
detailed evaluation on calibrated reference data under variations of the size of
image structures, the velocity and the noise level of superimposed Gaussian noise



Uniform translation Flow discontinuity Expanding trees

Fig. 8. Results of 
ow estimation with automatic scale selection for three image se-
quences: (left) noisy sine wave with uniform velocity, (middle) sine wave pattern where
the left half moves downwards and the right half moves upwards, (right) expanding
trees. The �gures show from top to bottom: (to) a grey-level image from the sequence,
(top middle) selected spatial scales, (bottom middle) selected temporal scales, (bottom)

ow estimate. In these results, the following qualitative e�ects of the scale selection
methodology can be seen: (i) large image structures lead to the selection of coarser
scales than small image structures (compare left and right column), (ii) �ner scales
will be selected when we approach a 
ow discontinuity (see middle column).



showed that the ratio between the error in the velocity estimates computed at the
spatio-temporal scales given by this scale selection criterion and corresponding
velocity estimates computed at the best spatio-temporal scales (as de�ned from
comparisons with reference data) was typically within a factor of two.

9 Relations to previous work

The motion literature is large and it is impossible to give a fair review here. (See
(Barron et al. 1994; Beauchemin and Barron 1995) for more extensive overviews.)
As pointed out earlier, the velocity detector resulting from this scale selection
methodology bears close relationships to frequency based motion approaches
such as (Adelson and Bergen 1985; Heeger 1988; Fleet 1992). There is also a
close relationship to Gabor-based approaches for estimating motion energy, such
as the work by (Grzywacz and Yuille 1990). Compared to this type of motion
detection, least-squares based motion approaches such as (Lukas and Kanade
1981; Bergen et al. 1992) and tensor �ltering approaches such as (Big�un et al.
1991) allow motion estimates to be computed using a smaller set of spatio-
temporal �lters. A motion energy scheme, such as this one, on the other hand, is
able to handle situations with multiple transparent motions, and is not restricted
to computing the average motion direction.

(Jones and Malik 1992) performed stereo matching based on the responses of
Gaussian derivative �lters at di�erent scales and of di�erent orientations. Mo-
tion constraint equations involving derivatives of higher order have been studied
by (Werkhoven and Koenderink 1990; Arnspang 1991). (Florack and Nielsen
1994) have analysed the e�ect of di�erentiating motion constraints equations to
higher order and shown how this information relates to higher-order 
ow �elds.
The least squares formulation in (53) involving Gaussian derivatives of multiple
orders in the motion constraint equation can be seen as a combination of these
ideas with spatial integration approach in (Lukas and Kanade 1981; Bergen et
al. 1992) for restricting parameterized motion models of low order by overdeter-
mined systems of equations.

Minimizing a measure of uncertainty over scales bears relationship to the
statistical methodology in (Kanade and Okutomi 1994) for adapting the window
size for stereo correlation. The closest relation to previous works, however, is that
it is shown how the general scale selection methodology proposed in (Lindeberg
1993b, 1994) can be applied to time-causal scale-space concepts over temporal
domains, and be integrated with the region-based scale selection principle for
stereo matching and 
ow estimation in (Lindeberg 1996c) to express mechanisms
for motion detection and 
ow estimation based small-support point operations
from the N -jet (Koenderink and van Doorn 1987).

10 Summary and discussion

The subject of scale selection is an essential complement to traditional scale-
space representation concerning many computer vision problems. The main sub-



ject of this paper has been to outline a foundation for expressing mechanisms
for automatic selection of temporal scales in multi-scale representations based
on time-causal image operations. At a more technical level, the following contri-
butions have been presented.

{ It has described how the extension of the general scale selection methodology
in (Lindeberg 1993b) to 
-normalized derivatives (Lindeberg 1996a) corre-
sponds to normalization in Lp-norm, and how the 
-normalized derivative
concept arises by necessity given natural commutative properties of a scale
selection methodology under size variations (section 3).

{ It has been shown how the concept of quasi quadrature can be de�ned to
allow for dense scale selection, and the relative weighting of �rst- and second-
order derivative information has been analysed (section 4).

{ It has been shown how time-causal normalized derivatives can be de�ned for
the three di�erent types of time-causal temporal scale-space concepts that
guarantee non-creation of local extrema with increasing scale (section 5{6).

{ The e�ect of performing local maximization of normalized derivatives over
scales has been analysed for di�erent types of model patterns, and it has
been shown how the resulting scales re
ect characteristic length of corre-
sponding (spatio-)temporal image structures as well as an analysis of how
the inherent time delay in a temporal multi-scale representation a�ects the
relations between image structures at di�erent temporal scales (section 6{7)

{ It has been shown how this scale selection methodology can be used for
capturing motion energy at di�erent spatio-temporal scales, and how velocity
estimates can be obtained from the spatio-temporal scales selected by the
scale selection procedure (section 8.1).

{ It is shown how a velocity estimation scheme can be formulated by applying
the motion constraint equation to the N -jet, and how the minimization of
a normalized residual over scales in a least-squares formulation provides a
complementary methodology for automatic scale selection (section 8.2).

In summary, these results show how the scale selection principles previously de-
�ned on spatial domains carry over to temporal data, and how they can be given
well-founded formulations based on the strictly time-causal operations which are
necessary to handle real-time image data.
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